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Problem Sheet I: Rings, fields, polynomials and irreducibility

1. Write out the addition and multiplication tables for the field F7 of seven elements.

2. Let F be a field.

(a) If {Ki | i ∈ I } is a collection of subfields of F , show that
⋂
i∈I Ki is a subfield of F .

(b) Show that the prime subfield of F is the intersection of all the subfields of F .

3. Show that every finite integral domain with 1 6= 0 is a field.

4. Let R be an integral domain containing a subring F that happens to be a field.

(a) Show that R has the structure of a vector space over F .

(b) Show that if R has finite dimension over F , then R is a field.

(c) Is the result of (b) still valid if we permit R to have infinite dimension over the field F?

5. Let p be a prime number and consider the finite field Fp of p elements.

(a) Show that ap−1 = 1 for all non-zero elements a in Fp.
(b) Show that in the polynomial ring Fp[X],

Xp −X = X(X − 1)(X − 2) . . . (X − (p− 1)).

6. Let I = (X4 + 1) be the ideal of the polynomial ring F2[X] generated by the polyno-
mial X4 + 1. Let R = F2[X]/I be the quotient ring.

(a) Show that every element of R can be expressed uniquely in the form

I + (aX3 + bX2 + cX + d)

where a, b, c, d ∈ F2.

(b) Show that |R| = 16.

(c) Show that d 7→ I + d determines an isomorphism between F2 and a subring of R.

(d) Show that R can be endowed with the structure of a vector space over the field F2

and determine the dimension of this vector space.

7. Show that the following polynomials are irreducible over Q:

(a) Xn − p, where n is a positive integer and p is a prime;

(b) X6 + 168X2 − 147X + 63;

(c) X3 − 3X − 1;

(d) X3 + 2X2 − 3X + 5.
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8. Determine whether or not the following polynomials are irreducible over the given field:

(a) X4 + 7 over F17;

(b) X3 − 5 over F11.

9. Determine all the irreducible polynomials of degree at most four over the field F2 of two
elements.
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MT5836 Galois Theory

Problem Sheet II: Field extensionions: Algebraic elements, minimum
polynomials, simple extensions

1. Let K be an extension of the field F such that the degree |K : F | is a prime number.
Show that there are no intermediate fields between F and K; that is, no fields L satisfying
F ⊂ L ⊂ K.

2. For each choice of values of a, b ∈ Q, determine the minimum polynomial of a