School of Mathematics and Statistics MT5864 Advanced Group Theory Problem Sheet IV: Semidirect Products

- 1. Let p be a prime number.
 - (a) Show that $\operatorname{Aut} C_p \cong C_{p-1}$.
 - (b) Show that $\operatorname{Aut}(C_p \times C_p) \cong \operatorname{GL}_2(\mathbb{F}_p)$ (where $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ denotes the field of p elements).

[For (a), let $C_p = \langle x \rangle$. Show that an automorphism α is given by $x \mapsto x^m$ where m is a representative for a non-zero element of \mathbb{F}_p . Also use the fact that the multiplication group of a finite field is cyclic.

For (b), write $C_p \times C_p$ additively and view it as a vector space over \mathbb{F}_p . Show that automorphisms of the group then correspond to invertible linear maps.]

- 2. Let $G = \langle x \rangle$ be a cyclic group. Show that Aut G is abelian.
- 3. Let N and H be groups, let $\phi: H \to \operatorname{Aut} N$ be a homomorphism and $G = N \rtimes_{\phi} H$ the semidirect product constructed using these ingredients.
 - (a) Show that $h \mapsto (1, h)$ is a homomorphism $H \to G$ and that $\overline{H} = \{ (1, h) \mid h \in H \}$ is a subgroup of G that is isomorphic to H.
 - (b) Show that $\pi: (n,h) \mapsto h$ is a homomorphism $G \to H$. Determine the kernel of π . Show that $\overline{N} = \{ (n,1) \mid n \in N \}$ is a normal subgroup of G that is isomorphic to N and $G/\overline{N} \cong H$.
 - (c) Show that $G = \overline{N}\overline{H}$ and $\overline{H} \cap \overline{N} = \mathbf{1}$.
 - (d) Show that $(1,h)^{-1}(n,1)(1,h) = (n^{h\phi},1)$ for all $h \in H$ and $n \in N$.
- 4. Show that the dihedral group D_{2n} is isomorphic to a semidirect product of a cyclic group of order n by a cyclic group of order 2. What is the associated homomorphism $\phi: C_2 \to \operatorname{Aut} C_n$?
- 5. Show that the quaternion group Q_8 may not be decomposed (in a non-trivial way) as a semidirect product.

[Hint: How many elements of order 2 does Q_8 contain?]

6. Show that the symmetric group S_4 of degree 4 is isomorphic to a semidirect product of the Klein 4-group V_4 by the symmetric group S_3 of degree 3.

Show that S_4 is also isomorphic to a semidirect product of the alternating group A_4 by a cyclic group of order 2.

- 7. Let G = F ⋊ T be the semidirect product of a cyclic group F = ⟨x⟩ of order 5 by T = ⟨y, z⟩ ≅ C₂ × C₂ where y⁻¹xy = x and z⁻¹xz = x⁴.
 Show that G is isomorphic to the dihedral group D₂₀ of order 20.
 [Hint: What is the order of the element xy?]
- 8. Let G be a group of order pq where p and q are primes with p < q.
 - (a) If p does not divide q-1, show that $G \cong C_{pq}$, the cyclic group of order pq.
 - (b) If p does divide q-1, show that there are essentially two different groups of order pq.
- 9. Classify the groups of order 52 up to isomorphism.
- 10. Show that a group of order 30 is isomorphic to one of

$$C_{30}, \quad C_3 \times D_{10}, \quad D_6 \times C_5, \quad D_{30}.$$

- 11. Classify the groups of order 98 up to isomorphism.
- 12. Classify the groups of order 117 up to isomorphism.
- 13. Let H and N be groups and let φ, ψ: H → Aut N be two homomorphisms. Suppose that there exists α ∈ Aut N and β ∈ Aut H such that (h^β)φ = α⁻¹(hψ)α for all h ∈ H. Show that (n, h) → (n^α, h^β) is an isomorphism from N ⋊_φ H to N ⋊_ψ H.
 [In this question, we are writing x^γ for the image of an element x of a group under an automorphism γ of the group. This is consistent with our notation in the semidirect product where we write n^{hφ} for the image of n ∈ N under the automorphism hφ.]
- 14. Let G and H be groups where G acts on the set Ω = {1,2,...,n}. Consider the wreath product W = H wr_Ω G determined by this action and let B be the base group of W. We shall view G as a subgroup of W by identifying it with the usual choice of complement to B naturally occurring in this semidirect product.
 - (a) If N is a normal subgroup of H, show that the direct product $N \times N \times \cdots \times N$ of n copies of N is a normal subgroup of W.
 - (b) Show that an element $(h_1, h_2, ..., h_n)$ of *B* commutes with all elements of *G* if and only if $h_i = h_j$ whenever *i* and *j* lie in the same orbit of *G* on Ω .
 - (c) Suppose that $H \neq \mathbf{1}$ and that G acts transitively and also *faithfully* on Ω ; that is, the kernel of the associated permutation representation is trivial. Show that the centre of W is

$$Z(W) = \{ (h, h, \dots, h) \mid h \in Z(H) \}.$$

(d) Suppose that H ≠ 1 and that G acts faithfully on Ω. If N is a non-trivial normal subgroup of W, show that N ∩ B ≠ 1.
[Hint: If N ∩ B = 1, what does this say about commutators [x, b] where x ∈ N and b ∈ B?]