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Introduction

The purpose of this course is to take the study of groups further beyond the contents of
the previous course. Accordingly, we note:

Prerequisite: MT4003

Syllabus

The goal of the course will be to introduce a variety of topics in more advanced group
theory. The topics considered will be as follows:

Revision: Review of the basic concepts of subgroup, normal subgroup, quotient group
and homomorphism, and statement of Sylow’s Theorem. (At least one new, but
small, result will be proved that will be used repeatedly in the module.)

Group Actions: We will explain how a group can induce permutations of a set and how,
as a consequence, to deduce structural properties about subgroups and homomor-
phisms.

Decomposition of groups into series: We shall discuss how a group can be broken
down into various factors that arise from particular series. One specific example will
be the composition series where a (finite) group is broken into essentially uniquely
determined simple groups. This illustrates one example of a “series” for a group. We
shall prove the Jordan–Hölder Theorem that shows these simple factors are indeed
unique.

Semidirect products: We discuss how groups may be constructed and in particular some
ways in which the above decomposition may be reversed. We present the semidirect
product (which can be viewed as a generalization of the direct product encountered
before) and show how this can be used to classify some finite groups of particular
orders.

Soluble groups: We shall discuss in more detail a particular class of groups that was
briefly introduced in MT4003. They have a fairly restricted structure and are defined
via something called the derived series. They can be viewed as being constructed
from abelian groups (though in a relatively general way) and it is this that makes
them more tractible for study. We shall establish the existence of Hall subgroups
in a finite soluble group (and these are generalizations of the Sylow subgroups met
previously).

Nilpotent groups: We shall give a brief introduction to an even more restricted subclass
of the soluble groups defined using what are called central series. In some senses,
nilpotent groups are closer in behaviour to abelian groups though all finite groups
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Introduction

of prime-power order are nilpotent (and p-groups can be viewed as the canonical
examples).

Structure of permutation groups: Cayley’s Theorem tells us that every group can be
embedded as a subgroup of a symmetric group. We shall consider in more detail
how structural information about subgroups of symmetric groups can be determined
from information about the associated natural action.

Themes: There will be two main themes which we shall attempt to exploit during the
course.

(i) Group Actions: essentially this boils down to a group inducing certain permutations
of a set and using this to obtain information about the original group.

(ii) Series: If a group G has a collection of subgroups

G = G0 > G1 > G2 > · · · > Gn = 1

where Gi+1 is a normal subgroup of Gi for all i, then information about the various
quotient groups Gi/Gi+1 (0 ⩽ i ⩽ n− 1) yields information about G.

Reading List

Electronically Available Resources

• Antonio Machi, Groups: An introduction to ideas and methods of the theory of groups,
Springer 2012.

• Steven Roman, Fundamentals of Group Theory: An advanced approach, Birkäuser
2012.

• Derek J. S. Robinson, A Course in the Theory of Groups (Second Edition), Graduate
Texts in Mathematics 80, Springer–Verlag, New York, 1996.

• Derek J. S. Robinson, Abstract Algebra: An introduction with applications, 2nd edi-
tion, De Gruyter, 2015.

• Harvey E. Rose, A Course on Finite Groups, Springer 2009.

• Joseph J. Rotman, An Introduction to the Theory of Groups, Graduate Texts in
Mathematics 148, Springer–Verlag, New York, 1995. [Earlier edition, Allyn & Bacon,
1965]

• Peter J. Cameron, Permutation Groups, Cambridge University Press 1999.

• John D. Dixon & Brian Mortimer, Permutation Groups, Graduate Texts in Mathe-
matics 163, Springer–Verlag, New York, 1996.

Physical Textbooks

The following are useful for consultation, but not essential. The first two used to be
relatively cheap, but are possibly now out-of-print.

• John S. Rose, A Course on Group Theory, Dover Publications, New York, 1994.
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• B. A. F. Wehrfritz, Finite Groups: A Second Course on Group Theory, World Sci-
entific, Singapore, 1999.

• M. I. Kargapolov & Ju. I. Merzljakov, Fundamentals of the Theory of Groups, Grad-
uate Texts in Mathematics 62, Springer–Verlag, New York, 1979.
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Chapter 1

Review/Revision

In this first section we shall principally recall definitions and results from earlier lecture
courses. During the lectures, proofs of results that have been previously met will often
be omitted (though these notes will contain many of them). We shall also specify the
notation to be used throughout the course. We shall not introduce examples of groups
in this chapter, but instead both use problem sheets and recall specific groups in various
examples in later chapters.

Definition 1.1 A group G is a set with a binary operation (usually written multiplica-
tively)

G×G→ G

(x, y) 7→ xy

such that

(i) the binary operation is associative: x(yz) = (xy)z for all x, y, z ∈ G;

(ii) there is an identity element 1 in G: x1 = 1x = x for all x ∈ G;

(iii) each element x in G possesses an inverse x−1: xx−1 = x−1x = 1.

Comments:

(i) This definition makes no explicit reference to ‘closure’ as an axiom. The reason for
this is that this condition is actually built into the definition of a binary operation.
A binary operation takes two elements of our group and produces an element in the
group, and so we automatically obtain closure.

(ii) Associativity ensures that we can safely omit brackets from a product x1x2 . . . xn of
n elements x1, x2, . . . , xn of a group. Thus, for example, the following products are
all equal:

x1(x2(x3x4)), (x1(x2x3))x4, ((x1x2)x3)x4, etc.

(iii) We can define powers xn where x ∈ G and n ∈ Z. The standard power laws hold in
group where the binary operation is multiplicatively written:

xm+n = xmxn and xmn = (xm)n

1



Chapter 1. Review/Revision

for x ∈ G and m,n ∈ Z. We do need to remember that in general group elements
do not commute (so, for example, we cannot easily expand (xy)n) although we can
expand the following inverse:

(xy)−1 = y−1x−1.

Proof: (Omitted in lectures)

(y−1x−1)(xy) = y−1x−1xy = y−11y = y−1y = 1,

so multiplying on the right by the inverse of xy yields y−1x−1 = (xy)−1. □

For completeness, let us record the term used for groups where all the elements present
do commute:

Definition 1.2 A group G is called abelian if all its elements commute; that is, if

xy = yx for all x, y ∈ G.

Subgroups

Although one is initially tempted to attack groups by examining their elements in detail,
this turns out not to be terribly fruitful. Even an only moderately sized group is unyielding
to consideration of its multiplication table. Instead one needs to find some sort of “struc-
ture” to study and this is provided by subgroups and homomorphisms (and, particularly
related to the latter, quotient groups).

A subgroup of a group is a subset which is itself a group under the multiplication
inherited from the larger group. Thus:

Definition 1.3 A subset H of a group G is a subgroup of G if

(i) H is non-empty,

(ii) xy ∈ H and x−1 ∈ H for all x, y ∈ H.

We write H ⩽ G to indicate that H is a subgroup of G. If G is a group, the set
containing the identity element (which I shall denote by 1) and the whole group G are
always subgroups. We shall usually be interested in finding other subgroups of a group.

We mention in passing that the above conditions for a subset to be a subgroup are not
the only ones that can be used, but they are sufficient for our needs (and easily memorable).

The identity element of G lies in every subgroup, so it is easy to see that the conditions
of Definition 1.3 are inherited by intersections. Therefore:

Lemma 1.4 If {Hi | i ∈ I } is a collection of subgroups of a group G, then
⋂

i∈I Hi is
also a subgroup of G.

Proof: (Omitted in lectures) Since 1 ∈ Hi for all i, it follows that
⋂

i∈I Hi ̸= ∅.
Now let x, y ∈

⋂
i∈I Hi. Then for each i, x, y ∈ Hi, so xy ∈ Hi and x−1 ∈ Hi since

Hi ⩽ G. We deduce that xy ∈
⋂

i∈I Hi and x−1 ∈
⋂

i∈I Hi. Thus the intersection is a
subgroup. □

2



Chapter 1. Review/Revision

In general, the union of a family of subgroups of a group is not itself a subgroup. This
is not a disaster, however, as the following construction provides a way around this.

Definition 1.5 Let G be a group and X be a subset of G. The subgroup of G generated
by X is denoted by ⟨X⟩ and is defined to be the intersection of all subgroups of G which
contain X:

⟨X⟩ =
⋂

{H | X ⊆ H ⩽ G }

Lemma 1.4 ensures that ⟨X⟩ is a subgroup of G. It is the smallest subgroup of G
containing X (in the sense that it is contained in all other such subgroups; that is, if H is
any subgroup of G containing X then ⟨X⟩ ⩽ H).

Lemma 1.6 Let G be a group and X be a subset of G. Then

⟨X⟩ = {xε11 x
ε2
2 . . . xεnn | n ⩾ 0, xi ∈ X, εi = ±1 for all i }.

Thus ⟨X⟩ consists of all products of elements of X and their inverses.

Proof: (Omitted in lectures) Let S denote the set on the right-hand side. Since
⟨X⟩ is a subgroup (by Lemma 1.4) and by definition it containsX, we deduce that ⟨X⟩ must
contain all products of elements of X and their inverses. Thus S ⊆ ⟨X⟩.

On the other hand, S is non-empty (for example, it contains the empty product (where
n = 0) which by convention is taken to be the identity element 1), it contains all elements
of X (the case n = 1 and ε1 = 1), is clearly closed under products and

(xε11 x
ε2
2 . . . xεnn )−1 = x−εn

n x
−εn−1

n−1 . . . x−ε1
1 ∈ S.

Hence S is a subgroup of G. The fact that ⟨X⟩ is the smallest subgroup containing X now
gives ⟨X⟩ ⩽ S and we deduce the equality claimed in the lemma. □

Now if H and K are subgroups of G, we have ⟨H,K⟩ available as the smallest subgroup
of G that contains both H and K. We usually use this instead of the union.

We will wish to manipulate the subgroups of a group and understand how they relate
to each other. Useful in such a situation are diagrams where we represent subgroups by
nodes and use an upward (sometimes sloping) line to denote inclusion. For example, the
following illustrates the phenomena just discussed:

1

H ∩K

H K

⟨H,K⟩

G

For subgroups H and K of G, the intersection H ∩ K is the largest subgroup contained
in H and K, and ⟨H,K⟩ is the smallest subgroup containing H and K.

3



Chapter 1. Review/Revision

Cosets

Subgroups enforce a rigid structure on a group: specifically a group is the disjoint union
of the cosets of any particular subgroup. Accordingly we need the following definition.

Definition 1.7 Let G be a group, H be a subgroup of G and x be an element of G. The
(right) coset of H with representative x is the following subset of G:

Hx = {hx | h ∈ H }

We can equally well define what is meant by a left coset, but we shall work almost
exclusively with right cosets. For the latter reason we shall simply use the term ‘coset’ to
always mean ‘right coset’.

Theorem 1.8 Let G be a group and H be a subgroup of G.

(i) If x, y ∈ G, then Hx = Hy if and only if xy−1 ∈ H.

(ii) Any two cosets of H are either equal or are disjoint: if x, y ∈ G, then either Hx = Hy
or Hx ∩Hy = ∅.

(iii) G is the disjoint union of the cosets of H.

(iv) If x ∈ G, the map h 7→ hx is a bijection from H to the coset Hx.

Proof: (Omitted in lectures) (i) Suppose Hx = Hy. Then x = 1x ∈ Hx = Hy, so
x = hy for some h ∈ H. Thus xy−1 = h ∈ H.

Conversely if xy−1 ∈ H, then hx = h(xy−1)y ∈ Hy for all h ∈ H, so Hx ⊆ Hy. Also
hy = hyx−1x = h(xy−1)−1x ∈ Hx for all h ∈ H, so Hy ⊆ Hx. Thus Hx = Hy under this
assumption.

(ii) Suppose that Hx ∩Hy ̸= ∅. Then there exists z ∈ Hx ∩Hy, say z = hx = ky for
some h, k ∈ H. Then xy−1 = h−1k ∈ H and we deduce Hx = Hy by (i).

(iii) If x ∈ G, then x = 1x ∈ Hx. Hence the union of all the (right) cosets of H is the
whole of G. Part (ii) ensures this is a disjoint union.

(iv) By definition of the coset Hx, the map h 7→ hx is a surjective map from H to Hx.
Suppose hx = kx for some h, k ∈ H. Then multiplying on the right by x−1 yields h = k.
Thus this map is also injective, so it is a bijection, as claimed. □

Write |G : H| for the number of cosets of H in G and call this the index of H in G.
The previous result tells us that our group G is the disjoint union of |G : H| cosets of H
and each of these contain |H| elements. Hence:

Theorem 1.9 (Lagrange’s Theorem) Let G be a group and H be a subgroup of G.
Then

|G| = |G : H| · |H|.

In particular, if H is a subgroup of a finite group G, then the order of H divides the order
of G. □

The following fact about indices of subgroups is frequently used:

Lemma 1.10 Let H and K be subgroups of a group G with K ⩽ H ⩽ G. Then

|G : K| = |G : H| · |H : K|.

4



Chapter 1. Review/Revision

For finite groups, this is easily deduced from Lagrange’s Theorem:

|G : K| = |G|
|K|

=
|G|
|H|

· |H|
|K|

= |G : H| · |H : K|.

The full proof for an arbitrary, possibly infinite, group is omitted. It appears on Problem
Sheet I.

Orders of elements and cyclic groups

Definition 1.11 If G is a group and x is an element of G, we define the order of x to
be the smallest positive integer n such that xn = 1 (if such exists) and otherwise say that
x has infinite order. We write o(x) for the order of the element x.

If xi = xj for i < j, then xj−i = 1 and x has finite order and o(x) ⩽ j− i. In particular,
the powers of x are always distinct if x has infinite order. If the element x has finite order n
and k ∈ Z, write k = nq + r where 0 ⩽ r < n. Then

xk = xnq+r = (xn)qxr = xr (1.1)

(since xn = 1). Furthermore 1, x, x2, . . . , xn−1 are distinct (by the first line of the previous
paragraph). Hence:

Proposition 1.12 (i) If x ∈ G has infinite order, then the powers xi (for i ∈ Z) are
distinct.

(ii) If x ∈ G has order n, then x has precisely n distinct powers, namely 1, x, x2,
. . . , xn−1. □

Corollary 1.13 Let G be a group and x ∈ G. Then

o(x) = |⟨x⟩|.

If G is a finite group, then o(x) divides |G|. □

Equation (1.1) yields a further observation, namely:

xk = 1 if and only if o(x) | k.

In the case that a single element generates the whole group, we give a special name:

Definition 1.14 A group G is called cyclic (with generator x) if G = ⟨x⟩.

The following fact about the subgroups of finite cyclic groups was established in
MT4003. The proof basically depends upon the ideas just described. The details are
omitted here and found instead, together with the analogous result for the infinite cyclic
groups, on Problem Sheet I.

Theorem 1.15 Let G be a finite cyclic group of order n. Then G has precisely one
subgroup of order d for every divisor d of n.

5



Chapter 1. Review/Revision

Normal subgroups and quotient groups

Definition 1.16 A subgroupN of a groupG is called a normal subgroup ofG if g−1xg ∈ N
for all x ∈ N and all g ∈ G. We write N P G to indicate that N is a normal subgroup
of G.

The element g−1xg is called the conjugate of x by g and is often denoted by xg. We
shall discuss this operation a little towards the end of this chapter, but in much greater
detail in Chapter 2.

If N P G, then we write G/N for the set of cosets of N in G:

G/N = {Nx | x ∈ G }.

Theorem 1.17 Let G be a group and N be a normal subgroup of G. Then

G/N = {Nx | x ∈ G },

the set of cosets of N in G, is a group when we define the multiplication by

Nx ·Ny = Nxy

for x, y ∈ G.

Proof: (Omitted in lectures) The part of this proof requiring the most work is to
show that this product is actually well-defined. Suppose that Nx = Nx′ and Ny = Ny′

for some elements x, x′, y, y′ ∈ G. Then x = ax′ and y = by′ for some a, b ∈ N . Then

xy = (ax′)(by′) = ax′b(x′)−1x′y′ = ab(x
′)−1

x′y′.

SinceN P G, it follows that b(x′)−1 ∈ N . Hence (xy)(x′y′)−1 = ab(x
′)−1 ∈ N and we deduce

Nxy = Nx′y′. This shows that the above multiplication of cosets is indeed well-defined.
It remains to show that the set of cosets forms a group under this multiplication. If

x, y, z ∈ G, then

(Nx ·Ny) ·Nz = Nxy ·Nz = N(xy)z = Nx(yz) = Nx ·Nyz = Nx · (Ny ·Nz).

Thus the multiplication is associative. We calculate

Nx ·N1 = Nx1 = Nx = N1x = N1 ·Nx

for all cosets Nx, so N1 is the identity element in G/N , while

Nx ·Nx−1 = Nxx−1 = N1 = Nx−1x = Nx−1 ·Nx,

so Nx−1 is the inverse of Nx in G/N .
Thus G/N is a group. □

Definition 1.18 If G is a group and N is a normal subgroup of G, we call G/N (with the
above multiplication) the quotient group of G by N .

We shall discuss quotient groups later in this section. They are best discussed, however,
in the context of homomorphisms, so we shall move onto these in a short while. We just
mention some results (one part of which is proved here, the rest appear on Problem Sheet I)
which will be needed later.

6
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Lemma 1.19 Let G be a group and let H and K be subgroups of G. Define HK = {hk |
h ∈ H, k ∈ K }. Then

(i) HK is a subgroup of G if and only if HK = KH;

(ii) if K is a normal subgroup of G then HK is a subgroup of G (and consequently
HK = KH);

(iii) if H and K are normal subgroups of G, then H ∩K and HK are normal subgroups
of G;

(iv) |HK| · |H ∩K| = |H| · |K|.

When H and K are finite, then we can rearrange the last formula to give

|HK| = |H| · |K|
|H ∩K|

.

This formula holds even when HK is not a subgroup.

Proof: (iv) Define a map α : H ×K → HK by

(h, k) 7→ hk.

Then α is surjective. Fix a point x ∈ HK, say x = h0k0 for some fixed h0 ∈ H and
k0 ∈ K. Then for (h, k) ∈ H ×K,

(h, k)α = x if and only if hk = h0k0

if and only if h−1
0 h = k0k

−1 ∈ H ∩K
if and only if h = h0a, k = a−1k0 where a ∈ H ∩K.

Thus for each x ∈ HK, we see that the set of elements mapped by α to x is

{x}α−1 = { (h, k) ∈ H ×K | (h, k)α = x } = { (h0a, a−1k0) | a ∈ H ∩K }.

This set is in one-one correspondence with the set H∩K via the bijection a 7→ (h0a, a
−1k0).

Hence we may partition H×K into |HK| subsets, each corresponding to one point in HK
and of size |H ∩K|.

H ×K
HK

x

{x}α−1

This proves
|H ×K| = |HK| · |H ∩K|;

that is,
|H| · |K| = |HK| · |H ∩K|. □

7
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Homomorphisms

Definition 1.20 Let G and H be groups. A homomorphism from G to H is a map
ϕ : G→ H such that

(xy)ϕ = (xϕ)(yϕ) for all x, y ∈ G.

Thus a homomorphism between two groups is a map which, in the sense of the above
formula, “preserves” their multiplications. Note that I am writing my maps on the right,
as is conventional in much of algebra. This has several advantages: the first is that when
we compose a number of maps we can read from left to right, rather than from right to
left. It will also be consistent with the notation that we use for group actions in Chapter 2
and it will make certain proofs more notationally convenient.

The following definition presents important subsets (actually subgroups) that are re-
lated to homomorphisms.

Definition 1.21 Let ϕ : G → H be a homomorphism between two groups. Then the
kernel of ϕ is

kerϕ = {x ∈ G | xϕ = 1 },

while the image of ϕ is
imϕ = Gϕ = {xϕ | x ∈ G }.

Note that kerϕ ⊆ G while imϕ ⊆ H here.

Lemma 1.22 Let ϕ : G→ H be a homomorphism between two groups G and H. Then

(i) 1ϕ = 1;

(ii) (x−1)ϕ = (xϕ)−1 for all x ∈ G;

(iii) the kernel of ϕ is a normal subgroup of G;

(iv) the image of ϕ is a subgroup of H.

Proof: (Omitted in lectures) (i) 1ϕ = (1 · 1)ϕ = (1ϕ)(1ϕ) and multiplying by the
inverse of 1ϕ yields 1 = 1ϕ.

(ii) (xϕ)(x−1ϕ) = (xx−1)ϕ = 1ϕ = 1 and multiplying on the left by the inverse of xϕ
yields (x−1)ϕ = (xϕ)−1.

(iii) By (i), 1 ∈ kerϕ. If x, y ∈ kerϕ, then (xy)ϕ = (xϕ)(yϕ) = 1 · 1 = 1 and (x−1)ϕ =
(xϕ)−1 = 1−1 = 1, so we deduce xy ∈ kerϕ and x−1 ∈ kerϕ. Therefore kerϕ is a subgroup
of G. Now if x ∈ kerϕ and g ∈ G, then (g−1xg)ϕ = (g−1ϕ)(xϕ)(gϕ) = (gϕ)−11(gϕ) = 1,
so g−1xg ∈ kerϕ. Hence kerϕ is a normal subgroup of G.

(iv) Let g, h ∈ imϕ. Then g = xϕ and h = yϕ for some x, y ∈ G. Then gh =
(xϕ)(yϕ) = (xy)ϕ ∈ imϕ and g−1 = (xϕ)−1 = (x−1)ϕ ∈ imϕ. Thus imϕ is a subgroup
of G. □

The kernel is also useful for determining when a homomorphism is injective.

Lemma 1.23 Let ϕ : G → H be a homomorphism between two groups G and H. Then
ϕ is injective if and only if kerϕ = 1.

8
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Proof: Suppose ϕ is injective. If x ∈ kerϕ, then xϕ = 1 = 1ϕ, so x = 1 by injectivity.
Hence kerϕ = 1.

Conversely suppose that kerϕ = 1. If xϕ = yϕ, then (xy−1)ϕ = (xϕ)(yϕ)−1 = 1, so
xy−1 ∈ kerϕ. Hence xy−1 = 1 and, upon multiplying on the right by y, we deduce x = y.
Hence ϕ is injective. □

Example 1.24 Let G be a group and N be a normal subgroup of G. Define a map
π : G→ G/N by

π : x 7→ Nx.

The definition of the multiplication in the quotient group G/N ensures that π is a homo-
morphism. It is called the natural map (or canonical homomorphism). We see

kerπ = {x ∈ G | Nx = N1 };

that is,
kerπ = N,

and clearly imπ = G/N ; that is, π is surjective.

Thus it is not just that every kernel is a normal subgroup, but also that every normal
subgroup is the kernel of some homomorphism. Indeed, one can interpret this example
together with the First Isomorphism Theorem (below) as saying that normal subgroups
and homomorphisms are in some sense in correspondence.

Isomorphism Theorems

We shall finish this section by discussing the four important theorems that relate quotient
groups and homomorphisms. We shall need the concept of isomorphism, so we recall that
first.

Definition 1.25 An isomorphism between two groups G and H is a homomorphism
ϕ : G → H which is a bijection. We write G ∼= H to indicate that there is an isomor-
phism between G and H, and we say that G and H are isomorphic.

What this means is that if G and H are isomorphic groups, then the elements of the
two groups are in one-one correspondence in such a way that the group multiplications
produce precisely corresponding elements. Thus essentially the groups are identical: we
may have given the groups different names and labelled the elements differently, but we
are looking at identical objects in terms of their structure.

Theorem 1.26 (First Isomorphism Theorem) Let G and H be groups and ϕ : G →
H be a homomorphism. Then kerϕ is a normal subgroup of G, imϕ is a subgroup of H
and

G/ kerϕ ∼= imϕ.

Proof: (Sketch) We already know that kerϕ P G, so we can form G/kerϕ. The iso-
morphism is the map

(kerϕ)x 7→ xϕ (for x ∈ G). □

9
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Proof: (Omitted details) Let K = kerϕ and define θ : G/K → imϕ by Kx 7→ xϕ for
x ∈ G. We note

Kx = Ky if and only if xy−1 ∈ K

if and only if (xy−1)ϕ = 1

if and only if (xϕ)(yϕ)−1 = 1

if and only if xϕ = yϕ.

This shows that θ is well-defined and also that it is injective. By definition of the image,
θ is surjective. Finally(

(Kx)(Ky)
)
θ = (Kxy)θ = (xy)ϕ = (xϕ)(yϕ) = (Kx)θ · (Ky)θ

for all x, y ∈ G, so θ is a homomorphism. Hence θ is the required isomorphism. (All other
parts of the theorem are found in Lemma 1.22.) □

Rather than move straight on to the Second and Third Isomorphism Theorems, I shall
deal with the Correspondence Theorem next so that I can use it when talking about the
other Isomorphism Theorems. The Correspondence Theorem essentially tells us how to
handle quotient groups, at least in terms of their subgroups, which is to some extent the
principal way of handling them anyway.

Theorem 1.27 (Correspondence Theorem) Let G be a group and let N be a normal
subgroup of G.

(i) There is a one-one inclusion-preserving correspondence between subgroups of G con-
taining N and subgroups of G/N given by

H 7→ H/N whenever N ⩽ H ⩽ G.

(ii) Under the above correspondence, normal subgroups of G which contain N correspond
to normal subgroups of G/N .

The primary content of Part (i) of the Correspondence Theorem is that every subgroup
of G/N can be uniquely expressed in the form H/N for some subgroup H of G that con-
tains N . We shall frequently use the existence of this expression when trying to work with
subgroups of the quotient group. Moreover, Part (ii) then tells us that this subgroup H/N
is normal in G/N precisely when the corresponding subgroup H is normal in G; that is,

H P G if and only if H/N P G/N

for N ⩽ H ⩽ G.
If we view it that the ‘structure’ of a group is somehow the shape of the diagram of

subgroups (with those ‘special’ subgroups which are normal indicated), then the Corre-
spondence Theorem tells us how the structures of a group and a quotient are related. The
diagram of subgroups of the quotient group G/N is simply that part of the diagram of
subgroups sandwiched between G and N .

10



Chapter 1. Review/Revision

1

N

G

1 = {N1}

G/N

Proof: (Omitted in lectures) Let S denote the set of subgroups of G that containN
(that is, S = {H | N ⩽ H ⩽ G }) and let T denote the set of subgroups of G/N . Let
π : G→ G/N denote the natural map x 7→ Nx.

First note that if H ∈ S , then N is certainly also a normal subgroup of H and we can
form the quotient group H/N . This consists of some of the elements of G/N and forms
a group, so is a subgroup of G/N . Thus we do indeed have a map Φ: S → T given by
H 7→ H/N . Also note that if H1, H2 ∈ S with H1 ⩽ H2, then we immediately obtain
H1/N ⩽ H2/N , so Φ preserves inclusions.

Suppose H1, H2 ∈ S and that H1/N = H2/N . Let x ∈ H1. Then Nx ∈ H1/N =
H2/N , so Nx = Ny for some y ∈ H2. Then xy−1 ∈ N , say xy−1 = n for some n ∈ N .
Since N ⩽ H2, we then deduce x = ny ∈ H2. This shows H1 ⩽ H2 and a symmetrical
argument shows H2 ⩽ H1. Hence if H1Φ = H2Φ then necessarily H1 = H2, so Φ is
injective.

Finally let J ∈ T . Let H be the inverse image of J under the natural map π; that is,

H = {x ∈ G | xπ ∈ J } = {x ∈ G | Nx ∈ J }.

If x ∈ N , then Nx = N1 ∈ J , since N1 is the identity element in the quotient group.
Therefore N ⩽ H. If x, y ∈ H, then Nx,Ny ∈ J and so Nxy = (Nx)(Ny) ∈ J and
Nx−1 = (Nx)−1 ∈ J . Hence xy, x−1 ∈ H, so we deduce that H is a subgroup which
contains N . Thus H ∈ S . We now consider the image of this subgroup H under the
map Φ. If x ∈ H, then Nx ∈ J , so H/N ⩽ J . On the other hand, an arbitrary element
of J has the form Nx for some element x in G and, by definition, this element x belongs
to H. Hence every element of J has the form Nx for some x ∈ H and we conclude
J = H/N = HΦ. Thus Φ is surjective.

This completes the proof of Part (i).
(ii) We retain the notation of Part (i). Suppose H ∈ S and that H P G. Consider a

coset Nx in H/N (with x ∈ H) and an arbitrary coset Ng in G/N . Now g−1xg ∈ H since
H P G, so (Ng)−1(Nx)(Ng) = Ng−1xg ∈ H/N . Thus H/N P G/N .

Conversely suppose J P G/N . Let H = {x ∈ G | Nx ∈ J }, so that J = H/N
(as in the last part of the proof of (i)). Let x ∈ H and g ∈ G. Then Nx ∈ J , so
Ng−1xg = (Ng)−1(Nx)(Ng) ∈ J by normality of J . Thus g−1xg ∈ H, by definition of H,
and we deduce that H P G.

Hence normality is preserved by the bijection Φ. □

Theorem 1.28 (Second Isomorphism Theorem) Let G be a group, let H be a sub-
group of G and let N be a normal subgroup of G. Then H ∩N is a normal subgroup of H,
NH is a subgroup of G, and

H/(H ∩N) ∼= NH/N.

11
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Proof: The natural map π : x 7→ Nx is a homomorphism G → G/N . Let ϕ be the
restriction to H; i.e., ϕ : H → G/N given by x 7→ Nx for all x ∈ H. Then ϕ is once again
a homomorphism,

kerϕ = H ∩ kerπ = H ∩N

and
imϕ = {Nx | x ∈ H } = {Nnx | x ∈ H, n ∈ N } = NH/N.

By the First Isomorphism Theorem, H ∩N P H, NH/N ⩽ G/N and

H/(H ∩N) ∼= NH/N.

Finally NH is a subgroup of G by the Correspondence Theorem. □

Note: Since we shall need it later, we record that the isomorphism H/(H∩N) → NH/N
is given by

(H ∩N)x 7→ Nx

(as this is the isomorphism that the proof of the First Isomorphism Theorem gives us).

Theorem 1.29 (Third Isomorphism Theorem) Let G be a group and let H and K
be normal subgroups of G such that K ⩽ H ⩽ G. Then H/K is a normal subgroup
of G/K and

G/K

H/K
∼= G/H.

This theorem then tells us about the behaviour of normal subgroups of quotient groups
and their associated quotients. Specifically, via the Correspondence Theorem we know
that a normal subgroup of the quotient group G/K has the form H/K where K ⩽ H P G.
Now we would like to know what the quotient group by this normal subgroup is, and the
Third Isomorphism Theorem tells us that it is the same as the quotient in the original
group. In terms of our diagrams of subgroups, the following occurs:

1

K

H

G

isomorphic
quotients

1 = {K1}

H/K

G/K

Proof: Define θ : G/K → G/H by Kx 7→ Hx for x ∈ G. This is a well-defined map [if
Kx = Ky, then xy−1 ∈ K ⩽ H, so Hx = Hy] which is easily seen to be a homomorphism
[
(
(Kx)(Ky)

)
θ = (Kxy)θ = Hxy = (Hx)(Hy) = (Kx)θ · (Ky)θ for all x, y ∈ G] and

clearly im θ = G/H. The kernel is

ker θ = {Kx | x ∈ H } = H/K.

12
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Hence, by the First Isomorphism Theorem, H/K P G/K and

G/K

H/K
∼= G/H.

□

Sylow’s Theorem

The final topic that we cover in this review section is the most important result from
MT4003, indeed probably the most important theorem that there is concerning finite
groups.

Definition 1.30 Let p be a prime number and G be a finite group.

(i) We say G is a p-group if its order is a power of p.

(ii) If G is any finite group, a p-subgroup of G is a subgroup whose order is a power of p.

(iii) Suppose that |G| = pnm where p does not divide m. A Sylow p-subgroup of G is a
subgroup of order pn.

Thus Lagrange’s Theorem tells us that a Sylow p-subgroup of G is a p-subgroup of the
largest possible order. Note that if |G| = pnm where p ∤ m and P is a Sylow p-subgroup
of G, then |G : P | = m and this is coprime to p.

Theorem 1.31 (Sylow’s Theorem) Let p be a prime number, G be a finite group and
write |G| = pnm where p does not divide m. Then

(i) G has a Sylow p-subgroup;

(ii) any two Sylow p-subgroups are conjugate in G;

(iii) the number of Sylow p-subgroups of G is congruent to 1 (mod p) and divides m;

(iv) any p-subgroup of G is contained in a Sylow p-subgroup.

Before discussing initially the significance of this theorem, we will present some infor-
mation about conjugation since this arises in part (ii) of the theorem.

Let G be a group and fix an element x ∈ G. Write τx for the map which is conjugation
by x:

τx : G→ G

g 7→ gx = x−1gx.

Observations:

(i)

(gh)τx = x−1ghx = x−1gx · x−1hx = (gτx)(hτx)

for all g, h ∈ G; that is, τx is a homomorphism.

13
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(ii)

gτxτx−1 = x(x−1gx)x−1 = g

so that τxτx−1 = idG, and similarly τx−1τx = idG. Hence τx is an invertible map (it
has τx−1 as its inverse).

Invertible homomorphisms are, of course, called isomorphisms, but in the special case
where the homomorphism is from a group back to itself, we give it a special name.

Definition 1.32 Let G be a group. An automorphism of G is a map G→ G which is an
isomorphism.

We have shown that τx (conjugation by x) is an automorphism of our group. We use
the term inner automorphism to refer to the specific automorphisms that arise in this form;
that is, the inner automorphisms of G are all the maps G→ G of the form τx : g 7→ gx for
x ∈ G.

Now if H is a subgroup of G, its image under this automorphism must still be a
subgroup. Hence the conjugate

Hx = {x−1hx | h ∈ H }

is also a subgroup of G. The inner automorphism τx restricts to an isomorphism H → Hx

and hence this conjugate is isomorphic to the original subgroup H. In particular, the
conjugates of H all have the same order as the original subgroup H.

Let us now return to Sylow’s Theorem. What this significant theorem tells us is:

(i) Certain types of subgroups always exist in a finite group. In general, the converse of
Lagrange’s Theorem is false: there exist finite groups G with a divisor m of |G| where
there is no subgroup of order m. The first part of Sylow’s Theorem essentially tells
us that for divisors of |G| that are prime-powers, the converse does hold. This means
that we can actually find subgroups to work with, as opposed to using Lagrange’s
Theorem which mostly functions as a tool to say certain subgroups do not exist.

(ii) If P is a Sylow p-subgroup, then certainly every conjugate P x (for x ∈ G) is also a
Sylow p-subgroup as it has the same order. The theorem tells us that all the Sylow
p-subgroups arise in this way and so, in particular, they all look essentially the same
(that is, they are isomorphic).

(iii) We have strong numeric information about the Sylow subgroups and we shall exploit
this at many points during the course.

(iv) The final part of the theorem tells us something stronger than Lagrange’s Theo-
rem about the p-subgroups of a group G. The earlier theorem tells us that Sylow
p-subgroups are the largest p-subgroups of G in terms of their order. Part (iv) of
Sylow’s Theorem says they are also maximal in terms of containment. To be specific,
if we were to draw a diagram of the subgroups of G as suggested earlier, then the
p-subgroups ofG all occur as the collections of the nodes below the Sylow p-subgroups
in the diagram.

This completes our brief review of group theory covered in previous modules, at least
for now. Some examples of groups will need to be recalled at various points in the notes and
also on the problem sheets. A few additional results will be reviewed later. In particular,
results about conjugation, centralizers, etc., will appear in the context of group actions in
the next chapter since that is a natural common framework to discuss these concepts.

14
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Group Actions

The purpose of this chapter is to explain what it means for a group to ‘act’ on a set. There
are a number of reasons why this concept is significant:

(i) Group actions are the main way that group theory applies to other branches of
mathematics as well as to computer science and the physical sciences.

(ii) The important branch of group theory called geometric group theory is primarily
concerned with the study of groups acting upon geometric structures.

(iii) Group actions give us a useful set of terminology and technology for referring to the
behaviour of a group. For example, if we can say that a finite group G acts on its set
of Sylow p-subgroups, then all the methods and results of this section can be applied
to deduce information about the original group G. This will be the main reason we
shall need this technology in this course.

An action of a group G on a set Ω will be a map µ : Ω × G → Ω satisfying certain
properties. In order to make the properties more intuitive we shall denote the image of a
pair (ω, x) under µ by ωx. The idea here is to view ωx as the result of applying the element
x ∈ G to the point ω ∈ Ω.

Definition 2.1 Let G be a group and Ω be a set. A group action of G on Ω is a map

µ : Ω×G→ Ω

(ω, x) 7→ ωx

such that

(i) (ωx)y = ωxy for all ω ∈ Ω and x, y ∈ G,

(ii) ω1 = ω for all ω ∈ Ω.

We then say that G acts on Ω.

As we indicated when discussing the choice of notation, we shall think of an action as
a method of applying the element x of the group G to points in the set Ω. Thus the first
condition states that applying two elements x and y in sequence has the same effect as
applying the product xy, while the second condition is the requirement that the identity
element of the group produces the effect of the identity map when it is applied.

We shall spend some time developing the theory of group actions. First we present a
few examples which illustrate the concept and will allow us to recall some standard groups
at the same time.

15
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Example 2.2 (i) Let Ω = {1, 2, . . . , n}. Recall that the symmetric group of degree n is
denoted by Sn and consists of all bijections σ : Ω → Ω. Such a bijection is called a
permutation of Ω and we multiply permutations in the group Sn by composing them
as maps.
As a consequence of the definition, the symmetric group Sn acts on the set Ω by

(ω, σ) 7→ ωσ

where the right-hand side denotes the effect of applying the permutation σ to the
point ω ∈ Ω. The fact that this is an action follows immediately:

(ωσ)τ = ωστ for σ, τ ∈ Sn and ω ∈ Ω,

since the composite στ is defined to mean first apply σ and then apply τ , while

ω1 = ω for ω ∈ Ω,

since the identity permutation 1 fixes all points of Ω.
The concept of a group action can be thought of as a generalization of his example
and we shall link them further when we introduce permutation representaions later
in the chapter.

(ii) If a group G acts on a set Ω and H is a subgroup of G, then H acts on the same set Ω
by restricting the action Ω × G → Ω to the subset Ω × H. The two conditions we
required are inherited immediately. In particular, if H is a subgroup of the symmetric
group Sn then H also acts on Ω = {1, 2, . . . , n}.
One specific example is the dihedral group of order 2n which is the subgroup of Sn
generated by the following two permutations:

α = (1 2 3 . . . n)

β =

(
1 2 3 . . . n
1 n n−1 . . . 2

)
= (2 n)(3 n−1) · · · .

We shall denote this group by D2n. (The choice of notation for the dihedral group
is not consistent in the literature. Some authors use Dn while others use D2n. This
choice to use of D2n in these notes agrees with the lecturer’s preferred textbooks.)
Recall these permutations have the following properties:

o(α) = n, o(β) = 2, βα = α−1β.

Now consider a regular polygon with n edges and vertices labelled from 1 to n:

1
2

3

n

n−1

α

β
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If g is an element of D2n, one determines an isometry of the above regular polygon
as follows: If g moves i to j, then the associated isometry moves vertex i to vertex j.
With this convention, α induces a clockwise rotation of the polygon through an angle
of 2π/n while applying β produces a reflection in the axis passing through vertex 1.
Since both of α and β preserve the edges between the vertices, it follows that every
product of these elements also is an isometry of the polygon. We have consequently
associated each element of Ω = {1, 2, . . . , n} to a vertex of the polygon and observed
that the permutation that each element of D2n produces on Ω corresponds to an
isometry of the polygon.

Conclusion: The dihedral group D2n acts on the vertices of a regular polygon with
n sides.

(iii) Many groups arise as a collection of invertible functions defined on some set Ω. Such
groups are also subgroups of the symmetric group on the set Ω and so act on the
given set Ω. One specific example is the following.

Let V be a vector space of dimension n over a field F . Fix a basis {e1, e2, . . . , en}
for V . A linear transformation T : V → V can be represented, with respect to this
basis, by an n × n matrix with entries from F and the transformation is invertible
when the corresponding matrix is non-singular (i.e., has non-zero determinant). The
general linear group of degree n over F is

GLn(F ) = {A | A is an n× n matrix over F with detA ̸= 0 }.

Then GLn(F ) acts on V : a matrix A in GLn(F ) moves the vector v (from V )
according to the linear transformation determined by A. It follows from the definition
of matrix multiplication that

(vA)B = v(AB) for all v ∈ V and A,B ∈ GLn(F )

and
vI = v for all v ∈ V .

These examples above illustrate how group actions arise in a variety of natural settings.
We shall also find lots of examples occurring where a groups acts on something related to
its own structure. Before we move on to these types of examples, we shall first develop the
theory of group actions.

Orbits

Definition 2.3 Let G be a group, Ω be a set and let G act on Ω. If ω ∈ Ω, the orbit
containing ω is defined to be the set

ωG = {ωx | x ∈ G }.

Thus, the orbit containing ω consists of all the points of Ω that can be reached by
applying elements of the group G to ω. The basic properties of orbits are as follows.

Proposition 2.4 Let G be a group, Ω be a set and let G act on Ω. Let ω, ω′ ∈ Ω. Then

(i) ω ∈ ωG;

(ii) either ωG = (ω′)G or ωG ∩ (ω′)G = ∅.
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Thus part (ii) asserts that any two orbits are either disjoint or are equal. The propo-
sition then yields:

Corollary 2.5 Let the group G act on the set Ω. Then Ω is the disjoint union of its
orbits. □

There are some similarities here to the observation that says a group is the disjoint
union of the cosets of a subgroup. Indeed, the fact that a group is the disjoint union of
the cosets of a subgroup can be deduced using group actions (see Problem Sheet II). One
difference here is that, in general, it is not necessarily the case that all the orbits have the
same size.

Proof of Proposition 2.4: (i) By definition ω = ω1, so ω ∈ ωG.
(ii) Suppose α ∈ ωG ∩ (ω′)G. Hence there exist x, y ∈ G such that α = ωx = (ω′)y.

Apply y−1:
ωxy−1

= (ωx)y
−1

= ((ω′)y)y
−1

= (ω′)yy
−1

= (ω′)1 = ω′.

Now, for g ∈ G,
(ω′)g = (ωxy−1

)g = ωxy−1g ∈ ωG

and we deduce (ω′)G ⊆ ωG.
Similarly from (ω′)y = ωx, we deduce (ω′)yx

−1
= ω and hence

ωg = (ω′)yx
−1g for all g ∈ G.

This shows ωG ⊆ (ω′)G.
Hence if ωG ∩ (ω′)G ̸= ∅, then ωG = (ω′)G. □

Definition 2.6 We say that a group G acts transitively on a set Ω if it has precisely one
orbit for its action.

Thus G acts transitively on Ω if for all ω, ω′ ∈ Ω there exists x ∈ G such that ω′ = ωx.

Examples:

(i) The symmetric group Sn acts transitively on Ω = {1, 2, . . . , n}: if i, j ∈ Ω are distinct
then (i j) moves i to j and so these points lie in the same orbit.

(ii) The dihedral groupD2n also acts on Ω = {1, 2, . . . , n}: if i < j, then the rotation αj−i

moves the vertex i to the vertex j and so the corresponding points like in the same
orbit.

(iii) The general linear group GLn(F ) has two orbits on V : every linear map fixes the
zero vector 0 and so {0} is an orbit. If v and w are non-zero vectors, then each
can be extended to a basis and hence we can specify an invertible linear map that
moves v to w. Hence V \ {0} is an orbit for GLn(F ).

Stabilizers

Definition 2.7 Let G be a group that acts on the set Ω. If ω ∈ Ω, then the stabilizer of ω
in G is defined to be the following subset of G:

Gω = {x ∈ G | ωx = ω }

Thus the stabilizer of ω is the set of all elements from G that fix ω.
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Example: Let G = Sn, the symmetric group of degree n in its natural action on the set
Ω = {1, 2, . . . , n} as in Example 2.2(i). If ω ∈ Ω, then an element of Gω fixes the point ω
and can permute the remaining n− 1 points of Ω in any way that one chooses. Hence the
stabilizer Gω is a copy of the symmetric group Sn−1 of degree n− 1 (and when ω = n, it
is the natural copy of Sn−1 inside Sn).

Lemma 2.8 Let G be a group that acts on Ω and ω ∈ Ω. The stabilizer Gω of ω is a
subgroup of G.

Proof: We check the conditions to be a subgroup. First ω1 = ω, since we have an action,
so 1 ∈ Gω. In particular, the stabilizer Gω is non-empty. Suppose x, y ∈ Gω. Then

ωxy = (ωx)y = ωy = ω

so xy ∈ Gω, while
ωx−1

= (ωx)x
−1

= ωxx−1
= ω1 = ω

so x−1 ∈ Gω. Hence Gω is a subgroup of G. □

The crucial reason why stabilizers help us is the following theorem:

Theorem 2.9 (Orbit-Stabilizer Theorem) Let G be a group, Ω be a set and let G act
on Ω. If ω ∈ Ω, then

|ωG| = |G : Gω|.

Thus the ‘length’ (or size) of an orbit equals the index of the corresponding stabilizer.

Proof: We demonstrate the existence of a bijection from the set of cosets of the stabi-
lizer Gω to the orbit of ω. Define

ϕ : Gωx 7→ ωx.

We first check that this is well-defined. Suppose Gωx = Gωy for some x and y. Then
xy−1 ∈ Gω, so

ωxy−1
= ω.

Apply y:
ωxy−1y = ωy.

Therefore
ωx = ωy.

Hence ϕ is well-defined.
Suppose x, y ∈ G and that (Gωx)ϕ = (Gωy)ϕ; that is,

ωx = ωy.

Therefore, upon applying y−1,

ωxy−1
= ωyy−1

= ω1 = ω,

so xy−1 ∈ Gω and we deduce Gωx = Gωy. Thus ϕ is injective.
Finally by definition the image of ϕ is the orbit of ω.
Hence ϕ : Gωx 7→ ωx does define a bijection from the set of cosets of Gω to the orbit

of ω and we conclude
|ωG| = |G : Gω|. □
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We can make further observations about stabilizers. Indeed, suppose that a group G
acts on the set Ω and that ω and ω′ are two points that lie in the same orbit. We know
that orbits are either disjoint or equal, so

ωG = (ω′)G.

Hence, by the Orbit-Stabilizer Theorem,

|G : Gω| = |G : Gω′ |.

In particular, if G is a finite group, we can now deduce already that |Gω| = |Gω′ |. In
fact, we can observe not only that this is true in general but far much more holds as the
following result shows.

Proposition 2.10 Let G be a group, Ω be a set and let G act on Ω. If two points ω and ω′

lie in the same orbit of G on Ω, then the stabilizers Gω and Gω′ are conjugate in G. Indeed,
if ω′ = ωx for x ∈ G, then

Gω′ = (Gω)
x = x−1Gωx. (2.1)

Proof: Since ω and ω′ lie in the same orbit, there does indeed exist some x ∈ G such
that ω′ = ωx. To verify that the two stabilizers are conjugate in G, we shall establish
Equation (2.1).

Let g ∈ Gω, so that x−1gx ∈ (Gω)
x. Then

(ω′)x
−1gx = (ωx)x

−1gx

= ωxx−1gx

= ωgx

= ωx (as g ∈ Gω)
= ω′.

Hence x−1gx ∈ Gω′ ; that is, (Gω)
x ⊆ Gω′ .

For the reverse inclusion, note first that from ω′ = ωx, we deduce (ω′)x
−1

= ωxx−1
= ω,

so applying the inclusion that we have already established above yields

(Gω′)x
−1 ⊆ Gω;

that is,
xGω′x−1 ⊆ Gω.

Multiply on the left by x−1 and on the right by x:

Gω′ ⊆ x−1Gωx = (Gω)
x.

Thus Gω′ = (Gω)
x, as required. □

We shall continue to further develop the theory of group actions later, but we shall first
consider a couple of examples which illustrate how we can apply this theory to the study
of groups.
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Conjugation

Example 2.11 (Conjugation Action) LetG be a group and attempt to define an action
of G on itself by

G×G→ G

(g, x) 7→ x−1gx = gx,

the conjugate of g by x. We need to check the conditions to be a group action:

(i) (gx)y = y−1(x−1gx)y = y−1x−1gxy = (xy)−1g(xy) = gxy for all g, x, y ∈ G;

(ii) g1 = 1−1g1 = 1g1 = g for all g ∈ G.

Thus we have a genuine action of G on itself. We should therefore consider the orbits and
stabilizers for this action.

If g ∈ G, the orbit of G containing g (for this conjugation action) is

gG = { gx | x ∈ G } = {x−1gx | x ∈ G },

the set of all conjugates of g. This is the conjugacy class of g in G.
The stabilizer of g under this action is

Gg = {x ∈ G | gx = g }
= {x ∈ G | x−1gx = g }
= {x ∈ G | gx = xg };

i.e., with this particular action, the stabilizer of g consists of the set of elements of G which
commute with g. We use the following term to refer to this specific example of a stabilizer
for this particular action.

Definition 2.12 If G is a group and g is an element of G, the centralizer of g (in G) is

CG(g) = {x ∈ G | gx = xg }.

We may now apply the standard facts about group actions to make deductions about
conjugation in a group. The result that we now give probably appeared in the module
MT4003, but with a proof that was directly focused upon conjugation. By placing conju-
gation in the context of group actions, we can deduce what we want immediately from the
theory just developed.

Proposition 2.13 Let G be a group. Then

(i) G is the disjoint union of its conjugacy classes;

(ii) the centralizer of an element g is a subgroup of G;

(iii) the number of conjugates of an element g equals the index of its centralizer;

(iv) if g, x ∈ G then
CG(g

x) = CG(g)
x.
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Proof: (i) Immediate from Corollary 2.5: a set is the disjoint union of the orbits in a
group action.

(ii) Immediate from Lemma 2.8: a stabilizer is a subgroup.
(iii) Immediate from the Orbit-Stabilizer Theorem (Theorem 2.9: the length of an orbit

equals the index of the corresponding stabilizer.
(iv) The fact that the centralizer of a conjugate of g is a conjugate of the centralizer

of g is immediate from Proposition 2.10 (and specifically Equation 2.1). □

Conjugation on subgroups

Example 2.14 (Conjugation action on subsets and subgroups)
Let G be a group and let P(G) denote the set of all subsets of G (the power set of G).
We define an action of G on P(G) by

P(G)×G→ P(G)

(A, x) 7→ Ax = x−1Ax = {x−1ax | a ∈ A }.

A similar argument to Example 2.11 checks that this is indeed an action (this basically
only relies on associativity of the group multiplication and the formula for the inverse of
a product of two elements). The orbit containing the subset A is the set of all conjugates
of A and the stabilizer is the so-called ‘normalizer’ of A:

Definition 2.15 If G is a group and A is a subset of G, the normalizer of A in G is

NG(A) = {x ∈ G | Ax = A }.

Since this is a stabilizer, it is always a subgroup of G (by Lemma 2.8). We shall
be most interested in the case when we conjugate subgroups and here we make use of
what we know about conjugation from Chapter 1. We know that the conjugation map
τx : g 7→ gx = x−1gx is an automorphism of the group G. (We called such an inner
automorphism of the group.) As a consequence, it maps subgroups to subgroups and
hence the conjugate Hx of a subgroup H is another subgroup. This tells us that the orbit
of H under the conjugation action consists of subgroups of G that all are isomorphic to
the original subgroup H.

We summarize information about conjugation of subgroups in the following observation.

Proposition 2.16 Let G be a group and H be a subgroup of G.

(i) The normalizer NG(H) of H in G is a subgroup of G.

(ii) The conjugates of H are subgroups of G that are isomorphic to H.

(iii) The number of conjugates of H in G is equal to the index |G : NG(H)| of the
normalizer in G. □

In particular, if we consider conjugation of Sylow subgroups of a finite group G, some
of what Sylow’s Theorem tells us is that, for a given prime p, the Sylow p-subgroups form
a single orbit under the conjugation action of G on its subgroups.

On the topic of Sylow’s Theorem, we mention that the theorem can be proved in the
language of group actions. Indeed, much of the proof that I used to present of parts (ii)–
(iv) of Theorem 1.31 when I taught MT4003 was essentially that but with the language
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of group actions stripped out. Even when phrased in terms of group actions, the proof is
still quite long and so not worth doing again when there is plenty more group theory to be
studied. Questions that guide you through the proof of Sylow’s Theorem based on group
actions appear on Problem Sheet II.

Permutation representations

We have already seen that with a group action certain subgroups, the stabilizers, are of
particular significance. In particular, the Orbit-Stabilizer Theorem says there is a strong
link between the orbits in the action and the indices of these subgroups. We now bring
another part of group theory into the context of group actions. We shall construct a
homomorphism associated to the group action. The image of the homomorphism lies
within a symmetric group, so we recall the definition of the latter group.

Definition 2.17 Let Ω be any set. A permutation of Ω is a bijection σ : Ω → Ω. The set
of all permutations of Ω is called the symmetric group on Ω and is denoted by Sym(Ω). It
forms a group under composition of maps:

ωστ = (ωσ)τ

for ω ∈ Ω and σ, τ ∈ Sym(Ω).

Associativity is immediately checked. The identity element in Sym(Ω) is the identity
map, which we shall denote by 1 (provided this will not cause confusion) in what follows.
All permutations possess inverses since they are bijective and so we conclude that Sym(Ω) is
indeed a group. We recover our friend the symmetric group Sn by simply considering the
special case when Ω = {1, 2, . . . , n}.

Now let G be a group, Ω be a set and let G act on Ω. If x ∈ G, then we induce a map
from Ω to itself by

ρx : Ω → Ω

ω 7→ ωx.

Now
ωρxρx−1 = (ωx)x

−1
= ωxx−1

= ω1 = ω

and
ωρx−1ρx = (ωx−1

)x = ωx−1x = ω1 = ω.

Hence ρxρx−1 = ρx−1ρx = 1 (the identity map Ω → Ω), so ρx is a bijection and therefore

ρx ∈ Sym(Ω) for all x ∈ G.

Consequently, to each element of G we associate a permutation of Ω. (Note that it is
in general just a bijective function: Ω is merely a set and does not necessarily have any
group structure.) We therefore determine a map

ρ : G→ Sym(Ω)

x 7→ ρx.

Now
ωρxρy = (ωx)y = ωxy = ωρxy
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for all ω ∈ Ω and x, y ∈ G, so

ρxρy = ρxy for all x, y ∈ G.

Thus
(xρ)(yρ) = (xy)ρ for all x, y ∈ G;

i.e., ρ is a homomorphism. We record this as follows.

Theorem 2.18 Let G be a group, Ω be a set and let G act on Ω. For each x ∈ G, the
map

ρx : ω 7→ ωx (for ω ∈ Ω)

is a permutation of Ω. The map

ρ : G→ Sym(Ω)

x 7→ ρx

is a homomorphism. □

We refer to the homomorphism ρ as a permutation representation of G. The kernel of ρ
is often called the kernel of the action. This kernel consists of the elements x of G such
that

ωx = ω for all ω ∈ Ω;

i.e., the elements of G which fix all points in Ω. Consequently, x ∈ ker ρ if and only if
x belongs to every stabilizer Gω (for all ω ∈ Ω). Consequently:

Lemma 2.19 Let G be a group, Ω be a set and let G act on Ω. If ρ : G→ Sym(Ω) is the
permutation representation associated to this action, then

ker ρ =
⋂
ω∈Ω

Gω

(the intersection of all stabilizers). □

Using the permutation representation associated to the following example of a group
action will enable us to establish a theorem that was also covered in MT4003.

Example 2.20 (Right Regular Action) Let G be a group and attempt to define an
action of G on itself by

G×G→ G

(g, x) 7→ gx.

We check the conditions of a group action:

(i) (gx)y = g(xy) for all g, x, y ∈ G (by associativity),

(ii) g1 = g for all g ∈ G.
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So we do indeed have a group action: this is called the right regular action of G (on itself
by right multiplication).

Observe that x ∈ G fixes a point g ∈ G in this action when gx = g; that is, if and only
if x = 1 (by multiplying by the inverse of g). Hence all stabilizers are trivial:

Gg = 1 for all g ∈ G.

Theorem 2.18 provides us with a homomorphism ρ : G → Sym(G) and Lemma 2.19 now
tells us that the kernel is trivial:

ker ρ =
⋂
g∈G

Gg = 1.

Hence ρ is one-one and it follows that G is isomorphic to im ρ and we have proved Cayley’s
Theorem. (This result was also originally established in MT4003, but we have deduced it
immediately from the technology we have developed concerning group actions.)

Theorem 2.21 (Cayley’s Theorem) Every group is isomorphic to a subgroup of a sym-
metric group. □

Our final general example is extremely important: it will occur throughout the course.
We shall observe that if we can find a subgroup H of a group G then we can define an
action on the cosets of H and hence produce the associated permutation representation.

Example 2.22 (Action on Cosets) Let G be a group and H be a subgroup of G. Let
Ω = {Hg | g ∈ G }, the set of cosets of H in G. We shall define an action of G on Ω as
follows:

Ω×G→ Ω

(Hg, x) 7→ Hgx.

The first thing to do is check that this is well-defined, that is, the image of a coset Hg
when we apply an element x of G does not depend upon the choice of representative g for
the coset. Let g, h, x ∈ G and suppose that Hg = Hh. Then gh−1 ∈ H. Now

(gx)(hx)−1 = gxx−1h−1 = gh−1 ∈ H

and therefore Hgx = Hhx. Hence the action is well-defined. We shall write Hg · x to
denote this action in what follows.

It is now straightforward to check that this is a group action:

(Hg · x) · y = Hgx · y = Hgxy = Hg · xy

and
Hg · 1 = Hg1 = Hg

for all g, x, y ∈ G.

We shall now establish the main properties of this action on cosets:

Theorem 2.23 Let H be a subgroup of a group G, let Ω = {Hg | g ∈ G } be the set
of cosets of H, and let G act on Ω by right multiplication. Let ρ : G → Sym(Ω) be the
permutation representation associated to the action. Then
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(i) the action of G on Ω is transitive;

(ii) if H is a proper subgroup of G (that is, if H ̸= G), then Gρ is a non-trivial subgroup
of Sym(Ω);

(iii) the kernel of ρ is the intersection of the conjugates of H:

ker ρ =
⋂
g∈G

Hg;

(iv) the kernel of ρ is the largest normal subgroup of G contained in H.

Definition 2.24 We call this intersection
⋂

g∈GH
g (occurring as the kernel here) the core

of H in G and shall denote it by CoreG(H).

Proof: (i) Consider two cosets Hg and Hh in Ω. Take x = g−1h. Then

Hg · x = Hgx = Hgg−1h = Hh.

This shows that Hg and Hh lie in the same orbit. Hence G acts transitively on Ω.
(ii) Suppose H ̸= G. Then Ω contains more than one coset: |Ω| > 1. Since G acts

transitively, it must induce at least one non-trivial permutation on Ω and so Gρ ̸= 1.
(iii) We shall first compute the stabilizer of each coset Hg:

GHg = {x ∈ G | Hg · x = Hg }
= {x ∈ G | Hgx = Hg }
= {x ∈ G | gxg−1 ∈ H }
= {x ∈ G | x ∈ g−1Hg } = Hg.

The kernel of ρ is then determined by Lemma 2.19:

ker ρ =
⋂
g∈G

GHg =
⋂
g∈G

Hg.

(iv) Certainly ker ρ is a normal subgroup of G (since kernels are always normal sub-
groups). By the previous part,

ker ρ =
⋂
g∈G

Hg ⩽ H1 = H.

On the other hand, if K is any normal subgroup of G that is contained in H then K =
Kg ⩽ Hg for all g ∈ G. Hence

K ⩽
⋂
g∈G

Hg = ker ρ.
□
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Applications

To illustrate the significance of the action on the cosets, we shall give some examples of
how this can be used to establish information about finite simple groups. We start by
recalling the term that was introduced in MT4003 :

Definition 2.25 A non-trivial group G is simple if the only normal subgroups it has are
1 and G.

The idea here is that if G is not simple then it has a non-trivial proper normal sub-
group N and we can break it down into two smaller groups N and G/N which are hopefully
easier to handle than G. On the other hand, when G is simple this process yields nothing
new: one of these groups is trivial and the other is just a copy of G. As a consequence,
simple groups are the minimal building blocks (analogous, in some sense, to primes in
number theory) from which all other (finite) groups are built. One of the things we shall
discuss in the next chapter is how we can describe the factorization of a (finite) group into
simple factors and to what extent this factorization is unique. Chapter 4 will give some
descriptions of how the simple factors might be put back together, but we shall only start
to describe what is a somewhat complicated topic.

To start we shall give one example of the use of the methods of MT4003 (i.e., the
following does not use group actions):

Example 2.26 Show that there is no simple group of order 858.

Solution: Let G be a group of order 858 = 2 · 3 · 11 · 13. Let n11 and n13 denote the
number of Sylow 11- and Sylow 13-subgroups of G, respectively. By Sylow’s Theorem,

n11 ≡ 1 (mod 11) and n11 | 78
n13 ≡ 1 (mod 13) and n13 | 66.

If n11 = 1, then the unique Sylow 11-subgroup of G would be normal in G and hence
G would not be simple. Similarly if n13 = 1.

Suppose that n11 = 78. Consider two distinct Sylow 11-subgroups E1 and E2 of G.
Then |E1| = |E2| = 11. The intersection E1 ∩E2 is a proper subgroup of E1, so |E1 ∩E2|
divides 11, by Lagrange’s Theorem. Hence E1 ∩ E2 = 1. It follows that each Sylow
11-subgroup ofG contains 10 non-identity elements (all of order 11) and these are contained
in no other Sylow 11-subgroup of G. Hence the Sylow 11-subgroups account for

78× 10 = 780 elements of order 11.

By exactly the same argument, if n13 = 66 then the Sylow 13-subgroups contain 66×12 =
792 elements of order 13.

Since 780 + 792 > |G|, it must be the case that either n11 = 1 or n13 = 1. So G either
has a normal subgroup of order 13 or a normal subgroup of order 11. Hence G is not
simple. □

Let us now see how the use of group actions can help with this sort of problem.

Example 2.27 Show that there is no simple group of order 36.
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Solution: Let H be a Sylow 3-subgroup of G. Then |G : H| = 4. Let G act on the set
of right cosets of H by right multiplication,

(Hx, g) 7→ Hxg,

and let ρ : G→ S4 be the associated permutation representation. Since |G| = 36 ⩾ |S4| =
24, it is certainly the case that ker ρ ̸= 1. On the other hand, Theorem 2.23(ii) tells us that
ker ρ ̸= G (because Gρ ̸= 1). It follows that ker ρ is a non-trivial proper normal subgroup
of G and hence G is not simple. □

Proposition 2.28 Let p and q be distinct primes and let G be a finite group of order p2q.
Then one of the following holds:

(i) p > q and G has a normal Sylow p-subgroup;

(ii) q > p and G has a normal Sylow q-subgroup;

(iii) p = 2, q = 3, G ∼= A4 and G has a normal Sylow 2-subgroup.

Proof: (i) Suppose p > q. Let np denote the number of Sylow p-subgroups of G. Then

np ≡ 1 (mod p) and np | q.

The latter forces np = 1 or q. But 1 < q < p + 1, so q ̸≡ 1 (mod p). Hence np = 1, so
G has a unique Sylow p-subgroup which must be normal.

(ii) and (iii): Suppose q > p. Let nq be the number of Sylow q-subgroups of G. If
nq = 1 then the unique Sylow q-subgroup of G would be normal in G (and Case (ii) would
hold). So suppose that nq ̸= 1 (and we shall endeavour to show Case (iii) holds). Now

nq ≡ 1 (mod q) and nq | p2.

So nq = p or p2. But 1 < p < q + 1, so p ̸≡ 1 (mod q). Hence nq = p2, so

p2 ≡ 1 (mod q);

that is,

q divides p2 − 1 = (p+ 1)(p− 1).

But q is prime, so either q divides p− 1 or it divides p+1. However, 1 ⩽ p− 1 < q, so the
only one of these possibilities is that q divides p + 1. However p < q, so p + 1 ⩽ q so we
are forced into the situation where p+ 1 = q. Hence

p = 2, q = 3

and
|G| = 22 · 3 = 12.

Let T be a Sylow 3-subgroup of G (q = 3) and let G act on the set of right cosets of T
by right multiplication. This gives rise to the permutation representation

ρ : G→ S4
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(as |G : T | = 4, so we are acting on four points). Theorem 2.23 tells us that the kernel
of ρ is contained in T , while it must be a proper subgroup of T as T R G. Since |T | = 3,
this forces ker ρ = 1, so ρ is injective. Hence

G ∼= im ρ.

Now im ρ is a subgroup of S4 of order 12 and therefore index 2. We deduce that im ρ = A4

and so G ∼= A4.
Finally

V4 = {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

is a subgroup of A4 that is isomorphic to the Klein 4-group (hence our choice of notation V4
for it). This is a Sylow 2-subgroup of A4 and V4 P S4 (and hence V4 P A4). Therefore
G has a normal Sylow 2-subgroup in this case. □

It is worth pointing out that at this point in time much is actually now known about
finite simple groups. A mammoth effort by a large collection of mathematicians from the
1950s to the 1980s succeeded in establishing a full classification. The complete proof runs
to tens of thousands of pages of extremely complicated mathematics and there has been
doubt as to what extent this is truly complete. More work is still currently being done
so as to check, clarify and simplify the proof. Nevertheless it is generally accepted that
this Classification is correct, though typically when relying upon it a mathematician would
normally state that they are doing so.

Theorem 2.29 (Classification of Finite Simple Groups) Let G be a finite simple
group. Then G is one of the following:

(i) a cyclic group of prime order;

(ii) an alternating group An where n ⩾ 5;

(iii) one of sixteen (infinite) families of groups of Lie type;

(iv) one of twenty-six sporadic simple groups.

The fact that cyclic groups of prime order are simple is already known: it follows
immediately from Lagrange’s Theorem. The proof that the alternating groups of degree
at least 5 are simple is more lengthy, but was one of the highlights of MT4003.

The groups of Lie type are essentially ‘matrix-like’ groups which preserve geometric
structures on vector spaces over finite fields. For example, the first (and most easily
described) family is the collection of groups An(q) where n is a positive integer and q is a
prime-power (and where we require q ⩾ 4 if n = 1). The definition of this family is

An(q) = PSLn+1(q) =
SLn+1(q)

Z(SLn+1(q))
.

That is, we successively construct the group GLn+1(q) of invertible (n+1)×(n+1) matrices
with entries from the field Fq of q elements; then take those of determinant 1

SLn+1(q) = {A ∈ GLn+1(q) | detA = 1 }

(the special linear group); then factor out the centre (which happens to consist of all scalar
matrices in SLn+1(q))

Z(SLn+1(q)) = {λI | λn+1 = 1 in Fq },
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Mathieu M11 7 920
Mathieu M12 95 040
Janko J1 175 560
Mathieu M22 443 520
Janko J2 604 800
Mathieu M23 10 200 960
Higman–Sims HS 44 352 000
Janko J3 50 232 960
Mathieu M24 244 823 040
McLaughlin McL 898 128 000
Held He 4 030 387 200
Rudvalis Ru 145 926 144 000
Suzuki Suz 448 345 497 600
O’Nan O’N 460 815 505 920
Conway Co3 495 766 656 000
Conway Co2 42 305 421 312 000
Fischer Fi22 64 561 751 654 400
Harada–Norton HN 273 030 912 000 000
Lyons Ly 51 765 179 004 000 000
Thompson Th 90 745 943 887 872 000
Fischer Fi23 4 089 470 473 293 004 800
Conway Co1 4 157 776 806 543 360 000
Janko J4 86 775 571 046 077 562 880
Fischer Fi′24 1 255 205 709 190 661 721 292 800
Baby Monster B 4 154 781 481 226 426 191 177 580 544 000 000
Monster M see text

Table 2.1: The sporadic simple groups

to form
PSLn+1(q) = SLn+1(q)/Z(SLn+1(q))

and we have constructed a simple group (provided either n ⩾ 2, or n = 1 and q ⩾ 4).
The twenty-six sporadic groups are as listed in Table 2.1. The order of the Monster is

too large to appear in the table, it is

|M| = 808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000

It will not surprise anyone that the proof of Theorem 2.29 is not included in these
notes!
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Composition Series, Chief Series and
the Jordan–Hölder Theorem

We begin this chapter with the following general definition.

Definition 3.1 Let G be a group. A series for G is a finite chain of subgroups

G = G0 > G1 > G2 > · · · > Gn = 1

such that Gi+1 is a normal subgroup of Gi for i = 0, 1, . . . , n − 1. The collection of
quotient groups

G0/G1, G1/G2, . . . , Gn−1/Gn

are called the factors of the series and we call the number n the length of the series.

Some authors refer to this as a subnormal series (coming from the fact that a subgroup
that is normal in a normal subgroup of . . . of a normal subgroup is often called subnormal).
In particular, we do not require each subgroup in the series to be normal in the whole
group G, only that it is normal in the previous subgroup in the chain. However, the
following term is used for a stronger situation:

Definition 3.2 Let G be a group. A normal series for G is a series

G = G0 > G1 > G2 > · · · > Gn = 1

such that Gi is a normal subgroup of G for every i = 0, 1, . . . , n.

Observe that in each case the length n is the number of factors that occur in the series.
The first definition is rather general and does not give much information on its own.

Indeed, one example of a (normal) series of a non-trivial group G is simply of length 1,
namely

G > 1,

with factor isomorphic to G. To actually obtain useful and interesting information about
the group, we need stronger conditions on the nature of the series we are considering. There
will be several examples of series occurring in this course and this chapter will consider
two specific types of series. The first case is the following where the factors are all required
to be simple groups.

31



Chapter 3. Composition Series, Chief Series and the Jordan–Hölder Theorem

Composition series

Definition 3.3 A composition series for a group G is a finite chain of subgroups

G = G0 > G1 > G2 > · · · > Gn = 1

such that, for i = 0, 1, . . . , n − 1, Gi+1 is a normal subgroup of Gi and the quotient
group Gi/Gi+1 is simple. In this case, the factors

G0/G1, G1/G2, . . . , Gn−1/Gn

are called the composition factors of G.

The idea here is that if G possesses a composition series, then the composition factors
are a collection of simple groups that arise as some sort of factorization of G. One of the
main goals of this chapter is to establish the following theorem that says that these factors
are uniquely determined.

Theorem 3.4 (Jordan–Hölder Theorem) Let G be a group and let

G = G0 > G1 > G2 > · · · > Gm = 1

and
G = H0 > H1 > H2 > · · · > Hn = 1

be composition series for G. Then m = n and there is a one-one correspondence between
the two collections of composition factors

G0/G1, G1/G2, . . . , Gm−1/Gm

and
H0/H1, H1/H2, . . . , Hn−1/Hn

such that the corresponding factors are isomorphic.

We shall delay the proof of the theorem until later in the chapter. At this stage, it is
illustrative to consider some examples and to examine what the condition for a factor in a
series to be simple actually means.

Example 3.5 (i) The trivial group 1 has composition series of length 0:

G0 = 1

and so has no composition factors. This example is included just to point out what
a series of length zero looks like!

(ii) Let G = S4, the symmetric group of degree 4. Then we can construct the following
chain of subgroups:

S4 > A4 > V4 > ⟨(1 2)(3 4)⟩ > 1. (3.1)

We know that A4 P S4 with quotient S4/A4
∼= C2 and that V4 P A4 with quotient

A4/V4 ∼= C3. Since V4 is abelian, each of its subgroups is normal. Finally

V4/⟨(1 2)(3 4)⟩ ∼= C2 and ⟨(1 2)(3 4)⟩ ∼= C2.

This shows that the chain (3.1) is a composition series for S4 and that the composition
factors of S4 (which are unique up to isomorphism by the Jordan–Hölder Theorem)
are

C2, C3, C2, C2

(all of which are indeed simple groups as they are cyclic of prime order).
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(iii) Let n ⩾ 5 and consider the symmetric group Sn of degree n. Then

Sn > An > 1 (3.2)

is a composition series for Sn with composition factors isomorphic to C2 and An.
(Here we use the fact that the alternating group An is simple for n ⩾ 5.) Further-
more, it can be shown that Sn has precisely three normal subgroups (namely those
appearing in (3.2)) and hence this is the only composition series for Sn.

(iv) The following is a straightforward example of a group with more than one (actually
it has precisely two) composition series. Let G = A5 × C2, the direct product of the
alternating group A5 of degree 5 and the cyclic group of order 2. It follows from the
definition of the multiplication in a direct product that the projection maps

π1 : G→ A5 π2 : G→ C2

(x, y) 7→ x (x, y) 7→ y

are surjective homomorphisms.

Hence M = kerπ1 = 1 × C2
∼= C2 and N = kerπ2 = A5 × 1 ∼= A5 are normal

subgroups of G with simple quotients

G/M ∼= A5 and G/N ∼= C2.

Thus we obtain composition series

G = A5 × C2 > 1× C2 > 1 and G = A5 × C2 > A5 × 1 > 1

for G. The composition factors of the first are isomorphic to A5 and C2 (in that
order), while those of the second are C2 and A5.

The third example above illustrates that, although the Jordan–Hölder Theorem says
that the composition factors are uniquely determined, it does not mean that the composi-
tion series are unique, nor that the composition factors have to occur within the compo-
sition series in the same order. It is also easy to construct similar examples using abelian
groups (for context, see also Example 3.9 below where we describe what the composition
factors of a finite abelian group are).

Example 3.6 The infinite cyclic group has no composition series.

Proof: Let G = ⟨x⟩, where o(x) = ∞, and suppose that

G = G0 > G1 > G2 > · · · > Gn = 1

is a composition series for G. Then Gn−1 is a non-trivial subgroup of G, so Gn−1 = ⟨xk⟩
for some k > 0 and this is an infinite cyclic group, so is not simple. This contradicts the
assumption that the above is a composition series for G. □

To understand the behaviour of composition series, consider some subgroups of a
group G

G ⩾M > N ⩾ 1

where N is a normal subgroup of M . (The context here is that we might be considering
a particular series G = G0 > G1 > · · · > Gn = 1 and that M = Gi and N = Gi+1 for
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some i. We seek to investigate what property ensures that Gi/Gi+1 is simple so that we
understand when the series is a composition series.) The Correspondence Theorem tells
us that subgroups of M/N correspond to subgroups of M which contain N . Furthermore
under this correspondence, normal subgroups of M/N correspond to normal subgroups
of M which contain N . We conclude that

M/N is simple if and only if the only normal subgroups of M containing N are
M and N themselves.

Accordingly, we can now describe what it means for a series of subgroups to be a
composition series:

Proposition 3.7 Let G be a group and

G = G0 > G1 > G2 > · · · > Gn = 1 (3.3)

be a series of subgroups of G (i.e., Gi+1 P Gi for each i). Then this is a composition series
for G if and only if it is maximal, in the sense that one cannot create a longer series by
inserting an additional subgroup.

Proof: We can insert such a subgroup H into (3.3) to form another series when

G = G0 > G1 > · · · > Gi > H > Gi+1 > · · · > Gn = 1

with H P Gi. (The additional requirement that Gi+1 P H follows immediately because
Gi+1 P Gi by assumption.) Thus (3.3) is maximal when, for every i, there is no normal
subgroup H of Gi with Gi > H > Gi+1; that is, by the Correspondence Theorem when
Gi/Gi+1 is simple. This establishes the claim. □

We shall use the term refine to refer to this process of inserting additional terms into
a series.

Corollary 3.8 Let G be a finite group. Then every series for G can be refined to a
composition series. In particular, every finite group has a composition series.

Proof: Start with any series for the finite group G. If it is not a composition series, then
we can insert an additional subgroup by Proposition 3.7. We repeat this process until we
reach a composition series. The process cannot continue forever, since G is finite so only
has finitely many subgroups. To see every finite group G has a composition series, start
with the series G > 1 and refine to a composition series. □

Example 3.9 Let G be a finite abelian group of order n and write

n = pr11 p
r2
2 . . . prkk

where p1, p2, . . . , pk are the distinct prime factors of n. If

G = G0 > G1 > G2 > · · · > Gm = 1

is a composition series, then the composition factors

G0/G1, G1/G2, . . . , Gm−1/Gm

are abelian simple groups and so are cyclic of prime order. Now

|G| = |G0/G1| · |G1/G2| · . . . · |Gm−1/Gm|

must be the prime factorization of |G| = n and hence the composition factors of G are

Cp1 , Cp1 , . . . , Cp1︸ ︷︷ ︸
r1 times

, Cp2 , Cp2 , . . . , Cp2︸ ︷︷ ︸
r2 times

, . . . , Cpk , Cpk , . . . , Cpk︸ ︷︷ ︸
rk times

.
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Chief series

It still remains to establish the Jordan–Hölder Theorem, but before we do that we shall
introduce another type of series. Recall that a normal series is a series for a group G where
every term is a normal subgroup of G.

Definition 3.10 A chief series for a group G is a normal series

G = G0 > G1 > G2 > · · · > Gn = 1

which is maximal; that is, one cannot create a longer normal series by inserting an addi-
tional normal subgroup of G. The quotient groups

G0/G1, G1/G2, . . . , Gn−1/Gn

are called the chief factors of G.

According to Proposition 3.7, a composition series for a group is one that is maximal
amongst all composition series, so chief series are the corresponding analogue for normal
series of a group. The same argument as used for Corollary 3.8 (i.e., inserting normal
subgroups of G until we cannot insert any more) establishes:

Proposition 3.11 Let G be a finite group. Then every normal series for G can be refined
to a chief series. In particular, every finite group has a chief series. □

Example 3.12 (i) If G is any simple group, then

G > 1

is its only chief series and it has a single chief factor, namely G.

(ii) Let n ⩾ 5. Then the composition series

Sn > An > 1

for the symmetric group Sn of degree n is also a chief series (as each term happens
to be normal in Sn) and the chief factors of Sn coincide with the composition series.

(iii) Let G = S4, the symmetric group of degree 4. Consider the following chain of normal
subgroups of G:

S4 > A4 > V4 > 1 (3.4)

We know that each is a normal subgroup of S4. Since V4 consists of the identity
together with the conjugacy class of all the permutations of the form (a b)(c d),
there is no normal subgroup N that can be inserted between 1 and V4. The quotients
S4/A4

∼= C2 and A4/V4 ∼= C3 are simple. Hence (3.4) is a chief series for S4 and its
chief factors are:

C2, C3, C2 × C2.

If it happens that every term in some composition series for G happens to be a normal
subgroup of G (as in Example 3.12(ii)) then this will also be a chief series. In this case,
maximality amongst all series implies maximal amongst normal series. However, in general,
a chief series does not need to be a composition series. If

G = G0 > G1 > G2 > · · · > Gn = 1
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is a chief series, then it might be possible to insert some subgroup H with Gi+1 < H < Gi

and H P Gi (for some i) to create a longer series. We just cannot do so using a subgroup H
that also satisfies H P G.

In the description of chief series, we have referred to the chief factors of a group.
Accordingly, we would like to know that they are uniquely determined by the group under
consideration. The relevant theorem is:

Theorem 3.13 (Jordan–Hölder Theorem for Chief Series) Let G be a group and
let

G = G0 > G1 > G2 > · · · > Gm = 1

and
G = H0 > H1 > H2 > · · · > Hn = 1

be chief series for G. Then m = n and there is a one-one correspondence between the two
collections of chief factors

G0/G1, G1/G2, . . . , Gm−1/Gm

and
H0/H1, H1/H2, . . . , Hn−1/Hn

such that the corresponding factors are isomorphic.

Comparing this to the Jordan–Hölder Theorem for composition series (Theorem 3.4),
one can see that the two theorems are basically identical. They both say that for maximal
series of a particular type (i.e., series or normal series, respectively), the factors occurring
are essentially unique. In view of this, in these lecture notes we shall give a single proof
that covers both cases simultaneously.

The Jordan–Hölder Theorem

The goal now is to present a unified argument that establishes the two versions of the
Jordan–Hölder Theorem. Accordingly, fix a group G and a collection S = S(G) of sub-
groups of G with the following properties:

(S1) the trivial group 1 and the whole group G are in S;

(S2) if H,K ∈ S, then H ∩K ∈ S;

(S3) if H,K,L ∈ S with H ⩽ L and K P L, then HK ∈ S.

One observes that if S is the collection of all subgroups of G or is the collection of all
normal subgroups of G, then it satisfies these three properties.

If M ∈ S, then define
S(M) = {H ⩽M | H ∈ S };

that is, the set of subgroups of M that belong to the collection S. Observe that the
collection S(M) satisfies the same three conditions (S1)–(S3) when expressed to relate to
subgroups of M (that is, 1,M ∈ S(M) and this collection of subgroups of M satisfies (S2)
and (S3).) This will enable us to argue by induction in our proof.

Consider two series for G whose terms belong to the collection S:

G = G0 > G1 > G2 > · · · > Gm = 1
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and
G = H0 > H1 > H2 > · · · > Hn = 1

(so we assume Gi, Hj ∈ S, Gi+1 P Gi and Hj+1 P Hj for all i and j). We shall say that
these series are isomorphic if m = n and there is an isomorphism between their factors;
that is, a bijection between the factors

G0/G1, G1/G2, . . . , Gm−1/Gm and H0/H1, H1/H2, . . . , Hn−1/Hn

that maps each factor Gi/Gi+1 to an isomorphic factor Hj/Hj+1.
We shall now prove the following theorem:

Theorem 3.14 (General Version of Jordan–Hölder Theorem) Let G be a group
with a collection of subgroups S = S(G) satisfying Conditions (S1)–(S3) and let

G = G0 > G1 > G2 > · · · > Gm = 1 (3.5)

and
H = H0 > H1 > H2 > · · · > Hn = 1 (3.6)

be series for G consisting of subgroups from S that are maximal (in the sense that one
cannot create a longer series by inserting an additional subgroup from S). Then these two
maximal series of subgroups from S are isomorphic.

The Jordan–Hölder Theorem (Theorem 3.4) and the version for chief series (Theo-
rem 3.13) then follow as special cases when S is the set of all subgroups of G and when
S is the set of all normal subgroups of G, respectively.

Proof: Assume without loss of generality that m ⩽ n. We shall proceed by induction
on m. If m = 0, then G = 1 and hence necessarily n = 0 also. In this case there are no
factors and the claimed isomorphism exists vacuously.

Suppose then that m > 0 and that the Jordan–Hölder Theorem holds for all groups
with suitable collections S of subgroups and maximal series of S-subgroups of length < m.
To complete the induction step, we split into two cases.

Case 1: G1 = H1.
In this case, G0/G1 = G/G1 = H0/H1. Furthermore,

G1 > G2 > · · · > Gm = 1

and
G1 = H1 > H2 > · · · > Hn = 1

are maximal series for G1 consisting of subgroups in S(G1) of lengths m − 1 and n − 1,
respectively. Hence, by induction, m − 1 = n − 1 (that is, m = n) and there is an
isomorphism between the factors

G1/G2, . . . , Gm−1/Gm and H1/H2, . . . , Hn−1/Hn.

Since G0/G1 = H0/H1, this extends to the required isomorphism between the factors of
the two series (3.5) and (3.6) for G.
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Case 2: G1 ̸= H1.
Conditions (S2) and (S3) ensure that D = G1∩H1 and G1H1 are subgroups in S. Note

that G1 ⩽ G1H1 P G0 = G and H1 ⩽ G1H1 P H0 = G. Since the series (3.5) and (3.6)
are maximal, we cannot insert G1H1 as a new term into them. Hence either G1H1 = G or
G1 = G1H1 = H1. We have assumed the latter does not occur and so G1H1 = G.

By the Second Isomorphism Theorem,

H0

H1
=

G

H1
=
G1H1

H1

∼=
G1

G1 ∩H1
=
G1

D
,

with isomorphism θ : G1/D → G/H1 given by Dx 7→ H1x for x ∈ G1. Similarly G0/G1 =
G/G1

∼= H1/D. Now as D is a normal subgroup of G belonging to S, it has a maximal
series with terms in S:

D = D2 > D3 > · · · > Dk = 1

(For finite groups, this is established by the same argument as used for Corollary 3.8 and
Proposition 3.11: just keep refining the series D > 1 by inserting terms from S until we
cannot insert any more. When G is infinite, we are using a theorem, which appears on
Problem Sheet III, that says if G has a maximal series with terms from S then so does any
normal subgroup in S.) We now have four series for G with terms from S:

G = G0 > G1 > G2 > · · · > Gm = 1 (3.5)
G = G0 > G1 > D = D2 > · · · > Dk = 1 (3.7)
G = H0 > H1 > D = D2 > · · · > Dk = 1 (3.8)
G = H0 > H1 > H2 > · · · > Hn = 1 (3.6)

By assumption, (3.5) and (3.6) are maximal series with terms from S. In fact the same
is true for (3.7) and (3.8). We just need to ensure that one cannot insert a term from S
between G1 and D nor between H1 and D.

Suppose D ⩽ M P G1 with M ∈ S. Since H1 P G, use of Condition (S3) shows that
MH1 ∈ S and this satisfies H1 ⩽ MH1 ⩽ G. Moreover the isomorphism θ : G1/D →
G/H1, given by Dx 7→ H1x for x ∈ G1, maps the normal subgroup M/D to MH1/H1,
so MH1 P G. Since the series (3.6) is maximal, we cannot insert MH1 as a new term
and therefore MH1 = H1 or G. If MH1 = H1, then M/D is mapped by θ to the trivial
subgroup of G/H1 and hence M = D. If MH1 = G, then M/D is mapped to the whole
quotient group G/H1 and hence M = G1. Therefore the series (3.7), and similarly the
series (3.8), is maximal.

Now Case 1 applies to the series (3.5) and (3.7). We deduce that m = k and there
is an isomorphism between their factors. We have already observed that G0/G1

∼= H1/D
and H0/H1

∼= G1/D and hence there is an isomorphism between the series (3.7) and (3.8)
that simply interchanges the first pair of factors. Finally Case 1 applies to the series (3.8)
and (3.6) (as we know the former has length k = m) and hence m = k = n and there
is an isomorphism between the factors of these series. In conclusion, m = n and, upon
composing the isomorphisms, we obtain the required isomorphism between the factors
of (3.5) and (3.6).

This completes the induction step and establishes the Jordan–Hölder Theorem (in its
general form, and therefore also the specific versions stated earlier). □
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Characteristic subgroups

We know that composition factors of a group are simple groups. One might ask what can
be said about the chief factors. In the remainder of the chapter, we aim to describe these
chief factors. To do so, we first introduce the following concept.

Definition 3.15 A subgroup H of a group G is said to be a characteristic subgroup of G
if xϕ ∈ H for all x ∈ H and all automorphisms ϕ of G.

The definition requires that Hϕ ⩽ H for all automorphisms ϕ of G. It then follows
that Hϕ−1 ⩽ H for any automorphism ϕ and applying ϕ then yields H ⩽ Hϕ. Thus H is
a characteristic subgroup if and only if Hϕ = H for all automorphisms ϕ of G.

The notation used for a characteristic subgroup is less consistent in the literature than
for, say, being a normal subgroup. In these notes, we shall write

H charG

to indicate that H is a characteristic subgroup of G.

Lemma 3.16 Let G be a group.

(i) If H charG, then H P G.

(ii) If K charH and H charG, then K charG.

(iii) If K charH and H P G, then K P G.

Thus there is considerable difference between characteristic subgroups and normal sub-
groups. For example, note that in general

• K P H P G does not imply K P G.

• If ϕ : G → K is a homomorphism and H charG, then it does not follow necessarily
that Hϕ charGϕ. (Consequently there is no version of the Correspondence Theorem
that will work well with characteristic subgroups.)

• If H ⩽ L ⩽ G and H charG, then it does not necessarily follow that H charL.

Problem Sheet III contains a question that addresses the existence of examples illustrating
the above three points.

Proof of Lemma 3.16: (i) If x ∈ G, then τx : g 7→ gx is an (inner) automorphism of G.
Hence if H charG, then

Hx = Hτx = H for all x ∈ G,

so H P G.
(ii) Let ϕ be an automorphism of G. Then Hϕ = H (as H charG). Hence the restric-

tion ϕ|H of ϕ to H is an automorphism of H and we deduce

xϕ ∈ K for all x ∈ K

(since this is the effect that the restriction ϕ|H has when applied to elements of K). Thus
K charG.

(iii) Let x ∈ G. Then Hx = H (as H P G) and therefore τx : g 7→ gx (for g ∈ H)
is a bijective homomorphism H → H; that is, τx induces an automorphism of H. Since
K charH, we deduce that Kx = Kτx = K. Thus K P G. □
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Minimal normal subgroups

Definition 3.17 Let G be a finite group. A minimal normal subgroup of G is a non-trivial
normal subgroup of G which has no non-trivial proper subgroup that is also normal in G.

Thus M is a minimal normal subgroup of G if

(i) 1 < M P G;

(ii) if 1 ⩽ N ⩽M and N P G, then either N = 1 or N =M .

Lemma 3.18 Let G be a non-trivial finite group and

G = G0 > G1 > G2 > · · · > Gn = 1

be a chief series for G. Then each chief factor Gi/Gi+1 is a minimal normal subgroup
of G/Gi+1.

In particular, the last term Gn−1 of the chief series is a minimal normal subgroup of G.

Proof: Since a chief series is a maximal normal series, there is no normal subgroup N
of G satisfying Gi+1 < N < Gi. Hence, by the Correspondence Theorem, there is no
normal subgroup N/Gi+1 of G/Gi+1 satisfying 1 < N/Gi+1 < Gi/Gi+1. □

We shall prove the following description of minimal normal subgroups, which therefore
also describes all chief factors of a finite group.

Theorem 3.19 A minimal normal subgroup of a finite group G is a direct product of
isomorphic simple groups.

We shall work towards the proof of this theorem in the remainder of the chapter. First
we make the following definition.

Definition 3.20 A non-trivial group G is called characteristically simple if the only char-
acteristic subgroups it has are 1 and G.

Lemma 3.21 A minimal normal subgroup of a group is characteristically simple.

Proof: Let M be a minimal normal subgroup of the group G. Let K be a characteristic
subgroup of M . Then

K charM P G,

so K P G by Lemma 3.16(iii). Thus minimality of M forces K = 1 or K = M . Hence
M is indeed characteristically simple. □

Theorem 3.19 then follows immediately from the following result. (The advantage of
proving Theorem 3.22 over a direct attempt on Theorem 3.19 is that we can concentrate
only on the characteristically simple group rather than having to juggle both the minimal
normal subgroup and its embedding in the larger group.)

Theorem 3.22 A characteristically simple finite group is a direct product of isomorphic
simple groups.
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Proof: Let G be a finite group which is characteristically simple. Let S be a minimal
normal subgroup of G. (So S ̸= 1. It is possible that S = G.) Consider the following set

D = {N P G | N = S1 × S2 × · · · × Sk where each Si is a
minimal normal subgroup of G isomorphic to S }.

(Recall what is needed to be a direct product here: We need N = S1S2 . . . Sk and Si ∩
S1 . . . Si−1Si+1 . . . Sk = 1 for each i. The condition that each Si is normal in N comes for
free, since we required Si P G in the definition of the set D .)

Note that our original subgroup S is a member of D , so D certainly contains non-trivial
members. Choose N ∈ D of largest possible order.

Claim: N = G.
Suppose our maximal member N of D is not equal to G. Since it belongs to our set D ,

N = S1 × S2 × · · · × Sk

where each Si is a minimal normal subgroup ofG isomorphic to S. AsG is characteristically
simple, N cannot be a characteristic subgroup of G. Hence there exists an automorphism ϕ
of G such that

Nϕ ⩽̸ N.

Therefore there exists i such that
Siϕ ⩽̸ N.

Now ϕ is an automorphism of G, so Siϕ is a minimal normal subgroup of G. Observe
that N ∩ Siϕ P G and N ∩ Siϕ is properly contained in Siϕ (as Siϕ ⩽̸ N). Therefore, by
minimality of Siϕ, we deduce N ∩ Siϕ = 1. It follows that

N · Siϕ = N × Siϕ = S1 × S2 × · · · × Sk × Siϕ

and
N · Siϕ P G.

This shows that N · Siϕ ∈ D . This contradicts N being a maximal member of D .
This establishes the claim, so

G = N = S1 × S2 × · · · × Sk,

where each Si is a minimal normal subgroup of G isomorphic to our original minimal
normal subgroup S.

It remains to check that S is simple. If J P S1, then

J P S1 × S2 × · · · × Sk = G.

Therefore, as S1 is a minimal normal subgroup of G, we must have J = 1 or J = S1.
Hence S1 (and accordingly S) is simple.

We have consequently shown that, indeed, G is a direct product of isomorphic simple
groups. □
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Semidirect Products

The primary purpose of this chapter is to discuss ways in which grups can be built from
smaller groups. In some sense, we are considering how to reverse the decomposition that
composition series (or, indeed, chief series) and the Jordan–Hölder Theorem give us. One
question you might ask is:

If a finite group G has composition factors S1, S2, . . . , Sk, what are the possi-
bilities for G?

This turns out to be an extremely difficult question to answer in general, but the content
of this chapter will provide one of the more straightforward ways to build a group with a
given normal subgroup N and a given quotient Q.

This construction arises naturally in the context of attempting to classify groups given
specific information. We shall first illustrate the sort of question one might consider and
answer it using the direct product construction. First recall that if a group G has normal
subgroups M and N such that G =MN and M ∩N = 1, then

G ∼=M ×N = { (x, y) | x ∈M, y ∈ N }.

The multiplication in the direct product M ×N is componentwise:

(x1, y1)(x2, y2) = (x1x2, y1y2)

for x1, x2 ∈ M and y1, y2 ∈ N . Accordingly if we find such normal subgroups M and N
and we fully understand their structure, then this implies that we have fully determined the
possibility for G. (A verification of the above isomorphism, as revision of direct products,
appeared on Problem Sheet I.)

Example 4.1 Classify the finite groups of order 45.

Solution: Let G be a group of order 45 = 32 · 5. The number of Sylow 3-subgroups is
congruent to 1 (mod 3) and divides 5. Therefore G has a unique Sylow 3-subgroup T . The
number of Sylow 5-subgroups is congruent to 1 (mod 5) and divides 9 and we conclude
that G also has a unique Sylow 5-subgroup F . Since the conjugate of a Sylow p-subgroup
is again a Sylow p-subgroup, it follows that T P G and F P G. By Lagrange’s Theorem,
T ∩ F = 1 (as these subgroups have coprime order) and hence

|G| = |T | · |F |
|T ∩ F |

= 32 · 5 = 45.
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We deduce that G = TF . This shows that G satisfies the criteria to be a direct product:

G ∼= T × F.

Now T is a group of order 9 and we know (from MT4003 ) that a group of order p2 (for
p prime) is abelian and is isomorphic to either Cp2 or Cp ×Cp. Hence T ∼= C9 or C3 ×C3.
Equally, F is a group of order 5 (which is prime), so F ∼= C5. We conclude that there are
(up to isomorphism) two possibilities for G:

G ∼= C9 × C5 or G ∼= C3 × C3 × C5

The Classification of Finite Abelian Groups (again from MT4003 ) tells us that these
groups are not isomorphic. Hence there are precisely two groups (up to isomorphism) of
order 45. □

This method of using direct products works very well when the number theory happens
to fall nicely and one can find the required normal subgroups. However, consider the case
of trying to classify groups of order 20 = 22 ·5. Application of Sylow’s Theorem shows that
there is a unique Sylow 5-subgroup, but all can conclude about the Sylow 2-subgroups is
that the number of them is either 1 or 5. We would have one normal subgroup (the Sylow
5-subgroup) but not necessarily the two normal subgroups required for the direct product.
We now introduce a new construction to cover this situation.

Semidirect products

Suppose that a group G can be expressed as G = NH with H ∩N = 1 and only N P G.
(The direct product case is when H P G also holds.) An element in G is expressible as
g = nh where h ∈ H and n ∈ N . If we attempt to multiply two elements of G, then we
calculate

(n1h1)(n2h2) = n1(h1n2h
−1
1 ) · h1h2

Here h1h2 ∈ H, h1n2h
−1
1 ∈ N (as N P G) and so n1(h1n2h

−1
1 ) ∈ N . This formula

shows us that to be able to work effectively in G, we need to be able to (i) multiply in H,
(ii) multiply in N , and (iii) conjugate elements of N by elements of H. The semidirect
product construction is designed to encode these three pieces of information.

We shall need the following object as part of the construction. Recall (from Defini-
tion 1.32) that an automorphism of a group G is a bijective homomorphism G→ G.

Definition 4.2 Let G be a group. The automorphism group of G is denoted by AutG
and consists of all automorphisms of G:

AutG = {ϕ : G→ G | ϕ is an automorphism }.

The product of two automorphisms ϕ and ψ is the composite ϕψ.

It was verified on Problem Sheet II that AutG is a group. The verification is very similar
to the proof that a symmetric group forms a group. Indeed one can observe AutG is a
subgroup of the symmetric group Sym(G).
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Definition 4.3 Let H and N be groups and let ϕ : H → AutN be a homomorphism. The
(external) semidirect product of N by H via ϕ is denoted by N ⋊ϕ H and is the set

N ⋊ϕ H = { (n, h) | n ∈ N, h ∈ H }

with multiplication given by

(n1, h1)(n2, h2) = (n1n
(h1ϕ)−1

2 , h1h2).

If h ∈ H, then hϕ is an automorphism of N and we are writing nhϕ for the image of an
element n ∈ N under the automorphism hϕ. (The reason for using exponential notation
is twofold: firstly to make the notation easier to distinguish and secondly to be suggestive
of conjugation in a way that we shall use later.) This means that the above multiplication
in N ⋊ϕ H at least has meaning.

Aside: If G = NH where N P G and H ⩽ G, then also G = HN (see Lemma 1.19).
As a consequence, it should not be surprising to learn that we can also define an external
semidirect product as H ⋉ϕ N with respect to some homomorphism ϕ : H → AutN with
elements denoted by pair (h, n) where h ∈ H and n ∈ N . This can indeed be done and
the result is a group isomorphic to the one given in Definition 4.3. In some ways the
formulae involved are slightly more pleasant with this alternative construction, but the
majority of the literature on group theory seems to use the N ⋊H version with the normal
subgroup N on the left. Accordingly these lecture notes follow the standard convention of
writing N ⋊ϕ H for the semidirect product.

Proposition 4.4 The semidirect product N ⋊ϕ H is a group.

Proof: We need to check the axioms of a group. First associativity (which is straightfor-
ward, but messy):(

(n1, h1)(n2, h2)
)
(n3, h3) =

(
n1n

(h1ϕ)−1

2 , h1h2
)
(n3, h3)

=
(
n1n

(h1ϕ)−1

2 n
((h1h2)ϕ)−1

3 , h1h2h3
)

=
(
n1n

(h1ϕ)−1

2 n
(h2ϕ)−1(h1ϕ)−1

3 , h1h2h3
)
,

using the fact that ϕ is a homomorphism, so that
(
(h1h2)ϕ

)−1
=

(
(h1ϕ)(h2ϕ)

)−1
=

(h2ϕ)
−1(h1ϕ)

−1. On the other hand

(n1, h1)
(
(n2, h2)(n3, h3)

)
= (n1, h1)

(
n2n

(h2ϕ)−1

3 , h2h3
)

=
(
n1(n2n

(h2ϕ)−1

3 )(h1ϕ)−1
, h1h2h3

)
=

(
n1n

(h1ϕ)−1

2 n
(h2ϕ)−1(h1ϕ)−1

3 , h1h2h3
)

using the fact that the inverse of h1ϕ is an automorphism, in particular a homomorphism,
and so maps products to products. Comparing these formulae we deduce that the binary
operation on the semidirect product is associative.

Identity:
(1, 1)(n, h) = (1n(1ϕ)

−1
, 1h) = (nid, h) = (n, h)

(since the automorphism 1ϕ must be the identity) and

(n, h)(1, 1) = (n1(hϕ)
−1
, h1) = (n1, h) = (n, h)
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Hence (1, 1) is the identity element in N ⋊ϕ H.
Inverses:

(n, h)
(
(nhϕ)−1, h−1

)
=

(
n((nhϕ)−1)(hϕ)

−1
, hh−1

)
=

(
n(n(hϕ)(hϕ)

−1
)−1, 1

)
(∗)

= (n(nid)−1, 1)

= (nn−1, 1)

= (1, 1),

since (∗) (hϕ)−1 is a homomorphism so maps inverses to inverses, and(
(nhϕ)−1, h−1

)
(n, h) =

(
(nhϕ)−1n((h

−1)ϕ)−1
, h−1h

)
=

(
(nhϕ)−1nhϕ, 1

)
(†)

= (1, 1)

since (†) ϕ is a homomorphism so maps inverses to inverses. Thus
(
(nhϕ)−1, h−1) is the

inverse of (n, h) in N ⋊ϕ H.
This completes the proof that N ⋊ϕ H is a group. □

We have now successful constructed a group G from two groups N and H and the
specified homomorphism ϕ : H → AutN . The following summarizes the properties of this
group, though we leave the proofs to Problem Sheet IV since they are mostly an exercise
in computation (and therefore a good way to practice working with this group).

Theorem 4.5 Let H and N be groups, ϕ : H → AutN be a homomorphism and G =
N ⋊ϕ H be the semidirect product of N by H via ϕ. Then

(i) N̄ = { (n, 1) | n ∈ N } is a normal subgroup of G that is isomorphic to N ;

(ii) H̄ = { (1, h) | h ∈ H } is a subgroup of G that is isomorphic to H;

(iii) H̄ ∩ N̄ = 1 and G = N̄H̄;

(iv) the quotient group G/N̄ is isomorphic to H;

(v) conjugation of an element of N̄ by an element of H̄ is determined by the homomor-
phism ϕ:

(1, h)−1(n, 1)(1, h) = (nhϕ, 1) for all n ∈ N and h ∈ H.

In the case of a direct product, sometimes one refers to the external direct product by
which one means the group defined as ordered pairs

G = G1 ×G2 = { (x, y) | x ∈ G1, y ∈ G2 }

with componentwise multiplication and the internal direct product by which ones means
a group G with two normal subgroups G1 and G2 satisfying G = G1G2 and G1 ∩G2 = 1.
What we has observed previously (see, for example, Problem Sheet I for one direction) is
that an internal direct product is isomorphic to the corresponding external direct product
and that the external direct product has normal subgroups that satisfy the properties
of an internal direct product. As a consequence, we tend to move fluidly between the
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two viewpoints and rarely distinguish between them. (These groups are isomorphic; i.e.,
essentially the same.)

In the case of semidirect products, a similar viewpoint is taken. We have just described
an external version, namely the construction appearing in Definition 4.3, and we have
just recorded its basic structural properties in Theorem 4.5. We shall take some of these
properties as being the internal description for a group to be a semidirect product and
show that indeed a group satisfying these properties is isomorphic to a group built using
the semidirect product construction.

We shall therefore assume that G is a group with two subgroups H and N such that

(i) N is a normal subgroup of G,

(ii) G = NH, and

(iii) H ∩N = 1.

When these conditions hold, we shall sometimes say that H is a complement to N and
write G = N ⋊H. Our goal is to show that it is isomorphic to some external semidirect
product of N by H. There are various stages to proceed through, but the most significant
is to work out what the required homomorphism ϕ : H → AutN should be.

We shall define a map θ : N ×H → G by

(n, h) 7→ nh.

(At this point, we do not assume any group theoretical structure on the set N × H. It
will eventually become a semidirect product.) Now G = NH, so every element of G can
be written in the form nh where n ∈ N and h ∈ H. Therefore θ is surjective. Suppose
nh = n′h′ where n, n′ ∈ H and h, h′ ∈ N . Then

h(h′)−1 = n−1n′ ∈ H ∩N = 1.

This forces h = h′ and n = n′. Therefore this expression for an element of G as a product
is unique and we deduce that θ is injective.

We now know that θ is a bijection, but we seek to endow the domain of θ with the
structure of an (external) semidirect product and consequently need to specify a homo-
morphism ϕ : H → AutN to use when constructing this group. Let h ∈ H. Then Nh = N
in the group G since N P G. Hence conjugation by h determines a map

ϕh : N → N

n 7→ nh.

Its inverse is ϕh−1 : n 7→ nh
−1 , so ϕh is a bijection. Also

(mn)ϕh = h−1(mn)h = h−1mh · h−1nh = (mϕh)(nϕh).

Hence ϕh ∈ AutN . Finally

nϕhk = (hk)−1n(hk) = k−1(h−1nh)k = nϕhϕk

for n ∈ N , so
ϕhk = ϕhϕk for all h, k ∈ H.
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We deduce that ϕ : h 7→ ϕh is a homomorphism H → AutN . We use this map ϕ to
construct the semidirect product N ⋊ϕ H.

In view of what we have already shown, we can now view the bijection θ as a map

θ : N ⋊ϕ H → G

(n, h) 7→ nh.

Let (n1, h1), (n2, h2) ∈ N ⋊ϕ H. Then(
(n1, h1)(n2, h2)

)
θ = (n1n

(h1ϕ)−1

2 , h1h2)θ

= (n1n
h−1
1

2 , h1h2)θ

= n1n
h−1
1

2 h1h2

= n1 · h1n2h−1
1 · h1h2

= n1h1n2h2

= (n1, h1)θ · (n2, h2)θ.

Hence θ is a homomorphism and consequently is an isomorphism. We have established the
following theorem:

Theorem 4.6 Let G be a group with a normal subgroup N and a subgroup H such that
G = NH and H ∩N = 1. Then G is isomorphic to the semidirect product N ⋊ϕH where
ϕ : H → AutN is the homomorphism given by

hϕ : n 7→ nh

for n ∈ N and h ∈ H. □

In view of this theorem, we tend to view groups that satisfy the hypotheses as being
“the same” (since that is what isomorphic means) as a semidirect product as constructed
by Definition 4.3. We use the term semidirect product to refer to both situations and we
try to move between both viewpoints quite smoothly.

Indeed, for notational simplicity, we frequently drop the brackets in the semidirect
product construction. To be precise, let N and H be groups and ϕ : H → AutN be a
homomorphism from H to the automorphism group of N . We shall write G = N ⋊ϕ H
(and sometimes simply N ⋊H if ϕ is sometimes understood) to be the set of products

G = {nh | n ∈ N, h ∈ H }

with multiplication given by

n1h1 · n2h2 = n1n
(h1ϕ)−1

2 h1h2.

We identify N with the set of elements of the form n1 for n ∈ N and H with the set of
elements of the form 1h for h ∈ H. Then, according to Theorem 4.5, the conjugation in G
of an element of N by an element of H is determined by the homomorphism ϕ:

h−1nh = nhϕ for h ∈ H and n ∈ N.

It is for this reason that we sometimes omit reference to the homomorphism ϕ: a semidirect
product is determined by the two groups N and H from which it is built together with a
description of the result of conjugating an element of N by an element of H.
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Warnings:

(i) Note, however, that to construct a semidirect product G = N ⋊ H you cannot
simply specify h−1nh for each h ∈ H and n ∈ N . If there isn’t some homomorphism
ϕ : H → AutN involved (as we have described above) then the result will not be a
group.

(ii) If G is a group which is not simple, it does not necessarily decompose as a semidirect
product. We might be able to find a non-trivial proper normal subgroup N of G, but
there is no guarantee that there will be a complement H to N in G. For example,
if N is any non-trivial proper normal subgroup of the quaternion group Q8, there
does not exist a subgroup H of Q8 with N ∩H = 1 and NH = Q8. Consequently
Q8 cannot be decomposed in a proper way as a semidirect product.

Applications of semidirect products

We shall now give a few examples of semidirect products. In the first example below, we
shall classify the groups of order 20. The method will be to show that if |G| = 20 then
G ∼= N ⋊ϕ H for some N , H and ϕ using Theorem 4.6. We shall describe all the options
for the three ingredients N , H and ϕ in the semidirect product construction and hence will
have determined all the groups of order 20.

Example 4.7 Determine how many groups of order 20 there are (up to isomorphism).

Solution: Let G be a group of order 20 = 22 · 5. By Sylow’s Theorem, the number of
Sylow 5-subgroups is congruent to 1 (mod 5) and divides 4. Hence G has a unique Sylow
5-subgroup F . Then we know F P G and |F | = 5.

Let T be a Sylow 2-subgroup of G, so |T | = 4. Then T ∩F = 1 by Lagrange’s Theorem,
while Lemma 1.19 tells us that

|FT | = |F | · |T |
|F ∩ T |

=
5 · 4
1

= 20.

Hence G = FT , F P G and T ∩ F = 1. Thus, by Theorem 4.6, G ∼= F ⋊ϕ T , the
semidirect product of F by T with respect to a suitable homomorphism ϕ : T → AutF . In
order to describe all possible such groups G, we need to determine the possibilities for F ,
T and the homomorphism ϕ.

We know that |F | = 5, so F ∼= C5. Fix a generator x for F , so o(x) = 5. Since |T | = 4,
there are two possibilities for T : either T ∼= C4 or C2 × C2. In order to determine the
possibilities for ϕ, we first need to be able to describe the automorphism group of F .

An automorphism α of F of is determined by its effect on the generator x, since if we
know what xα is then (xi)α = (xα)i is determined by α. Furthermore, since the powers
of x are mapped to powers of xα, in order that α be surjective, necessarily xα must be a
generator of F . Thus xα = x, x2, x3 or x4. (Note that all the non-identity elements of F
have order 5 and therefore generate F .) Finally, if g is a generator of F , then xi 7→ gi does
define an automorphism of F . Thus all four choices do indeed give automorphisms of F
and so

|AutF | = 4.
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In fact, we can determine which group of order 4 this automorphism group is. Consider
the automorphism β given by x 7→ x2 and compute its powers:

xβ2 = (xβ)β = (x2)β = (xβ)2 = (x2)2 = x4

xβ3 = (xβ2)β = (x4)β = (xβ)4 = (x2)4 = x8 = x3

xβ4 = (xβ3)β = (x3)β = (xβ)3 = (x2)3 = x6 = x.

So β4 = idF and o(β) = 4. Thus AutF = ⟨β⟩ is cyclic of order 4.
We are now able to describe all the groups of order 20. We shall consider each possibility

for T in turn and determine what the options are for the homomorphism ϕ : T → AutF .

Case 1: T ∼= C4.
If ϕ : T → AutF is a homomorphism, then the image of ϕ must be a subgroup of

AutF = ⟨β⟩ that could occur as an image of the cyclic group T . Since |T | = |AutF | = 4,
there are three possibilities: Tϕ = 1, ⟨β2⟩ or ⟨β⟩ (these three being the unique subgroups
of AutF of order 1, 2 and 4, respectively).

(i) If Tϕ = 1, then every element of T commutes with all elements of F (since if gϕ is
the automorphism that g ∈ T induces when it acts by conjugation on F ). Therefore
in this case, G is a direct product:

G ∼= F × T = C5 × C4
∼= C20

(using the standard fact, from MT4003, that Cm ×Cn
∼= Cmn when gcd(m,n) = 1).

(ii) If Tϕ = ⟨β2⟩, then |kerϕ| = 2; that is kerϕ is the unique subgroup of order 2
in T ∼= C4. If y is a generator for T , then y /∈ kerϕ (as y has order 4) and therefore
yϕ = β2. Hence in this case

G ∼= F ⋊ϕ T

where a generator y of T induces the automorphism β2 : x 7→ x4 when it acts by
conjugation: y−1xy = x4.

(iii) If Tϕ = ⟨β⟩, then ϕ is actually an isomorphism from T to AutF (both are cyclic of
order 4). Hence one of the generators of T will be mapped to our chosen generator β
of AutF : there exists a generator y for T satisfying yϕ = β. Hence in this case

G ∼= F ⋊ϕ T

where some generator y of T induces the automorphism β when it acts by conjugation:
y−1xy = x2.

All thee groups can definitely be constructed: the homomorphisms ϕ described all exist
(as they correspond to the three normal subgroups C4, C2 and 1, respectively, of the cyclic
group T = C4). Hence these semidirect products can indeed be constructed and we have
shown that every group G of order 20 with T ∼= C4 can be written in one of these forms.
Moreover, each of the three possibilities describes a unique group. For example, suppose
that G = F ⋊ϕ T where F = ⟨x⟩, T = ⟨y⟩ and y−1xy = x4 as in construction (ii). Then
every element of G can be unique expressed in the form g = xiyj where 0 ⩽ i ⩽ 4 and
0 ⩽ j ⩽ 3 (since G = FT ) and multiplication is completely determined by the facts that
o(x) = 5, o(y) = 4 and y−1xy = x4: A product xiyj · xkyℓ can be rearranged to one of the
required form by repeated use of the conjugation formula.
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We must still check that the three groups are not isomorphic to each other (i.e., that
we have not by accident constructed the same group twice). First note that the group
in (i) is abelian, but the other two semidirect products constructed are non-abelian (as the
two elements x and y used do not commute). Let G = F ⋊ϕ T be the group occurring
in construction (iii), so ϕ : T → AutF is an isomorphism, F = ⟨x⟩, T = ⟨y⟩ and yϕ = β.
Suppose that g ∈ Z(G). Since G = FT , we can write g = xiyj where 0 ⩽ i ⩽ 4 and
0 ⩽ j ⩽ 3. Then

x = xg = xx
iyj = xy

j
= xβj .

Since an automorphism of F is determined by its effect on x, we deduce βj = idF and
so j = 0. If i ̸= 0, then some power of g = xi equals x and we would deduce x ∈ Z(G).
However, this is not true since xy = x2 ̸= x. This shows that g = 1 and we have shown
that the group constructed in (iii) has trivial centre.

In the case of the group G = F ⋊ϕ T constructed in (ii), the homomorphism ϕ : T →
AutF has kernel of order 2. We chose y to be a generator for T ∼= C4 and so y2 ∈ kerϕ.
This means that y2 commutes with x and all its powers. On the other hand, clearly
y2 commutes with all powers of y. Therefore y2 commutes with all elements of G = FT
and so y2 is a non-identity element of Z(G) in this case.

We conclude that the two non-abelian groups of order 20 constructed above are not
isomorphic to each other as they have different centres. Therefore there are precisely three
distinct groups of order 20 with cyclic Sylow 2-subgroups.

Case 2: T ∼= C2 × C2.
If ϕ : T → AutF in this case, then the image of ϕ must be cyclic as it is a subgroup

of AutF = ⟨β⟩ but also every element in Tϕ has order dividing 2 (as this is true for all
elements of T ). Therefore there are just two possibilities: Tϕ = 1 or ⟨β2⟩.

(i) If Tϕ = 1, then every element of T commutes with every element of F and so we
obtain a direct product:

G ∼= F × T = C5 × C2 × C2

∼= C2 × C10.

(ii) If T = ⟨β2⟩, then |kerϕ| = 2. Choose an element y that generates kerϕ and z ∈
T \kerϕ. Then yϕ = 1 and zϕ = β2. Note that these two elements y and z generate T
and so from these two images we can construct the image of every element of T
under ϕ. Thus we have completely determined the semidirect product:

G ∼= F ⋊ϕ T

where two generators y and z for T are such that y commutes with all elements in F
and z−1xz = xβ2 = x4.

As in Case 1, both these constructions define unique groups. (In fact, the group in
construction (ii) is isomorphic to the dihedral group D20 of order 20, as is observed on
Problem Sheet IV.) In addition, this second group is non-abelian and so is not isomorphic
to C2 × C10. Finally, none of them are isomorphic to any of the three groups in Case 1
since they have different Sylow 2-subgroups.
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Conclusion: There are, up to isomorphism, precisely five groups of order 20. □

The following example has a more complicated aspect in that ideas from linear algebra
become useful.

Example 4.8 In this example, we shall construct a non-abelian group G of order 147 =
3 · 72 with non-cyclic Sylow 7-subgroup. The number of Sylow 7-subgroups in a group
of order 147 divides 3 and is congruent to 1 (mod 7). Hence there is a unique Sylow
7-subgroup P . By assumption, P ∼= C7 × C7.

Now (temporarily) write the group operation in the abelian group P additively, so
P = F7⊕F7, where F7 = Z/7Z is the field containing 7 elements. Thus we can view P as a
vector space of dimension 2 over the field F7. A homomorphism P → P then corresponds to
a linear transformation, so automorphisms correspond to invertible linear transformations:

AutP ∼= GL2(F7) = {A | A is a 2× 2 matrix over F7 with detA ̸= 0 }.

If z is a generator for the Sylow 3-subgroup of G, then z induces an automorphism
of P via conjugation; that is, z induces an invertible linear transformation T of P such
that T 3 = I. Hence the minimal polynomial mT (X) of T divides

X3 − 1 = (X − 1)(X − 2)(X − 4) (over F7)

and must be of degree at most 2. In particular, mT (X) is a product of linear factors, so
T is diagonalisable. Hence we may choose a basis {x, y} for P such that the matrix of T
with respect to this basis is (

λ 0
0 µ

)
,

where λ, µ ∈ {1, 2, 4}. For example, one such group occurs when we select λ = 2 and
µ = 4. Returning to multiplicative notation, with this choice of λ and µ, we will have
constructed a semidirect product (C7 × C7) ⋊ C3 with generators x and y for the Sylow
7-subgroup and a generator z for the Sylow 3-subgroup that acts by conjugation in the
following way:

z−1xz = x2 and z−1yz = y4.

Wreath products

We finish this chapter by giving another example of the use of the semidirect product
construction.

Let G and H be any groups and suppose that G acts on the set Ω = {1, 2, . . . , n}. (In
fact, we can use any finite set Ω — and with some minor adjustment even an infinite set
— but we choose to use this specific set to make the notation more convenient.) Take B to
be the direct product of n copies Hi of the group H:

B = H1 ×H2 × · · · ×Hn

Elements of B are written as b = (h1, h2, . . . , hn), a sequence of elements of H indexed
by Ω; that is,

B = { (h1, h2, . . . , hn) | h1, h2, . . . , hn ∈ H }.

Now define an action of G on B by permuting the entries of these elements:

(h1, h2, . . . , hn)
g = (h1g−1 , h2g−1 , . . . , hng−1) (4.1)
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This formula indicates that applying g move the contents of entry i of the element b ∈ B
into the entry ig in bg. We verified on Problem Sheet II that this is an action of G.

Recall that the subgroup Hi is identified with the following set of elements of B:

Hi = { (1, . . . , 1, h, 1, . . . , 1) | h ∈ H }

(where the h is in the ith position). If g ∈ G has the effect of moving i to j (that is, ig = j)
and b = (1, . . . , 1, h, 1, . . . , 1) ∈ Hi, then the jth entry of bg is the entry in position jg−1 = i
of b. Hence, for this g and b, we compute

bg = (1, . . . , 1, h, 1, . . . , 1) with h in the jth position.

This shows that
Hg

i = Hj = Hig

and, in conclusion, we deduce that G permutes the factors of B in the same way as it
permutes the elements of Ω.

Write ϕ : G → Sym(B) for the associated permutation representation and let ϕg = gϕ
for g ∈ G; that is,

ϕg : (h1, h2, . . . , hn) 7→ (h1g−1 , h2g−1 , . . . , hng−1).

In fact, ϕg is an automorphism of B because(
(h1, h2, . . . , hn)(k1, k2, . . . , kn)

)ϕg = (h1k1, h2k2, . . . , hnkn)
g

= (h1g−1k1g−1 , h2g−1k2g−1 , . . . , hng−1kng−1)

= (h1g−1 , h2g−1 , . . . , hng−1)(k1g−1 , k2g−1 , . . . , kng−1)

= (h1, h2, . . . , hn)
ϕg · (k1, k2, . . . , kn)ϕg .

This shows that ϕg is a homomorphism, while we already know that it is a permutation and
consequently bijective. Hence ϕ : G → AutB. We may therefore construct the semidirect
product

W = B ⋊ϕ G

with respect to this action.

Definition 4.9 Let G and H be groups and let G act on the set Ω = {1, 2, . . . , n}. The
semidirect product W constructed above is called the wreath product of H by G with
respect to the action of G on Ω. We shall use the notation W = H wrΩG to denote this
group. The normal subgroup B is usually called the base group of the wreath product.

In summary, a wreath product is a special type of semidirect product that is built with
normal subgroup B that is a direct product of copies of one of our starting ingredients H
and the complement G to B acts to permute the direct factors of B in the same way that
it permutes the elements of the set Ω. (The formula (4.1) specifies explicitly how one
computes the conjugation of an element of B by an element of H. It is this that we have
to depend upon when computing in the wreath product.) We shall use wreath products in
our discussion of subgroups of symmetric groups in Chapter 7.

Let us now consider an example of the wreath product construction:
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Example 4.10 Let G = S2 ∼= C2 acting on the set Ω = {1, 2} in the natural way. Take
H = ⟨a⟩ ∼= C2. We then construct the wreath product W = C2wrΩ S2 = C2wrΩC2 with
respect to this action. The base group of W is

B = C2 × C2 = {(1, 1), (a, 1), (1, a), (a, a)} ∼= V4.

To simplify notation, and in line with what we have done earlier, we shall write elements
of W as products bσ where b ∈ B and σ ∈ S2.

Observe that W = B ⋊ S2 is a group of order 8. It is non-abelian because

(a, 1)(1 2) = (1, a) ̸= (a, 1).

Hence W is isomorphic to one of the two non-abelian groups of order 8. Observe that
W contains many elements of order 2, for example, (a, 1), (1, a), (a, a) and (1 2). Hence
W ∼= D8, the dihedral group of order 8.

As an example of computing within this wreath product, observe that(
(a, 1) (1 2)

)2
= (a, 1) (1 2) (a, 1) (1 2)

= (a, 1) (1, a)

= (a, a).

We conclude that the element g = (a, 1) (1 2) satisfies g4 = 1 but g2 ̸= 1. Hence this g is
one of the two elements of order 4 in the wreath product W .
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Soluble Groups

We have already met the concept of a composition series for a group. In this chapter we
shall consider groups whose composition factors are all abelian. We can think of this as
the class of groups we can build using only abelian groups. To give a general description
of these groups we use the following concept.

Definition 5.1 Let G be a group and x, y ∈ G. The commutator of x and y is the element

[x, y] = x−1y−1xy.

Note that the following equations hold immediately:

[x, y] = x−1xy

[x, y] = (y−1)xy

and

xy = yx [x, y]. (5.1)

The latter tells us that the commutator can be viewed as a measure of by how much x and y
fail to commute.

Lemma 5.2 Let G and H be groups, let ϕ : G→ H be a homomorphism and let x, y, z ∈
G. Then

(i) [x, y]−1 = [y, x];

(ii) [x, y]ϕ = [xϕ, yϕ];

(iii) [x, yz] = [x, z] [x, y]z;

(iv) [xy, z] = [x, z]y [y, z].

Proof: (i) [x, y]−1 = (x−1y−1xy)−1 = y−1x−1yx = [y, x].
(ii) [x, y]ϕ = (x−1y−1xy)ϕ = (xϕ)−1(yϕ)−1(xϕ)(yϕ) = [xϕ, yϕ].
(iii) For this and part (iv), we shall rely on Equation (5.1) which we view as telling us

how to exchange group elements at the expense of introducing commutators. (This process
is known as ‘collection’.) So

xyz = yzx [x, yz]
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but if we collect one term at a time we obtain

xyz = yx [x, y] z

= yxz [x, y]z

= yzx [x, z] [x, y]z.

Hence
yzx [x, yz] = yzx [x, z] [x, y]z,

so
[x, yz] = [x, z] [x, y]z.

(iv)
xyz = zxy [xy, z]

and

xyz = xzy [y, z]

= zx [x, z] y [y, z]

= zxy [x, z]y [y, z].

Comparing we deduce
[xy, z] = [x, z]y [y, z]. □

Both parts (iii) and (iv) can be proved by a more simple-minded expansion of the terms
on both sides, but more insight can be obtained with use of the collection process.

Definition 5.3 Let G be a group. The derived subgroup (or commutator subgroup) G′

of G is the subgroup generated by all commutators of elements from G:

G′ = ⟨ [x, y] | x, y ∈ G ⟩.

Part (i) of Lemma 5.2 tells us that the inverse of a commutator is again a commutator,
but we have no information about products of commutators. Consequently, a typical
element of G′ has the form

[x1, y1] [x2, y2] . . . [xn, yn]

where xi, yi ∈ G for each i. In general, a product of commutators need not itself be a
commutator. There do exist examples of groups where a product of two commutators
is not itself a commutator, but they are not so easy to construct and the smallest finite
example has order 96. Nevertheless do note that the elements of the derived subgroup are
not necessarily themselves commutators.

Observe that if x, y ∈ G are two elements that commute, then [x, y] = x−1y−1xy =
x−1y−1yx = 1. On the other hand, it follows immediately from Equation (5.1) that if
[x, y] = 1, then x and y commute. In particular:

Lemma 5.4 Let G be a group. Then G′ = 1 if and only if G is an abelian group. □

We can strengthen this observation in the following key properties that characterize
the derived subgroup. This lemma was established in MT4003.

Lemma 5.5 Let G be a group and N be a normal subgroup of G. Then:

(i) the derived subgroup G′ is a characteristic subgroup of G and hence normal in G;
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(ii) G/N is abelian if and only if G′ ⩽ N .

In particular, G/G′ is an abelian group and it is the largest quotient group of G which
is abelian. The quotient G/G′ is often called the abelianization of G.

Proof: (i) By Lemma 5.2(ii), if x, y ∈ G and ϕ is an automorphism of G, then [x, y]ϕ =
[xϕ, yϕ] ∈ G′. Since ϕ is a homomorphism, it follows that any product of commutators
in G is mapped into G′ for ϕ. Thus G′ϕ ⩽ G′ for all automorphisms ϕ of G and so G′ is a
characteristic subgroup of G. Therefore G′ P G by Lemma 3.16(i).

(ii) Suppose G/N is abelian. Then

Nx ·Ny = Ny ·Nx for all x, y ∈ G,

so
N [x, y] = (Nx)−1(Ny)−1(Nx)(Ny) = N1 for all x, y ∈ G.

Thus [x, y] ∈ N for all x, y ∈ G and we deduce G′ ⩽ N .
Conversely if G′ ⩽ N , then [x, y] ∈ N for all x, y ∈ G and reversing the above steps

shows that G/N is abelian. □

Iterating the construction of the derived subgroup yields the derived series:

Definition 5.6 The derived series (G(i)) (for i ⩾ 0) is the chain of subgroups of the
group G defined by

G(0) = G

and
G(i+1) = (G(i))′ for i ⩾ 0.

So G(1) = G′, G(2) = (G′)′ = G′′, etc. This produces a chain of subgroups

G = G(0) ⩾ G(1) ⩾ G(2) ⩾ · · · .

We shall see later that, when G is soluble, this is indeed a series in the sense of Definition 3.1
(in that each term is normal in the previous). In fact, it is a normal series (each term is
normal in G) and more: each term is a characteristic subgroup of G.

Definition 5.7 A group G is called soluble (solvable in the U.S.) if G(d) = 1 for some d.
The least such d is called the derived length of G.

When forming the derived series, we take the derived subgroup at each stage of the
previous term. Consequently, once we obtain a repetition then the series is constant from
that point. Thus if G is a soluble group of derived length d, its derived series has the form

G = G(0) > G(1) > G(2) > · · · > G(d) = 1

with strict inclusions: G(i) is a proper subgroup of G(i−1) for i = 1, 2, . . . , d.

Example 5.8 We shall compute the derived series of some familiar groups. The process
involves some direct computation of commutators combined with the use of Lemma 5.5
that characterizes the derived subgroup.
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(i) Let G = S4, the symmetric group of degree 4. Observe

[(1 2), (1 3)] = (1 2) (1 3) (1 2) (1 3) = (1 3 2)

and similarly every 3-cycle is a commutator. Since the 3-cycles generate the alter-
nating group, we deduce that A4 ⩽ G′. On the other hand, S4/A4

∼= C2, which is
abelian, so G′ ⩽ A4 by Lemma 5.5. Therefore

G′ = A4.

We now repeat this process:

[(1 2 3), (1 2 4)] = (1 3 2) (1 4 2) (1 2 3) (1 2 4) = (1 2) (3 4)

and similarly every product of two disjoint transpositions is a commutator. Hence
V4 ⩽ G′′ = A′

4. On the other hand, A4/V4 ∼= C3, which is abelian, so A′
4 ⩽ V4 by

Lemma 5.5. Therefore
G′′ = A′

4 = V4.

Finally V4 is an abelian group, so G′′′ = V ′
4 = 1. Thus the symmetric group S4 is

soluble of derived length 3.

(ii) Let n ⩾ 5 and let G = An, the alternating group of degree n. Then G is a non-
abelian simple group. Therefore G′ ̸= 1 but, since G′ is a normal subgroup of G,
this forces G′ = G. Hence G′ = An. If we repeat the process, then we will always
produce the same subgroup and hence G(i) = G = An for all i ⩾ 0. We conclude
that the alternating group An, for n ⩾ 5, is not soluble.

To move beyond such computations and to fully understand the properties of a soluble
group, we shall produce some equivalent formulations. This will enable us to describe
examples of soluble groups more easily. We begin by establishing basic properties of the
derived subgroup and the derived series.

Lemma 5.9 (i) If H is a subgroup of G, then H ′ ⩽ G′.

(ii) If ϕ : G→ K is a homomorphism, then G′ϕ ⩽ K ′.

(iii) If ϕ : G→ K is a surjective homomorphism, then G′ϕ = K ′.

Proof: (i) If x, y ∈ H, then [x, y] is in particular a commutator of elements from G so
belongs to the derived subgroup of G:

[x, y] ∈ G′ for all x, y ∈ H.

Therefore
⟨ [x, y] | x, y ∈ H ⟩ ⩽ G′,

that is, H ′ ⩽ G′.
(ii) This is similar to Lemma 5.5(i). If x, y ∈ G, then [x, y]ϕ = [xϕ, yϕ] ∈ K ′. Since

K ′ is closed under products, it follows that any product of commutators in G is mapped
into K ′ by the homomorphism ϕ. Thus G′ϕ ⩽ K ′.

(iii) Let a, b ∈ K. Since ϕ is surjective, there exists x, y ∈ G such that a = xϕ and
b = yϕ. Thus

[a, b] = [xϕ, yϕ] = [x, y]ϕ ∈ G′ϕ.
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Thus
[a, b] ∈ G′ϕ for all a, b ∈ K.

The image of a subgroup under the homomorphism ϕ is itself a subgroup of the codomain,
so we see that G′ϕ is a subgroup of K that contains all commutators [a, b] for a, b ∈ K.
The definition of the derived subgroup now forces K ′ ⩽ G′ϕ. Using (ii) gives K ′ = G′ϕ,
as required. □

Corollary 5.10 (i) If H is a subgroup of G, then H(i) ⩽ G(i) for all i.

(ii) If ϕ : G→ K is a surjective homomorphism, then G(i)ϕ = K(i) for all i.

Proof: We prove both parts by induction on i using the previous lemma as the tool to
establish the induction step.

(i) When i = 0, the claimed inclusion is H ⩽ G which holds by assumption. Suppose
then that H(i) ⩽ G(i) for some i ⩾ 0. Apply Lemma 5.9(i) to give

(H(i))′ ⩽ (G(i))′;

that is,
H(i+1) ⩽ G(i+1).

This completes the induction.
(ii) The assumption that ϕ is a surjective homomorphism tells us that Gϕ = K. This

is the claimed formula when i = 0. Now suppose that G(i)ϕ = K(i) for some i ⩾ 0. Hence,
upon restricting the G(i), ϕ induces a surjective homomorphism G(i) → K(i). Apply
Lemma 5.9(iii) to this homomorphism to give

(G(i))′ϕ = (K(i))′;

that is,
G(i+1)ϕ = K(i+1).

This completes the induction. □

We can now deduce the following observation about soluble groups:

Theorem 5.11 Subgroups and homomorphic images of soluble groups are themselves
soluble.

Proof: Let G be a soluble group and H be a subgroup of G. The assumption tells us
that G(d) = 1 for some d. Therefore, using Corollary 5.10(i), since H(d) ⩽ G(d), we obtain
H(d) = 1 and so we deduce that H is soluble.

Now let K be a homomorphic image of G; that is, there exists a surjective homomor-
phism ϕ : G→ K. We have assumed G(d) = 1 for some d and thus, by Corollary 5.10(ii),

K(d) = G(d)ϕ = 1ϕ = 1.

Hence K is soluble. □

It follows that quotient groups (which are the same as homomorphic images) of soluble
groups are themselves soluble. There is a rather strong converse to the above lemma as
well.
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Proposition 5.12 Let G be a group and N be a normal subgroup of G such that both
G/N and N are soluble. Then G is soluble.

Proof: Let π : G→ G/N be the natural map. By assumption (G/N)(d) = 1 and N (e) = 1
for some d and e. Now, by Corollary 5.10(ii),

G(d)π = (G/N)(d) = 1.

Hence
G(d) ⩽ kerπ = N.

Therefore, by Corollary 5.10(i),

(G(d))(e) ⩽ N (e) = 1;

that is,
G(d+e) = 1.

Thus G is soluble. □

We have already observed that the derived subgroup G′ is a characteristics subgroup
of G; that is,

G′ charG.

Since the terms of the derived series are defined recursively using the derived subgroup
(that is, G(i+1) = (G(i))′ for all i ⩾ 0), it follows that each term of the derived series is
characteristic in the previous one:

G(i) charG(i−1) charG(i−2) char · · · charG(1) charG(0) = G

for all i ⩾ 0. Now apply Lemma 3.16(ii) to conclude that each term G(i) of the derived
series is a characteristic subgroup (and hence a normal subgroup) of G.

Proposition 5.13 The derived series

G = G(0) ⩾ G(1) ⩾ G(2) ⩾ · · ·

is a chain of subgroups each of which is a characteristic subgroup of G and hence each of
which is a normal subgroup of G. □

Consequently, if G is a soluble group of derived length d then its derived series has the
form

G = G(0) > G(1) > · · · > G(d) = 1

and this is a normal series (that is, each term is normal in G). Moreover, each factor has
the form

G(i)/G(i+1) = G(i)/(G(i))′

and this is an abelian group by Lemma 5.5. Thus if G is soluble then it has a normal series
with abelian factors. This property fully describes what it means for a group to be soluble:

Theorem 5.14 Let G be a group. The following conditions are equivalent:

(i) G is soluble;

(ii) G has a series with abelian factors.
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Proof: (i) ⇒ (ii): The derived series is such a series (indeed, it is a normal series with
abelian factors).

(ii) ⇒ (i): Suppose that

G = G0 ⩾ G1 ⩾ G2 ⩾ . . . ⩾ Gn = 1

is a series where Gi−1/Gi is abelian for all i.

Claim: G(i) ⩽ Gi for all i.
We prove the claim by induction on i. Since G(0) = G = G0, the claim holds for i = 0.
Suppose G(i) ⩽ Gi for some i ⩾ 0. Now Gi+1 P Gi and Gi/Gi+1 is abelian. Hence

(Gi)
′ ⩽ Gi+1 by Lemma 5.5. Further, by Lemma 5.9(i), (G(i))′ ⩽ (Gi)

′ and consequently

G(i+1) = (G(i))′ ⩽ (Gi)
′ ⩽ Gi+1.

Therefore, by induction, G(n) ⩽ Gn = 1, so G(n) = 1 and G is soluble. □

The above theorem provides a general characterization of soluble groups. We shall also
describe a characterization of soluble groups in terms of composition series (as introduced
in Definition 3.3). Note, however, that the infinite cyclic group is abelian, so soluble, but
it does not have a composition series (see Example 3.6). Consequently, we cannot hope
for composition series to give us complete information about soluble groups. However, as
long as we avoid infinite soluble groups, the composition factors do determine whether or
not a group is soluble.

Theorem 5.15 Let G be a group. Then the following conditions are equivalent:

(i) G is a finite soluble group;

(ii) G has a composition series with all composition factors cyclic of prime order.

Recall that the abelian simple groups are precisely the cyclic groups of (various) prime
orders. Thus condition (ii) describes the groups with abelian composition factors.

Proof: (ii) ⇒ (i): Let

G = G0 > G1 > G2 > · · · > Gn = 1

be a composition series for G and suppose that all the factors are cyclic. This is, in partic-
ular, a series for G with abelian factors and so G is soluble by Theorem 5.14. Furthermore,

|G| = |G0/G1| · |G1/G2| · . . . · |Gn−1/Gn|,

a product of finitely many primes, so G is finite.
(i) ⇒ (ii): Let G be a finite soluble group. Then by Theorem 5.14, G possesses a series

G = G0 > G1 > G2 > · · · > Gn = 1 (5.2)

with abelian factors. Now use Corollary 3.8 to refine this to a composition series for G
(that is, repeatedly insert additional terms into the series until we cannot insert any more).
Observe that if Gi+1 < N < Gi, then N/Gi+1 is a subgroup of Gi/Gi+1 and so is abelian,
while by the Third Isomorphism Theorem

Gi/N ∼=
Gi/Gi+1

N/Gi+1
,
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which is a quotient of an abelian group and so is abelian. Hence the refinement process
preserves the property that the factors are abelian. The result is a composition series
for G with abelian factors. Since the only abelian simple groups are cyclic of prime order,
we deduce that all the composition factors of G are cyclic of prime order (for various
primes). □

This characterization of a finite soluble group in terms of its composition factors gives
further insight into our collection of examples given in Example 5.8. For example, we
observed that S4 is soluble but we also know (from Example 3.5(ii)) that its composition
factors are C2 (three times) and C3. Equally, if G is a non-abelian simple group (for
example, G = An for n ⩾ 5) than G is its only composition factor and so G is not soluble.

The following examples, and non-examples, of soluble groups can also be deduced using
the theory that we have developed.

Example 5.16 (i) We have already observed that the symmetric group S4 of degree 4 is
soluble. We know, from Theorem 5.11, that a subgroup of a soluble group is soluble.
Hence, for example, the alternating group A4 of degree 4 and the dihedral group D8

of order 8 are also soluble.

(ii) Since An is not soluble for n ⩾ 5, it follows that the symmetric group Sn, for n ⩾ 5,
is not soluble. (Indeed, the composition factors of Sn are C2 and An.)

(iii) Let n ⩾ 3. We shall show that the dihedral group D2n of order 2n is soluble. First
D2n contains an element α of order n, so ⟨α⟩ has index 2 and so is normal. Thus

D2n > ⟨α⟩ > 1

is a series for D2n with both factors cyclic. Hence D2n is soluble by Theorem 5.14.

Careful analysis of the examples at the end of Chapter 2 shows that the groups we
considered that were not simple in 2.26–2.28 are also soluble groups.

Hall’s Theorem

For the rest of this chapter we shall work only with finite soluble groups. Our goal is to
prove Hall’s Theorem concerning the existence of Hall subgroups in a finite soluble groups.
We shall prove this by induction on the group order and one key step will be to take the
quotient by a minimal normal subgroup.

Recall from Definition 3.17 that a minimal normal subgroup of a finite group G is a
non-trivial normal subgroup M such that if 1 ⩽ N ⩽ M with N P G then either N = 1
or N = M . Theorem 3.19 tells us that a minimal normal subgroup of a finite group is a
direct product of isomorphic simple groups. However, if G is a finite soluble group then
non-abelian simple groups cannot occur by Theorem 5.15. The only possible simple groups
that can occur are cyclic groups of prime order. Thus in a finite soluble group, a minimal
normal subgroup is a direct product of cyclic groups of order p (for some prime p). We
give a special name to these groups:

Definition 5.17 Suppose that p is a prime number. An elementary abelian p-group G is
an abelian group such that

xp = 1 for all x ∈ G.
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Recall from the Fundamental Theorem of Finite Abelian Groups (see MT4003 ) that a
finite abelian group is a direct product of cyclic groups. It follows that a finite group is an
elementary abelian p-group if and only if

G ∼= Cp × Cp × · · · × Cp︸ ︷︷ ︸
d times

for some d. We have therefore observed that combining Theorem 5.15 with Theorem 3.19
gives:

Theorem 5.18 A minimal normal subgroup of a finite soluble group is an elementary
abelian p-group for some prime number p. □

This result will be used in the induction step of our proof of Hall’s Theorem. Be-
fore stating that theorem, we describe the type of subgroup with which this theorem is
concerned.

Hall subgroups

Definition 5.19 Let π be a set of prime numbers and let G be a finite group. A Hall
π-subgroup of G is a subgroup H of G such that |H| is a product involving only the primes
in π and |G : H| is a product involving only primes not in π.

If p is a prime number, then this definition means that a Hall {p}-subgroup (that is,
when π = {p} contains just one prime) is precisely the same thing as a Sylow p-subgroup.

Example 5.20 Consider the alternating group A5 of degree 5. Here

|A5| = 60 = 22 · 3 · 5,

so a Hall {2, 3}-subgroup of A5 has order 12. We already know of a subgroup with this
order: namely, A4 is a Hall {2, 3}-subgroup of A5.

A Hall {2, 5}-subgroup of A5 would have order 20 and index 3, while a Hall {3, 5}-
subgroup of A5 would have order 15 and index 4. Suppose that one of these subgroups
exists, say H with |A5 : H| = r = 3 or 4. Let A5 act on the cosets of H to determine
a non-trivial homomorphism ρ : A5 → Sr. However A5 is simple, so necessarily ρ is then
injective, but this is impossible as |A5| > |Sr|.

Hence A5 does not have any Hall π-subgroups for π = {2, 5} or π = {3, 5}.

So in insoluble groups, some Hall π-subgroups might exist, while others might not (in
fact, it is a theorem that some definitely do not!). This is in stark contrast to soluble
groups where we shall observe that Hall π-subgroups always do exist:

Theorem 5.21 (P. Hall, 1928) Let G be a finite soluble group and let π be a set of
prime numbers. Then G has a Hall π-subgroup.

Hall subgroups and this theorem are named after Philip Hall (1904–1982), a British
mathematician who did groundbreaking research into the theory of finite and infinite groups
in the early and mid-parts of the twentieth century. In fact, he established more properties
of Hall subgroups that are analogous to the behaviour of Sylow subgroups. He also showed
that, in a finite soluble group G,

(i) any two Hall π-subgroups of G are conjugate, and
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(ii) any π-subgroup (that is, a subgroup whose order is a product involving only primes
in π) of G is contained in a Hall π-subgroup.

The proofs of these two facts will not be established in this module, but similar methods
are used to what we do when proving Theorem 5.21.

A number of tools are needed in the course of this theorem. The one remaining fact
that has not already been established is the following result. It first appeared in the study
of nilpotent groups (which are discussed in the next chapter). We shall use this lemma in
the most complicated step in the proof of Hall’s Theorem.

Lemma 5.22 (Frattini Argument) Let G be a finite group, N be a normal subgroup
of G and P be a Sylow p-subgroup of N . Then

G = NG(P )N.

The name of the lemma suggests (correctly) that it is the method of proof that is
actually most important here. The idea can be adapted to many situations and turns out
to be very useful.

Proof: Let x ∈ G. Since N P G, we have

P x ⩽ Nx = N,

so P x is a Sylow p-subgroup of N . Sylow’s Theorem then tells us that P x and P are
conjugate in N :

P x = Pn for some n ∈ N.

Therefore
P xn−1

= P,

so y = xn−1 ∈ NG(P ). Hence x = yn ∈ NG(P )N . The reverse inclusion is obvious, so

G = NG(P )N. □

Proof of Theorem 5.21: Let G be a finite soluble group and write |G| = mn where
m is a product involving primes in π and n is a product involving primes not in π. We
shall show, by induction on the order of G, that G has a subgroup of order m. If m = 1,
then the trivial subgroup is the subgroup of order m and, in particular, this establishes the
base case. We can therefore assume that m > 1 and that the result holds for all soluble
groups of order less than |G|.

Since we are now considering a non-trivial soluble group G, it has a minimal nor-
mal subgroup and, by Theorem 5.18, this is elementary abelian. We consider two cases
according to the prime dividing the order of a minimal normal subgroup.

Case 1: G possesses a minimal normal subgroupM that is an elementary abelian p-group
where p ∈ π. Write |M | = pα.

Then
|G/M | = mn/pα = m1n,

where m = m1p
α. By induction, G/M has a Hall π-subgroup; that is, a subgroup of or-

derm1. The Correspondence Theorem tells us this has the formH/M for some subgroupH
of G containing M . Then

|H/M | = m1
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so
|H| = m1|M | = m1p

α = m.

Hence H is a Hall π-subgroup of G.

Case 2: No minimal normal subgroup of G is an elementary abelian p-group with p ∈ π.
Let M be a minimal normal subgroup of G, so M is an elementary abelian q-group for

some prime q /∈ π. Write |M | = qβ so

|G/M | = mn/qβ = mn1

where n = n1q
β . We now further subdivide according to whether or not n1 = 1. (The case

when n1 = 1 is the most complicated.)

Subcase 2A: n1 ̸= 1.
By induction, G/M has a Hall π-subgroup, which has the form K/M where K is a

subgroup of G containing M and
|K/M | = m.

Then
|K| = m|M | = mqβ = mn/n1 < mn.

We shall further apply induction to K. This has smaller order than G and hence possesses
a Hall π-subgroup. Let H be a Hall π-subgroup of K. Then |H| = m, so H is also a Hall
π-subgroup of G.

Subcase 2B: n1 = 1, so |G| = mqβ .
Note also that the general assumption of Case 2 still applies: G has a minimal normal

subgroup M with |M | = qβ and it has no minimal normal subgroup whose order is a
power of a prime in π. The previous steps essentially just depended on careful application
of induction. In this case, we need to do far more group theory and we shall establish that
our Hall π-subgroup arises in a specific manner.

Now |G/M | = m > 1. Let N/M be a minimal normal subgroup of G/M . Then N/M is
an elementary abelian p-group for some p ∈ π (since m is a product involving only primes
in π), say |N/M | = pα. Then N P G, by the Correspondence Theorem, and

|N | = pαqβ.

Let P be a Sylow p-subgroup of N . Let us now apply the Frattini Argument (Lemma 5.22):

G = NG(P )N.

But we know |P | = pα and |M | = qβ , so N = PM . Hence

G = NG(P )PM = NG(P )M

(as P ⩽ NG(P )).
Now consider J = NG(P ) ∩ M . Since M is abelian, J P M . Also since M P G,

J = NG(P ) ∩M P NG(P ). Hence

J P NG(P )M = G.

But M is a minimal normal subgroup of G, so J = 1 or J =M .
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If J = NG(P ) ∩M = M , then M ⩽ NG(P ), so G = NG(P ). Hence P is a normal
p-subgroup of G and some subgroup of P is a minimal normal subgroup of G and this must
be an elementary abelian p-group with p ∈ π. This is contrary to the general assumption
made for Case 2.

Thus J = 1, so NG(P ) ∩M = 1. Now

mqβ = |G| = |NG(P )M | = |NG(P )| · |M |,

by Lemma 1.19(iv). Therefore |NG(P )| = m. Hence H = NG(P ) is a Hall π-subgroup,
which is what we were trying to find.

This completes the induction and establishes the existence of Hall subgroups in a finite
soluble group. □
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Chapter 6

Nilpotent Groups

In Chapter 5, we defined a collection of subgroups of a group called the derived series using
the concept of the commutator

[x, y] = x−1y−1xy.

In this chapter, we shall define another collection of subgroups and hence define a class of
groups called the nilpotent groups. Recall that if x, y ∈ G, then [x, y] = 1 if and only if
x and y commute.

Definition 6.1 Let A and B be subgroups of a group G. Define the commutator sub-
group [A,B] by

[A,B] = ⟨ [a, b] | a ∈ A, b ∈ B ⟩,

the subgroup generated by all commutators [a, b] with a ∈ A and b ∈ B.

In this notation, the derived series is then given recursively by setting G(0) = G and
G(i+1) = [G(i), G(i)] for all integers i ⩾ 0. We now make a new definition which is similar
but slightly less symmetrical in its form.

Definition 6.2 The lower central series
(
γi(G)

)
(for integers i ⩾ 1) is the collection of

subgroups of the group G defined by γ1(G) = G and

γi+1(G) = [γi(G), G] for i ⩾ 1.

Definition 6.3 A group G is called nilpotent if γc+1(G) = 1 for some c. The least such c
is called the nilpotency class of G.

It is easy to see that G(i) ⩽ γi+1(G) for all i (by induction on i). Thus if G is nilpotent,
then it is soluble. Note also that γ2(G) = G′. Consequently, we observe:

Lemma 6.4 Let G be a group. Then γ2(G) = 1 if and only if G is abelian. In particular,
the nilpotent groups of class ⩽ 1 are precisely the abelian groups. □

In order that we can study nilpotent groups, we shall need some basic properties of
the lower central series. The first two parts are proved by a very similar argument to that
used for the derived series in Lemma 5.9 and Corollary 5.10.

Lemma 6.5 (i) If H is a subgroup of G, then γi(H) ⩽ γi(G) for all i.

(ii) If ϕ : G→ K is a surjective homomorphism, then γi(G)ϕ = γi(K) for all i.

(iii) γi(G) is a characteristic subgroup of G for all i.
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(iv) The lower central series of G is a chain of subgroups

G = γ1(G) ⩾ γ2(G) ⩾ γ3(G) ⩾ · · · .

In particular, if G is a nilpotent group, then the lower central series

G = γ1(G) > γ2(G) > · · · > γc+1(G) = 1

is a normal series for G.

Proof: (i) Proceed by induction on i. Note that γ1(H) = H ⩽ G = γ1(G). If we assume
that γi(H) ⩽ γi(G), then this together with H ⩽ G gives [γi(H), H] ⩽ [γi(G), G], so
γi+1(H) ⩽ γi+1(G).

(ii) Again proceed by induction on i. Note that γ1(G)ϕ = Gϕ = K = γ1(K). Suppose
that γi(G)ϕ = γi(K) for some i. If x ∈ γi(G) and y ∈ G, then

[x, y]ϕ = [xϕ, yϕ] ∈ [γi(G)ϕ,Gϕ] = [γi(K),K] = γi+1(K),

so γi+1(G)ϕ = [γi(G), G]ϕ ⩽ γi+1(K).
On the other hand, if a ∈ γi(K) and b ∈ K, then a = xϕ and b = yϕ for some x ∈ γi(G)

and y ∈ G. So
[a, b] = [xϕ, yϕ] = [x, y]ϕ ∈ [γi(G), G]ϕ = γi+1(G)ϕ.

Thus γi+1(K) = [γi(K),K] ⩽ γi+1(G)ϕ.
Putting the two inclusions together, We deduce that γi+1(G)ϕ = γi+1(K) to complete

the inductive step.
(iii) If ϕ is an automorphism of G, then ϕ : G → G is, in particular, a surjective

homomorphism, so from (ii) we conclude that

γi(G)ϕ = γi(G).

Thus γi(G) charG.
(iv) From (iii), γi(G) P G. Hence if x ∈ γi(G) and y ∈ G, then

[x, y] = x−1xy ∈ γi(G).

Hence
γi+1(G) = [γi(G), G] ⩽ γi(G) for all i. □

We deduce two consequences immediately:

Lemma 6.6 Subgroups and homomorphic images of nilpotent groups are themselves nilpo-
tent.

Proof: Suppose that γc+1(G) = 1 and H ⩽ G. Then by Lemma 6.5(i), γc+1(H) ⩽
γc+1(G) = 1, so γc+1(H) = 1 and H is nilpotent.

If K is a homomorphic image of G, say ϕ : G→ K is a surjective homomorphism, then
Lemma 6.5(ii) tells us that γc+1(K) = γc+1(G)ϕ = 1ϕ = 1, so K is nilpotent. □

In contrast to soluble groups, if N is a normal subgroup of a group G such that
G/N and N are both nilpotent, one cannot deduce that G is nilpotent.
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Example 6.7 First observe that if G is a nilpotent group of class c then its lower central
series has the form

G = γ1(G) > γ2(G) > · · · > γc(G) > γc+1(G) = 1

and by definition [γc(G), G] = γc+1(G) = 1. Hence every element of the last non-trivial
term γc(G) of the lower central series commutes with every element of G; that is γc(G) ⩽
Z(G). Thus if G is a non-trivial nilpotent group, then its centre is non-trivial.

We know that Z(S3) = 1 (as can be shown by a direct computation), so S3 is not
nilpotent. However A3 and S3/A3

∼= C2 are both abelian and hence nilpotent.

This last observation tells us that being nilpotent has something to do with non-trivial
centre. This idea will enable us to show that every finite p-group is nilpotent. We shall
start with the following observation, which was proved in MT4003 and which we have used
regularly on the problem sheets already. However, for completeness we shall give a proof
based on group actions.

Lemma 6.8 Let G be a non-trivial finite p-group. Then the centre Z(G) of G is non-
trivial.

Proof: Let G be a finite group of order |G| = pn for some prime p and some integer
n ⩾ 1. Let G act on itself by conjugation. It is then the disjoint union of the orbits, which
are the conjugacy classes of G:

G = C1 ∪ C2 ∪ · · · ∪ Ck

The size of each conjugacy class equals the index of the centralizer of an element within it:

|Ci| = |G : CG(xi)|

where xi ∈ Ci. Hence |Ci| = 1 if and only if Ci = {xi} ⊆ Z(G). If xi /∈ Z(G), then
|G : CG(xi)| is a non-trivial power of p. Consequently,

pn = |C1|+ |C2|+ · · ·+ |Ck| ≡ |Z(G)| (mod p).

Hence |Z(G)| ≠ 1 and so Z(G) ̸= 1. □

Proposition 6.9 A finite p-group is nilpotent.

Proof: Let G be a finite p-group, say |G| = pn. We proceed by induction on |G|. If
|G| = 1, then immediately G is nilpotent (as γ1(G) = G = 1).

Now suppose |G| > 1. Apply Lemma 6.8: Z(G) ̸= 1. Consider the quotient
group G/Z(G). This is a p-group of order smaller than G, so by induction it is nilpo-
tent, say

γc+1(G/Z(G)) = 1

for some c. Let π : G→ G/Z(G) be the natural homomorphism. Then by Lemma 6.5(ii),

γc+1(G)π = γc+1(G/Z(G)) = 1,

so γc+1(G) ⩽ kerπ = Z(G). Thus

γc+2(G) = [γc+1(G), G] ⩽ [Z(G), G] = 1,

so G is nilpotent. □
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The goal in the remainder of this chapter is to demonstrate that essentially all finite
groups are built as direct products of p-groups. Consequently, the examples from Propo-
sition 6.9 are in some sense archetypal.

Proposition 6.10 Let G be a nilpotent group. Then every proper subgroup of G is
properly contained in its normalizer:

H < NG(H) whenever H < G.

Proof: Let
G = γ1(G) ⩾ γ2(G) ⩾ · · · ⩾ γc+1(G) = 1

be the lower central series of G and let H be a proper subgroup of G. Then γc+1(G) ⩽ H
but γ1(G) ⩽̸ H. Choose i as small as possible so that γi(G) ⩽ H. Then γi−1(G) ⩽̸ H.
Now

[γi−1(G), H] ⩽ [γi−1(G), G] = γi(G) ⩽ H,

so
x−1hxh−1 = [x, h−1] ∈ H for all x ∈ γi−1(G) and h ∈ H.

Therefore
Hx = {x−1hx | h ∈ H } ⩽ H for all x ∈ γi−1(G).

Note that also that Hx−1
⩽ H for all x ∈ γi−1(G), so Hx = H for all x ∈ γi−1(G). Hence

γi−1(G) ⩽ NG(H). Therefore, since γi−1(G) ⩽̸ H, we deduce NG(H) > H. □

The final lemma we need to analyze the behaviour of nilpotent finite groups is the
following observation about Sylow subgroups:

Lemma 6.11 Let G be a finite group and let P be a Sylow p-subgroup of G for some
prime p. Then

NG(NG(P )) = NG(P ).

Proof: Let H = NG(P ). Then P P H, so P is the unique Sylow p-subgroup of H. (Note
that as it is a Sylow p-subgroup of G and since P ⩽ H, it is also a Sylow p-subgroup of H,
as it must have the largest possible order for a p-subgroup of H.) Let g ∈ NG(H). Then

P g ⩽ Hg = H,

so P g is also a Sylow p-subgroup of H and we deduce P g = P ; that is, g ∈ NG(P ) = H.
Thus NG(H) ⩽ H, so we deduce

NG(H) = H,

as required. □

We can now characterise finite nilpotent groups as being built from p-groups in the
most simple way.

Theorem 6.12 Let G be a finite group. Then G is nilpotent if and only if it is the direct
product of its Sylow subgroups.
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Proof: First suppose that G is a nilpotent finite group. Let P be a Sylow p-subgroup
of G (for some prime p) and H = NG(P ). By Lemma 6.11, NG(H) = H. Hence, by
Proposition 6.10, it must be the case that H = G; that is, NG(P ) = G and so P P G.

Now if P1, P2, . . . , Pk are all the Sylow subgroups of G (one for each prime divisor
of |G|), then we have just observed that each Pi is a normal subgroup of G. Then, with
repeated use of Lemma 1.19,

P1 . . . Pi−1Pi+1 . . . Pk

is a normal subgroup of G of order |P1| . . . |Pi−1||Pi+1| . . . |Pk|. This order is not divisible
by the prime corresponding to Pi and hence, by Lagrange’s Theorem,

P1 . . . Pi−1Pi+1 . . . Pk ∩ Pi = 1

for each i. Also G = P1P2 . . . Pk (again by the formula from Lemma 1.19) and we have
verified the condition to be a direct product:

G = P1 × P2 × · · · × Pk.

Conversely, if G = P1×P2×· · ·×Pk is the direct product of its Sylow subgroups, then
a straightforward calculation shows

γi(G) = γi(P1)× γi(P2)× · · · × γi(Pk)

for each i ⩾ 1. Since each Pi is nilpotent by Proposition 6.9, there exists some c such that
γc+1(Pi) = 1 for each i. Therefore γc+1(G) = 1 and G is nilpotent. □
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Chapter 7

The Structure of Permutation
Groups

In this chapter, we return to the general theme of understanding the action of a group on
a set. We begin with the following pair of definitions.

Definition 7.1 (i) Let G be a group and let G act on a set Ω. We say this action is
faithful if the kernel of the associated permutation representation is trivial.

(ii) If Ω is a set, a permutation group on Ω is any subgroup of the symmetric group
Sym(Ω).

If ρ : G → Sym(Ω) is the permutation representation determined by the action of the
group G on some set Ω, then the image of ρ certainly is a permutation group on Ω.
Moreover,

G/ker ρ ∼= im ρ ⩽ Sym(Ω).

Consequently, if G acts faithfully on Ω, then ker ρ = 1, so

G ∼= im ρ ⩽ Sym(Ω).

This establishes the first part of the following observations about the above concepts:

Lemma 7.2 (i) If a group G acts faithfully on a set Ω, then G is isomorphic to a
permutation group on Ω.

(ii) If G is a permutation group on Ω, then G acts faithfully on Ω (in a natural way).

Accordingly, this result is saying that the two parts of Definition 7.1 are talking about
the same thing. The word “natural” in part (ii) of the lemma just means that we are talking
about the obvious action. Indeed:

Proof: (ii) Let G ⩽ Sym(Ω). Each element of G is a permutation of Ω, so we can define

Ω×G→ Ω

(ω, x) 7→ ωx

(applying the permutation x to the point ω). Since multiplication in G is composition of
maps, this is a group action (see Example 2.2(i) for the case G = Sn). Let ρ : G→ Sym(Ω)
be the associated permutation representation, say ρ : x 7→ ρx, where ρx is the permutation

ρx : ω 7→ ωx for all ω ∈ Ω.

73



Chapter 7. The Structure of Permutation Groups

Consequently, ρx is simply the permutation x in Sym(Ω) for each x ∈ G. Hence ρ is simply
the identity map from G to itself and certainly ker ρ = 1. □

In this chapter, we shall be concerned with the question of what we can say about
permutation groups. The simplistic first answer to that question is that we cannot say
very much at all: Cayley’s Theorem tells us that every group occurs as a subgroup of some
symmetric group. Consequently, the collection of all permutation groups is essentially the
same as the collection of all groups.

We can, however, make progress if we try to use information about the nature of the
action of a permutation group G upon the given set Ω then we can describe structural
information about G. We shall phrase much of our discussion about the nature of the
actions of a group G on a set Ω, but sometimes we shall assume the action is faithful in
order that we can say something about the structure of the group. In some sense, in this
chapter we shall investigate the way in which such a group G is embedded in the symmetric
group Sym(Ω) rather than just stopping at the point where Cayley’s Theorem tells us there
is an embedding.

Intransitive groups

The following small example illustrates the ideas within this section. Our goal is essentially
to understand how the orbits of a permutation group on Ω relate to how it is embedded
within the symmetric group Sym(Ω).

Example 7.3 Consider G = ⟨(1 2)(3 4)⟩ ⩽ S4 in its natural action on Ω = {1, 2, 3, 4}.
There are two orbits for G, namely Ω1 = {1, 2} and Ω2 = {3, 4}. Let ρ1 : G→ Sym(Ω1) and
ρ2 : G → Sym(Ω2) be the permutation representations associated to the induced actions
of G on the orbits Ω1 and Ω2. By definition,

(
(1 2)(3 4)

)
ρ1 is the permutation on Ω1

induced by the generator of G. This permutation moves 1 to 2 and 2 to 1, so(
(1 2)(3 4)

)
ρ1 = (1 2)

and similarly
(
(1 2)(3 4)

)
ρ2 = (3 4). We define G1 = Gρ1 and G2 = Gρ2, so by our

calculation above
G1 = ⟨(1 2)⟩ and G2 = ⟨(3 4)⟩.

Observe that
⟨G1, G2⟩ = ⟨(1 2), (3 4)⟩ ∼= G1 ×G2

and that G = ⟨(1 2)(3 4)⟩ ⩽ ⟨G1, G2⟩.

We shall observe that the behaviour of an arbitrary intransitive permutation group is
very similar to that of the group in Example 7.3.

Let G be a permutation group on Ω; that is, some subgroup of Sym(Ω). There is
therefore an associated action of G on Ω obtained by applying elements of G to the points
in Ω. We shall maintain the standard notation of Chapter 2 for group actions, so we
write ωx for the effect of applying x ∈ G to ω.

Under the action of G on Ω, we can express Ω as a disjoint union of orbits:

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωm.

Recall that G is transitive if there is just one orbit; that is, when m = 1. We shall start
with the following lemma, which appears as Question 2 on Problem Sheet II:

74



Chapter 7. The Structure of Permutation Groups

Lemma 7.4 Let G be a group that acts on a set Ω and let Γ be an orbit of G on Ω. Then
there is an induced action of G on Γ and this action is transitive.

Proof: (Omitted in lectures) Suppose that Γ = ωG is the orbit of the point ω under
the action of G. Define

Γ×G→ Γ

(γ, x) 7→ γx;

that is, we apply x to γ under the action of G on Ω. Note that if γ = ωg ∈ Γ, then
γx = ωgx ∈ Γ also. Hence we genuinely do have a map Γ × G → Γ. The fact that this is
an action of G on Γ is inherited immediately: (γx)y = γxy and γ1 = γ for all γ ∈ Γ and
x, y ∈ G, because these equations hold for all points in Ω.

If γ, γ′ ∈ Γ, say γ = ωg and γ′ = ωh, then γg−1h = ωgg−1h = ωh = γ′. Hence the action
of G on the orbit Γ is transitive. □

Consider one of the orbits Ωi. The lemma tells us that there is an induced transitive
action of G on Ωi. Let ρi : G→ Sym(Ωi) be the associated permutation representation and
Gi = Gρi be the image of G in the symmetric group Sym(Ωi). We have thus associated to
our permutation group G a number

G1, G2, . . . , Gm

of transitive permutation groups Gi ⩽ Sym(Ωi).
Furthermore, if h ∈ Sym(Ωi), we can view it as a permutation of Ω by assuming that

h fixes all points in Ω \ Ωi. Thus we extend the definition of h by setting ωh = ω for all
ω ∈ Ω \ Ωi. Consequently, we have built various permutation groups

Gi ⩽ Sym(Ωi) ⩽ Sym(Ω).

If h ∈ Sym(Ωi), then h is a product of cycles that move only points in Ωi. Since distinct
orbits are disjoint, if hi ∈ Sym(Ωi) and hj ∈ Sym(Ωj) with i ̸= j, then

hihj = hjhi (7.1)

since disjoint cycles commute.
We can now describe how intransitive permutations groups are embedded within the

symmetric group:

Theorem 7.5 Let G be a permutation group on Ω, let Ω1, Ω2, . . . , Ωm be the orbits of G
on Ω, and let Gi be the group of permutations induced by G on Ωi. Then

(i) Gi is a transitive permutation group on Ωi;

(ii) ⟨G1, G2, . . . , Gm⟩ ∼= G1 ×G2 × · · · ×Gm;

(iii) G ⩽ ⟨G1, G2, . . . , Gm⟩;

(iv) for all i, the restriction to G of the projection πi onto the ith direct factor is surjective
(that is, Gπi = Gi).

Recall that the projection πi : G1×G2×· · ·×Gm → Gi is given by (x1, x2, . . . , xm) 7→ xi.
A subgroupH of a direct productG1×G2×· · ·×Gm is called a subdirect product ifHπi = Gi

for i = 1, 2, . . . , m. Condition (iv) is therefore saying that G is not simply some arbitrary
subgroup of the direct product G1 × G2 × · · · × Gm, but is actually a subdirect product
and so can be viewed as rather large.

75



Chapter 7. The Structure of Permutation Groups

Proof: We have already shown that Gi is a transitive subgroup of Ωi. We turn to the
other parts of the statement:

(ii) Define θ : G1 ×G2 × · · · ×Gm → Sym(Ω) by

(h1, h2, . . . , hm) 7→ h1h2 . . . hm.

It follows from Equation (7.1) that θ is a homomorphism:(
(h1, h2, . . . , hm)(k1, k2, . . . , km)

)
θ = (h1k1, h2k2, . . . , hmkm)θ

= h1k1h2k2 . . . hmkm

= h1h2 . . . hmk1k2 . . . km

= (h1, h2, . . . , hm)θ · (k1, k2, . . . , km)θ

The image im θ = G1G2 . . . Gm is therefore a subgroup of Sym(Ω) and it must consequently
coincide with ⟨G1, G2, . . . , Gm⟩.

If (h1, h2, . . . , hm) ∈ G1×G2×· · ·×Gm, then h = h1h2 . . . hm has the same effect on a
point in Ωi as does hi (since all the other hj fix all points in Ωi). Hence if h1h2 . . . hm = 1
(the identity permutation) then h1 = h2 = · · · = hm = 1. This shows that ker θ = 1
and we conclude that θ is an isomorphism from the direct product G1 ×G2 × · · · ×Gm to
⟨G1, G2, . . . , Gm⟩ = G1G2 . . . Gm. Thus

im θ = ⟨G1, G2, . . . , Gm⟩ ∼= G1 ×G2 × · · · ×Gm.

(iii) If g ∈ G, let gi = gρi ∈ Gi be the permutation of Ωi induced by g. If ω ∈ Ωi, then

ωg1g2...gm = ωgi = ωg,

since g1, . . . , gi−1, gi+1, . . . , gm fix all points of Ωi. Hence

ωg1g2...gm = ωg for all ω ∈ Ω.

Therefore g = g1g2 . . . gm (since these permutations have the same effect on points in Ω).
Hence every element g ∈ G lies in im θ = ⟨G1, G2, . . . , Gm⟩; that is,

G ⩽ ⟨G1, G2, . . . , Gm⟩.

(iv) Fix i = 1, 2, . . . , m and let h ∈ Gi. Then h = gρi for some g ∈ G. Let us write
this g as g = g1g2 . . . gm as in part (iii) where gj = gρj for each j. In particular, gi = h.
This is the unique expression of g as a product of elements from each Gj as provided by
the direct product and the projection map πi maps g to gi; that is, gπi = gi = h. Hence
the restriction of πi to G is surjective, as claimed. This shows G is a subdirect product of
the subgroups G1, G2, . . . , Gn. □

In conclusion, if G is an intransitive permutation group, then it embeds in the direct
product of a number of transitive permutation groups of smaller degree. In some sense,
this reduces the study of arbitrary permutation groups to the study of transitive groups
and an understanding of direct products.
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Transitive groups

In view of what we have just achieved, namely showing how the study of an intransitive
permutation group can be reduced to studying a number of transitive groups, we shall work
with transitive permutation groups for the remainder of this chapter. We shall start with
a refinement of the Orbit-Stabilizer Theorem that characterizes the action of a transitive
group.

The following terminology is used in the refinement that we present. It is useful when
discussing group actions and permutation groups.

Definition 7.6 (i) Let G be a group that has actions on two sets Ω and Ω′. We say
that these actions are equivalent if there is a bijection ϕ : Ω → Ω′ such that

(ωx)ϕ = (ωϕ)x for all ω ∈ Ω and x ∈ G.

(ii) Let G be a permutation group on a set Ω and H be a permutation group on a set Ω′.
We say that G and H are permutation isomorphic if there is a bijection ϕ : Ω → Ω′

and an isomorphism θ : G→ H such that

(ωx)ϕ = (ωϕ)xθ for all ω ∈ Ω and x ∈ G.

We can interpret both parts of the definition as saying the actions are essentially the
same. The two concepts are closely linked with each other. Indeed, if the actions of G
on two sets Ω and Ω′ are equivalent, then the two permutations groups obtained via
the associated permutations representations turn out to be permutation isomorphic. (See
Problem Sheet VII for more details.)

Theorem 7.7 (Orbit-Stabilizer Theorem, Improved) Let G be a group that acts
transitively on a set Ω and let ω ∈ Ω. Let Ω′ be the set of cosets of the stabilizer Gω

and let G act on Ω′ by right multiplication. Then these actions of G are equivalent.

Proof: In our original proof of the Orbit-Stabilizer Theorem (Theorem 2.9) we showed
that

ϕ : Ω′ → Ω

Gωg 7→ ωg

is a well-defined bijection. In fact, it is an equivalence between the actions of G on Ω′ and Ω
as the following calculation shows: If g, x ∈ G, then

(Gωgx)ϕ = ωgx = (ωg)x =
(
(Gωg)ϕ

)x
.

Hence the actions of G on Ω′ and Ω are equivalent. □

This theorem then tells us that any transitive action of a group G is essentially the same
as its action on the cosets of some subgroup. Conversely, we also observed in Theorem 2.23
that the action of a group G on the cosets of a subgroup H is always transitive.

A special case of transitive action will be significant later in the chapter. We introduce
the relevant terminology here.

Definition 7.8 Let G be a group that acts on the set Ω. We say that this action is regular
(and that G acts regularly on Ω) if G is transitive on Ω and the stabilizer Gω is trivial for
all ω ∈ Ω.
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Recall that if G acts transitively on Ω then the stabilizers are all conjugate in G (see
Proposition 2.10). Hence to show that a transitive is regular, it suffices to show that one
stabilizer is trivial. Recall from Example 2.20 that the right regular action of a group is
an example of a transitive action that is regular (hence the name of that action). In fact,
the following shows that this is essentially the only regular action.

Lemma 7.9 Suppose that G acts regularly on the set Ω. Then the action of G on Ω is
equivalent to the right regular action of G on itself. In particular, if ω ∈ Ω, every element
of Ω is uniquely expressible as ωx for x ∈ G and |Ω| = |G|.

Proof: This follows immediately from Theorem 7.7. If ω ∈ Ω, the stabilizer Gω = 1 and
hence the theorem says the bijection ϕ : G→ Ω given by g 7→ ωg has the required property
to establish the actions are equivalent. In particular, |Ω| = |G|. □

Before discussing transitive groups in more detail, we shall establish the following fact
that will also be used later in the chapter.

Lemma 7.10 Let G be a group that acts transitively on a set Ω, H be a subgroup of G
and ω ∈ Ω. Then the induced action of H on Ω is transitive if and only if G = GωH.

Proof: Suppose H is transitive on Ω. Let g ∈ G. Then ωg ∈ Ω is, by assumption, in the
same orbit as ω under the action of H, so ωg = ωh for some h ∈ H. Then ωgh−1

= ω, so
gh−1 belongs to the stabilizer Gω. Hence g = (gh−1)h ∈ GωH. Therefore G = GωH.

Conversely, suppose that G = GωH. Since G acts transitively on Ω, we calculate

Ω = ωG = ωGωH = ωH

(since every element of Gω fixes ω). Hence H acts transitively on Ω. □

Blocks

We shall use the following concept to analyze the action of a transitive group.

Definition 7.11 Let G be a group that acts transitively on a set Ω. A block for G is a
non-empty set ∆ of Ω such that, for every x ∈ G, either ∆x = ∆ or ∆x ∩∆ = ∅.

Recall that G acts transitively on Ω, so there is only one orbit. What blocks enable
us to do is further break down the action since we obtain a partition of the set Ω that
interacts well with the action. We first establish the existence of the partition:

Lemma 7.12 Let G be a group that acts transitively on a set Ω. If ∆ is a block, then
Σ = {∆x | x ∈ G } is a partition of Ω.

Proof: Fix some δ ∈ ∆. If ω ∈ Ω, then as G acts transitively, there exists x ∈ G such
that ω = δx. Therefore ω ∈ ∆x. Hence Ω is the union of the sets in Ω.

Suppose ∆x ∩ ∆y ̸= ∅. Apply y−1 to deduce ∆xy−1 ∩ ∆ ̸= ∅. Since ∆ is a block,
this shows that ∆xy−1

= ∆. Applying y then shows that ∆x = ∆y. We conclude that the
members of Σ are either disjoint or equal and it follows that Ω is indeed the disjoint union
of the members of Σ. □

Definition 7.13 Let G be a group that acts transitively on Ω. If ∆ is a block for G, we
call the set Σ = {∆x | x ∈ G } a system of blocks.
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We have observed that every block gives rise to a system of blocks. In practice, it
is often easier to find the system of blocks Σ for a group G (that is, the partition of Ω
preserved by G), observe that G permutes the members of this system and hence deduce
that each member of Σ is a block.

We now present some trivial examples of blocks and other examples that illustrate how
they arise.

Example 7.14 (i) Let G be any group acting transitively on any set Ω. Observe that
Ω is a block since Ωx = Ω for all x ∈ G. If ω ∈ Ω, then ∆ = {ω} is a block since if
x fixes ω, then ∆x = ∆ and if ωx ̸= ω, then ∆x ∩∆ = ∅. The whole set Ω and the
singletons {ω} are called trivial blocks.

(ii) Let G = D8, the dihedral group of order 8, viewed as a subgroup of S4 via the
following (standard) labelling of the square:

1 2

34

Take ∆ = {1, 3}. If x ∈ D8, then x moves the points in ∆ to opposite vertices of the
square; that is, ∆x = {1, 3} or {2, 4}. Thus ∆ is a block for this action.

Observe that Γ = {1, 2} is not a block, because upon applying a rotation clockwise
through an angle of π/2 we calculate Γ(1 2 3 4) = {2, 3} which meets Γ in a single
point.

(iii) Let Ω1 and Ω2 be sets with |Ω1|, |Ω2| > 1. Let Ω = Ω1×Ω2 and take G = Sym(Ω1)×
Sym(Ω2). We define an action of G on Ω by

(α, β)(x,y) = (αx, βy)

for α ∈ Ω1, β ∈ Ω2, x ∈ Sym(Ω1), y ∈ Sym(Ω2). It is straightforward to verify
this is an action.)

[(Omitted in lectures) The verification is as follows:(
(α, β)(x1,y1)

)(x2,y2) = (αx1 , βy1)(x2,y2)

=
(
(αx1)x2 , (βy1)y2

)
= (αx1x2 , βy1y2)

= (α, β)(x1x2,y1y2)

= (α, β)(x1,y1)(x2,y2)

and
(α, β)(1,1) = (α1, β1) = (α, β). ]

This action is transitive since if α1, α2 ∈ Ω1 and β1, β2 ∈ Ω2, there exist x ∈ Sym(Ω1)
and y ∈ Sym(Ω2) with αx

1 = α2 and βy1 = β2 and then (α1, β1)
(x,y) = (α2, β2).

Fix α ∈ Ω1 and define

∆ = {α} × Ω2 = { (α, ω) | ω ∈ Ω2 }.
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If (x, y) ∈ G, then ∆(x,y) = {αx} × Ω2. Hence ∆(x,y) = ∆ when x fixes α and
∆(x,y) ∩∆ = ∅ when αx ̸= α. This shows that ∆ is a block for the direct product G
acting on the set Ω = Ω1 × Ω2. Our assumption that |Ω1|, |Ω2| > 1 ensures that
this ∆ is a non-trivial block.

Similarly sets of the form Γ = Ω1 × {β}, for β ∈ Ω2, are non-trivial blocks for this
action of G on Ω.

Note: This action of G = Sym(Ω1) × Sym(Ω2) on Ω = Ω1 × Ω2 is transitive. It
should not be confused with the intransitive action of G on Ω1∪Ω2 considered earlier,
see Theorem 7.5.

Lemma 7.15 Let G be a group that acts transitively on a set Ω. IfN is a normal subgroup
of G and ω ∈ Ω, then the orbit ∆ = ωN of ω under the action of N is a block for G.

Proof: If x ∈ G, then Nx = xN since N P G. Hence

∆x = ωNx = ωxN = (ωx)N ,

the orbit of ωx under the action of N . Since orbits of N are either disjoint or equal, we
conclude either ∆x ∩∆ = ∅ or ∆x = ∆. Hence ∆ is a block for G. □

Blocks arise in the classification and description of transitive groups in the following
definition.

Definition 7.16 Let G be a group that acts transitively on the set Ω. We say that G acts
imprimitively on Ω if there is some non-trivial block ∆ for G. If, on the other hand, the
only blocks for G are the trivial ones (as in Example 7.14(i)), then we say that G acts
primitively on Ω.

Lemma 7.17 Let G be a group that acts transitively on a set Ω.

(i) If H is a subgroup of G that contains the stabilizer Gω of some point ω ∈ Ω, then
ωH is a block for G.

(ii) If ∆ is a block for G that contains some point ω, then ∆ = ωH for some subgroup H
of G with Gω ⩽ H.

Proof: (i) Suppose Gω ⩽ H ⩽ G. Take ∆ = ωH = {ωh | h ∈ H }. Suppose ∆x ∩∆ ̸= ∅
for some x ∈ G. Then there exists δ ∈ ∆, say δ = ωh where h ∈ H, such that δx ∈ ∆.
Then ωhx = ωk for some k ∈ H, so hxk−1 ∈ Gω ⩽ H. Since h, k ∈ H, we deduce x ∈ H.
Therefore

∆x = {ωhx | h ∈ H } = ωH = ∆

because Hx = H. It follows that ∆ is a block for G.
(ii) Let ∆ be a block for G that contains ω. Define H = {x ∈ G | ωx ∈ ∆ }. Then

1 ∈ H because ω1 = ω ∈ ∆. Let x, y ∈ H. Then ωx ∈ ∆ ∩∆x and we deduce ∆x = ∆.
Similarly ∆y = ∆. Hence ∆xy = (∆x)y = ∆y = ∆ and ∆x−1

= ∆xx−1
= ∆. From this,

we deduce ωxy, ωx−1 ∈ ∆ and hence xy, x−1 ∈ H. This shows that H is a subgroup of G.
Furthermore H contains the stabilizer Gω as ωx = ω ∈ ∆ for all x ∈ Gω.

Now by definition ωx ∈ ∆ for all x ∈ H. If δ ∈ ∆, then δ = ωx for some x ∈ G (as
G acts transitively) and this x belongs to H by definition. We conclude that ∆ = ωH for
the subgroup H just constructed. □
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This lemma enables us to establish the following theorem.

Theorem 7.18 Let G be a group that acts transitively on Ω and let ω ∈ Ω. Then there
is a one-one inclusion-preserving correspondence between the set of subgroups of G that
contain the stabilizer Gω and the set of blocks for G that contain ω. This correspondence
is given by

H 7→ ωH for H ⩾ Gω.

Proof: By Lemma 7.17(i), the map ϕ : H 7→ ωH is a function from the set of subgroups
of G containing Gω to the set of blocks containing ω. Part (ii) of the lemma tells us that
ϕ is surjective.

Suppose that H and K are subgroups of G containing Gω. If H ⩽ K, then by definition
ωH ⊆ ωK . Conversely suppose that Hϕ ⊆ Kϕ; that is, ωH ⊆ ωK . If h ∈ H, then
ωh ∈ ωH = ωK , so ωh = ωk for some k ∈ K. Then ωhk−1

= ω, so hk−1 ∈ Gω ⩽ K. We
deduce h = (hk−1)k ∈ K. This shows H ⩽ K. Hence

H ⩽ K if and only if ωH ⊆ ωK ;

that is, ϕ preserves inclusions.
In particular, if Hϕ = Kϕ the above (applied to the inclusions Hϕ ⊆ Kϕ and Kϕ ⊆

Hϕ) shows that H = K. We conclude that ϕ is injective, which completes the proof of the
theorem. □

We are now able to characterize primitivity in terms of the stabilizers of points. It will
depend upon the following term (which also appeared earlier on Problem Sheet VI in the
context of nilpotent groups):

Definition 7.19 A maximal subgroup of a group G is a proper subgroup M < G such
that there is no subgroup H with M < H < G.

Corollary 7.20 Let G be a group that acts transitively on a set Ω with |Ω| > 1. Then
G acts primitively on Ω if and only if every stabilizer Gω (for ω ∈ Ω) is maximal in G.

To place this corollary in context, recall that Theorem 7.7 tells us that a transitive
action is equivalent to the action on the cosets of a subgroup (namely the stabilizer Gω of
any point ω). We are now observing furthermore that it is primitive when this subgroup
is maximal.

Proof: Since G acts transitively, |G : Gω| = |Ω| > 1, so Gω is a proper subgroup of G.
Suppose first that G is imprimitive in its action on Ω. Then there is some non-trivial

block ∆ forG. Let ω ∈ ∆. Then {ω} ⊂ ∆ ⊂ Ω are blocks containing ω, so by Theorem 7.18,
∆ corresponds to a subgroup H with Gω < H < G. In particular, the stabilizer Gω is
not maximal in G. (Since the stabilizers are conjugate — see Proposition 2.10 — they are
consequently all not maximal.)

Conversely, suppose some stabilizer Gω is not maximal in G. Then there is a sub-
group H of G with Gω < H < G. Applying Theorem 7.18, we conclude ∆ = ωH is a block
for G with {ω} ⊂ ωH ⊂ Ω. Hence ∆ is a non-trivial block and so G acts imprimitively
on Ω.

By taking the contrapositive, we have established the characterization of primitive
groups. □
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The reason for the presence of the assumption that Ω contains more than one point is
to avoid a trivial case. If Ω = {ω}, then all elements of the group G fix ω (as there is only
one point!), so the stabilizers Gω all equal G. The action is primitive here (as there are
no non-empty subsets of Ω except for a singleton), but the stabilizer Gω is not maximal
because it is not a proper subgroup.

Imprimitive groups

Our next goal is to describe the structure of transitive groups that are imprimitive. This
should be viewed as analogous to our descriptions of intransitive groups in Theorem 7.5.
This description will be expressed in terms of wreath products, as introduced in Chapter 4,
and so we start by looking at these groups.

Let H be a permutation group on a set ∆ and K be a permutation group on a set
Σ = {1, 2, . . . , n}; that is, H ⩽ Sym(∆) and K ⩽ Sym(Σ). Let

Ω = ∆× Σ = { (δ, i) | δ ∈ ∆, 1 ⩽ i ⩽ n }.

Then we can express Ω as the union

Ω =

n⋃
i=1

(
∆× {i}

)
of n disjoint sets that are in one-one correspondence with ∆. Let W = H wrΣK be the
wreath product of H by K with respect to the action of K on Σ. Thus W is the semidirect
product

W = B ⋊K

where the base group B = { (h1, h2, . . . , hn) | hi ∈ H } is a direct product of n copies of H
and where the action of K on B is given by permuting the entries:

(h1, h2, . . . , hn)
k = (h1k−1 , h2k−1 , . . . , hnk−1)

for (h1, h2, . . . , hn) ∈ B and k ∈ K.
We shall now construct an action of W on Ω. If g = (h1, h2, . . . , hn)k ∈ W where

h1, h2, . . . , hn ∈ H and k ∈ K, define

(δ, i)g = (δhi , ik); (7.2)

that is, apply the ith element hi to δ ∈ ∆ and apply the permutation k to i ∈ Σ. (We
are mixing notation by writing the action of H as exponentiation, but that of K as jux-
taposition. It will keep later notation cleaner to do so!) If g = (h1, h2, . . . , hn)k and
g′ = (h′1, h

′
2, . . . , h

′
n)k

′ are elements of W , then

gg′ = (h1, h2, . . . , hn)k(h
′
1, h

′
2, . . . , h

′
n)k

′

= (h1, h2, . . . , hn)(h
′
1, h

′
2, . . . , h

′
n)

k−1
kk′

= (h1, h2, . . . , hn)(h
′
1k, h

′
2k, . . . , h

′
nk)kk

′

= (h1h
′
1k, h2h

′
2k, . . . , hnh

′
nk)kk

′.

Then (
(δ, i)g

)g′
= (δhi , ik)g

′

= (δhih′
ik
, ikk′)

= (δ, i)gg
′
.
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...

h1 permutes ∆× {1}

h2 permutes ∆× {2}

hn permutes ∆× {n}

∆× {1}

∆× {2}

...

∆× {n}

k ∈ K permutes
the slices

Figure 7.1: The imprimitive action of the wreath product W on Ω = ∆× Σ

The identity element of W is (1, 1, . . . , 1)1 and this fixes all elements of Ω. Hence W acts
on the set Ω.

If g = (h1, h2, . . . , hn)k is a non-identity element of W , then either there is some i such
that hi ̸= 1, so hi moves some point δ ∈ ∆, or k ̸= 1, so k moves some point i ∈ Σ. Hence
there exists (δ, i) ∈ Ω such that (δ, i)g = (δhi , ik) ̸= (δ, i). This show that the action of W
on Ω is faithful.

If H acts transitively on ∆ and K acts transitively on Σ, then this action of W on Ω
is also transitive. If (δ, i), (δ′, j) ∈ Ω, take any hi ∈ H with δhi = δ′ and k ∈ K with
ik = j. Then g = (. . . , hi, . . . )k moves (δ, i) to (δ′, j), no matter what we choose for the
other elements of H appearing within g. On the other hand, if g = bk with b ∈ B and
k ∈ K, then the formula (7.2) for the action tells us that(

∆× {i}
)g

= ∆× {ik}.

It follows that ∆× {i} is a block for W . It is a non-trivial block provided |∆|, |Σ| > 1.
We record our observations:

Lemma 7.21 Let H and K be transitive permutation groups on the sets ∆ and Σ =
{1, 2, . . . , n}, respectively, where |∆|, |Σ| > 1. Then the wreath product W = H wrΣK
acts transitively and faithfully, but imprimitively on the set Ω = ∆× Σ by the formula

(δ, i)g = (δhi , ik)

for δ ∈ ∆, i ∈ Σ and g = (h1, h2, . . . , hn)k ∈W . □

We call this the imprimitive action of the wreath product W on ∆×Σ. To understand
this action, one can think of the index from Σ as providing a way to slice the set Ω
into copies of ∆. The entries of each element b = (h1, h2, . . . , hn) of the base group act
independently on each slice: b permutes the entries of ∆× {i} in the same way as hi acts
on ∆. An element g = (h1, h2, . . . , hn)k of the wreath product W first shuffles the points
in each slice ∆ × {i} according to the element hi ∈ H and then k permutes the slices.
See Figure 7.1 for an illustration of this action of the wreath product. Since the action is
faithful, Lemma 7.2 tells us that we can identify W with a subgroup of Sym(∆× Σ).

We complete our discussion of imprimitive permutation groups by observing that every
imprimitive permutation group can be viewed as being contained within a wreath product.
Thus wreath products are maximal amongst the imprimitive permutation groups.
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Theorem 7.22 Let G be a permutation group that acts transitively on a finite set Ω and
let ∆ be a block for G. Let Σ = {1, 2, . . . , n} where n is the number of blocks in the system
obtained from ∆. Then G is contained in a subgroup of Sym(Ω) that is permutationally
isomorphic to a wreath product Sym(∆)wrΣ Sym(Σ) in its imprimitive action on ∆× Σ.

Proof: Let Σ′ = {∆x | x ∈ G } be the system of blocks determined by ∆ and write
Σ′ = {∆1,∆2, . . . ,∆n}. (We have used the finiteness of Ω at this point to ensure that
Σ′ contains only finitely many blocks.) If ∆i = ∆y ∈ Σ′, then ∆x

i = ∆yx ∈ Σ′ for all
x ∈ G. Moreover, if γ ∈ ∆i and δ ∈ ∆j , then by transitivity there exists x ∈ G such that
γx = δ. Therefore, as these are blocks, ∆x

i = ∆j . We conclude that G acts transitively
on Σ′. Hence there is an associated permutation representation ρ : G→ Sn satisfying

∆x
i = ∆i(xρ)

for each i ∈ Σ = {1, 2, . . . , n} and x ∈ G.
Take Ω′ = ∆ × Σ. There is a bijection ϕ : Ω → Ω′ that maps each ∆i bijectively

to ∆× {i}. This bijection ϕ determines an isomorphism θ : Sym(Ω) → Sym(Ω′) by

θ : σ 7→ ϕ−1σϕ.

LetW = Sym(∆)wrΣ Sym(Σ) be the wreath product and view it is as subgroup of Sym(Ω′)
via the imprimitive action as descibed in Lemma 7.21.

Claim: Gθ ⩽W

Indeed, if g ∈ G and i ∈ Σ, then

(∆× {i})gθ = (∆× {i})ϕ−1gϕ = ∆gϕ
i = ∆ϕ

i(gρ) = ∆× {i(gρ)}.

Note that, according to the imprimitive action of the wreath product, gρ ∈ Sym(Σ) per-
mutes the sets ∆× {i} by moving the second factor. Hence

(∆× {i})(gθ)(gρ)−1
= ∆× {i}

for each i ∈ Σ. Hence (gθ)(gρ)−1 has the effect of applying a permutation of each set ∆×
{i}; that is, it is an element of the base group B of the wreath product W (as illustrated
in Figure 7.1. This shows that gθ = b(gρ) ∈W for some b ∈ B.

Applying the inverse of the isomorphism θ we conclude G ⩽ Wθ−1; that is, G is
contained in a subgroup isomorphic to the wreath product W . Furthermore, this is a
permutation isomorphism since if ω ∈ Ω and x ∈Wθ−1, then

(ωϕ)xθ = (ωϕ)ϕ
−1xϕ = (ωx)ϕ.

(Essentially the choice of isomorphism θ : Sym(Ω) → Sym(Ω′) was designed to induce a
permutation isomorphism.) □

Primitive groups

We have now shown that an intransitive action of a permutation group essentially cor-
responds to a direct product decomposition and that a transitive but imprimitive action
essentially corresponds to a decomposition as a wreath product. We shall finish the chap-
ter, by examining the structure of a primitive permutation group. The ideas presented
here are motivated by an important theorem called the O’Nan–Scott Theorem, but we will
not be able to go as far as proving that quite difficult theorem. Nevertheless, we shall
indicate some of the ideas that arise within it.
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Example 7.23 Let n ⩾ 3. Show that the alternating group An in its natural action on
Ω = {1, 2, . . . , n} is primitive.

Solution: Let ∆ be a block for An in its action on Ω and assume that |∆| ⩾ 2. Let
α, β ∈ ∆ be distinct points. Suppose that γ ∈ Ω \ {α, β}. Take x = (α β γ) ∈ An. Then
β = αx ∈ ∆x and so ∆x = ∆ (since ∆ is a block). Hence γ = βx ∈ ∆ also. We conclude
that ∆ = Ω.

Hence there are no non-trivial blocks for An and hence this group acts primitively
on Ω. □

Our second example will be relevant to the discussion of the structure of primitive
groups at the end of the chapter. First recall that if V is a vector space of dimension n
over a field F , then it is an additive group and the general linear group GLn(F ) has a
natural action upon it. Accordingly, we can make the following definition:

Definition 7.24 Let V be a vector space of dimension n over some field F . The affine
general linear group AGLn(F ) is the semidirect product V ⋊ GLn(F ) determined by the
natural action of GLn(F ) on the vector space V .

Each linear map h ∈ GLn(F ) is, in particular, an automorphism of the additive
group (V,+). Hence we obtain an associated homomorphism GLn(F ) → Aut(V,+) and so
can form the above semidirect product. We shall write elements of AGLn(F ) as ordered
pairs (x, h) where x ∈ V and h ∈ GLn(F ).

Example 7.25 (i) Show that AGLn(F ) acts transitively on the vector space V by the
formula

v(x,h) = (v + x)h

where v, x ∈ V and vh denotes the image of v under application of the linear map h.

(ii) Show that this action is primitive provided n ⩾ 1.

Solution: Throughout this solution, we shall write G = AGLn(F ).
(i) Since AGLn(F ) is a semidirect product, the multiplication is given by

(x, h)(y, k) = (x+ yh−1, hk).

Hence, using the fact that h and k induce linear maps on V ,

v(x,h)(y,k) = v(x+yh−1,hk)

= (v + x+ yh−1)hk

= vhk + xhk + yk

and

(v(x,h))(y,k) =
(
(v + x)h+ y

)
k

= vhk + xhk + yk

so that
(v(x,h))(y,k) = v(x,h)(y,k)

for all v ∈ V and (x, h), (y, k) ∈ G. The identity element of G is (0, 1) and

v(0,1) = (v + 0)1 = v for all v ∈ V .

85



Chapter 7. The Structure of Permutation Groups

(Here 0 is the zero vector in V and 1 is the identity map.) Hence we do indeed have an
action of G on V . Finally if v, w ∈ V , then g = (w − v, 1) ∈ G and

v(w−v,1) = v + (w − v) = w.

Hence G = AGLn(F ) acts transitively on V .
(ii) Assume that dimV ⩾ 1, so V ̸= 0. We shall show that the stabilizer G0 of the

zero vector is maximal in G = AGLn(F ). First observe that 0(x,h) = xh and so, since h is
an invertible linear map, it follows that 0(x,h) = 0 if and only if x = 0. Hence

G0 = { (0, h) | h ∈ GLn(F ) };

that is, this stabilizer equals GLn(F ) under the standard identification of the complement
with the corresponding subgroup of the semidirect product. Since V ̸= 0, G0 is a proper
subgroup of G.

We now show that this stabilizer is a maximal subgroup of G. Suppose that K is a
subgroup of G with G0 < K ⩽ G. Hence there exists some (x, h) ∈ K with x ̸= 0. Since
GLn(F ) = G0 < K, the subgroup K contains the element

(x, h)(0, h−1) = (x+ 0h−1, hh−1) = (x, 1).

If y is a non-zero vector in V , there exists some invertible linear map k ∈ GLn(F ) that
moves x to y. Hence K also contains

(0, k−1)(x, 1) = (xk, k−1) = (y, k−1)

and now if h′ is any element of GLn(F ), K also contains

(y, k−1)(0, kh′) = (y, h′).

Since y is an arbitrary non-zero vector and h′ ∈ GLn(F ) is arbitrary, we conclude K =
AGLn(F ). (Note we already know that K contains all pairs with y = 0 since G0 < K.)

This shows that the stabilizer G0 is a maximal subgroup of G. Corollary 7.20 tells us
that G acts primitively on the vector space V . □

We now move into the final phase of the chapter. We shall develop some theory con-
cerning primitive actions and hence be able to say something about the structure of per-
mutation groups that are primitive. We shall make use of the centralizer of a subgroup,
which is defined as follows:

Definition 7.26 Let G be a group and H be a subgroup of G. The centralizer of H in G
is

CG(H) = {x ∈ G | xh = hx for all h ∈ H },

the set of all elements that commute with every element of H.

Note that CG(H) =
⋂

h∈H CG(h) expresses this centralizer as an intersection of cen-
tralizers of elements. We already know the latter are subgroups of G and hence CG(H) is
also a subgroup. It is quite easy (see Problem Sheet VII) to verify that if N is a normal
subgroup of G, then CG(N) is also a normal subgroup of G.

Lemma 7.27 Let G be a permutation group on Ω and H be a subgroup of G that acts
transitively on Ω. If C = CG(H) is the centralizer of H in G, then Cω = 1 for all ω ∈ Ω.
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Proof: Fix ω ∈ Ω. Suppose that x ∈ Cω. Let α ∈ Ω be arbitrary. Since H acts
transitively, there exists some h ∈ H such that α = ωh. Note that xh = hx (because
x ∈ CG(H)) and so

αx = ωhx = ωxh = ωh = α

using the fact that x fixes ω. Hence x fixes all points of Ω and therefore x = 1 (since C is
faithful on Ω). This shows Cω = 1 for all ω ∈ Ω. □

Lemma 7.28 Let G be a finite group and let M and N be distinct minimal normal
subgroups of G. Then [M,N ] = 1.

Proof: Note that M ∩ N is a normal subgroup of G contained in both M and N . If it
were non-trivial, then M = M ∩N = N by minimality of the two subgroups, contrary to
the assumption that M ̸= N . Hence M ∩N = 1. If x ∈M and y ∈ N , then

[x, y] = x−1y−1xy ∈M ∩N

since y−1xy ∈ M and x−1y−1x ∈ N . Hence [x, y] = 1 for all x ∈ M and y ∈ N ; that is,
[M,N ] = 1. □

We can now give the main first step in the description of the structure of a finite
primitive permutation group. It is expressed in terms of minimal normal subgroups. Recall
from Theorem 3.19 that a minimal normal subgroup of a finite group is a direct product
of isomorphic simple groups. It is therefore either an elementary abelian p-group for some
prime p (that is, a direct product of cyclic groups of order p) or a direct product of
isomorphic non-abelian finite simple groups. In the case of primitive permutation groups,
there is actually considerable constraint in the possibility for minimal normal subgroups.

Theorem 7.29 Let G be a non-trivial finite primitive permutation group on a set Ω.
Then one of the following holds:

(i) G has a unique minimal normal subgroup N which is abelian, N acts regularly on Ω
and CG(N) = N ;

(ii) G has precisely two minimal normal subgroups M and N , these are both non-abelian,
act regularly on Ω with CG(M) = N and CG(N) =M ;

(iii) G has a unique minimal normal subgroup N that is non-abelian and CG(N) = 1.

Proof: We first make an observation about the action of a minimal normal subgroup N
of G. The orbits of N on Ω are blocks for G by Lemma 7.15. Since G is primitive, either
there is one orbit or they are all singletons. However, N ̸= 1 and G acts faithfully, so the
latter is not possible. Hence N acts transitively on Ω.

Now suppose that N is an abelian group. Let C = CG(N), so that N ⩽ C. Certainly
then C also acts transitively on Ω. Apply Lemma 7.27 to deduce that Cω = 1. It follows
that Nω = 1. Hence N and C both act regularly on Ω. Therefore |N | = |C| = |Ω| by
Lemma 7.9. We deduce that C = CG(N) = N . Now if M is any other minimal normal
subgroup of G, then M commutes with N by Lemma 7.28. Hence M ⩽ C = N , which
forces M = N , by minimality. This establishes that (i) holds when N is abelian.

For the remainder of the proof, we assume that the minimal normal subgroups of G are
non-abelian. Suppose that M and N are two distinct minimal normal subgroups of G. We
know these both act transitively on Ω. Let C = CG(N). Then M ⩽ C by Lemma 7.28 and
so C acts transitively on Ω. Apply Lemma 7.27 to deduce that Cω = 1. Hence Mω = 1
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and we deduce that both M and C act regularly on Ω. Therefore |M | = |C| = |Ω| by
Lemma 7.9 and hence M = C = CG(N). We can interchange the roles of M and N to
conclude N is also regular on Ω and N = CG(M). Also there cannot be a further minimal
normal subgroup R for then the same argument shows R = CG(N) =M . This establishes
that (ii) holds when G has more than one minimal normal subgroup.

Finally suppose that G has a unique minimal normal subgroup N and this is non-
abelian. Let C = CG(N) P G. Since N is a direct product of non-abelian simple groups,
its centre is trivial, so N ∩ C = 1. If it were the case that C ̸= 1, then there would exist
some minimal normal subgroup M contained in C, but this could not equal N as N ⩽̸ C.
Hence C = CG(N) = 1 in this final case and we have established that (iii) holds. □

To prove the theorem that classifies the finite primitive permutation groups, one ana-
lyzes the cases that arise in the above theorem. In Case (iii), the unique minimal normal
subgroup N of the primitive group G may or may not be regular in its action of Ω. Ac-
cordingly the final classification is split into whether or not the minimal normal subgroup
is regular. We shall not prove the O’Nan–Scott Theorem in this lecture course since it
would take too long, but we will summarize the theorem by giving the names of the classes
of primitive permutation groups that arise.

Theorem 7.30 (O’Nan–Scott Theorem) Suppose that G is a non-trivial finite primi-
tive permutation group on a set Ω and let N be a minimal normal subgroup of G. Then

(i) either N is regular on Ω and G is of one of the following types:

• affine type,

• regular non-abelian type;

(ii) or N is not regular on Ω and G is of one of the following types:

• diagonal type,

• product type,

• an almost simple group.

We shall not describe all these “types” in detail here. Many have structures that are
related to wreath products but more complicated. We shall define the last term:

Definition 7.31 A finite group G is called almost simple if it has a unique minimal normal
subgroup N such that N is a non-abelian simple group.

When n ⩾ 5, the example of the symmetric group Sn acting in the natural way on
the set Ω = {1, 2, . . . , n} is an example of a primitive group that is almost simple (with
N = An). If G is almost simple with minimal normal subgroup N then, upon identifying
N with its group of inner automorphisms, we can embed G in the automorphism group
N ⩽ G ⩽ AutN (see Problem Sheet VII). Studying these groups essentially reduces
to having a detailed understanding of the Classification of Finite Simple Groups and, in
particular, a good description of the maximal subgroups of almost simple groups. This has
been a topic of considerable research over many years, particularly since the completion of
the Classification of Finite Simple Groups.

What we shall do to finish the course is to describe the affine type groups. We return
to Case (i) of Theorem 7.29. Let G be a finite primitive permutation group on Ω such
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that G has a unique minimal normal subgroup N that is abelian, that acts regularly on Ω
and that CG(N) = N . Fix ω ∈ Ω and let H = Gω. Then G = HN by Lemma 7.10 and
H ∩ N = Nω = 1. Hence G has the structure of a semidirect product G = N ⋊ϕ H for
some ϕ : H → AutN .

Since N is an abelian minimal normal subgroup of G, it is an elementary abelian
p-group for some prime p by Theorem 3.19. We shall write the group operation in N
additively so that

N ∼= V = Fp ⊕ Fp ⊕ · · · ⊕ . . .Fp︸ ︷︷ ︸
d times

.

This V has the structure of a d-dimensional vector space over the field Fp of p elements. To
simplify notation, we shall identify N and V via this isomorphism. Homomorphisms of N
are therefore linear maps and AutN ∼= GLd(Fp). Hence we can assume ϕ : H → GLd(Fp).
Since the map ϕ is induced by conjugation of elements of N by elements of H, h ∈ kerϕ
if and only if h commutes with all elements of N ; that is,

kerϕ = CH(N) = H ∩ CG(N) = H ∩N = 1.

Hence ϕ is injective and so, again to simplify notation, we shall identify H with its image
in GLd(Fp). In conclusion, we have shown G = N ⋊ϕ H where N has the structure of a
vector space of dimension d over Fp and H is a subgroup of GLd(Fp).

Now let us examine the action of G on Ω. We shall write the elements of G as ordered
pairs (x, h) where x ∈ N and h ∈ H. Lemma 7.9 tells us that every element of Ω is
uniquely expressible in the form ω(v,1) for v ∈ N . Since every element of H fixes ω, we see
the action is given by

(ω(v,1))(x,h) = ω(0,h−1)(v,1)(x,h) = ω(0,h−1)(v+x,h) = ω((v+x)h,1),

where we write vh for the image of the vector v under the linear map h (which is how
elements of H act by conjugation on N). We conclude that there is a bijection ψ : N → Ω
given by vψ = ω(v,1) which has the property that

(vψ)(x,h) = (v(x,h))ψ

where the action of G = N ⋊H on N = V is given by

v(x,h) = (v + x)h.

The latter is the formula for the action of the affine general linear group AGLd(Fp) con-
sidered in Example 7.25. Here G = N ⋊ H has been identified with a subgroup of
AGLd(Fp) = V ⋊ GLd(Fp) via our identification of N with V and H with a subgroup
of GLd(Fp). It follows that we have a permutation isomorphism between the action of this
subgroup of AGLd(Fp) and the action of G on Ω.

We have now described the affine type primitive groups arising in the O’Nan–Scott
Theorem:

Theorem 7.32 (Affine Type Primitive Groups) Let G be a finite primitive permu-
tation group on a set Ω and suppose that G has an abelian minimal normal subgroup N .
Let |N | = pd where p is a prime number. Then there is a subgroup H of GLd(Fp) such
that G is permutationally isomorphic to the subgroup V ⋊H of the affine general linear
group AGLd(Fp) in its natural action on the vector space V of dimension d over Fp. □

There is one final thing to note about this theorem. Not all choices of H give rise to
primitive actions, but if one assumes the additional condition that H acts irreducibly (that
is, there is no non-zero proper subspace W of V that is invariant under the action of H)
then this completely characterizes the finite primitive groups of affine type.
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Versions

Significant updates to the notes will be listed below. Updates that are merely correcting typographic errors
and similar will be indicated by appending a letter to the version number on the front page and will not
be listed below.

Version 0.1: New version of lecture notes begun 22nd Aug 2022 in view of change of module title and
syllabus.

Version 0.2: Preliminary release version comprising Chapters 1–4.

Version 0.3: Inserted a small example of a stabilizer into Chapter 2. Drafted Chapters 5 & 6. Fixed
some typos in earlier chapters.

Version 1.0: First full version of all chapters. Small revisions to the start of Chapter 4.
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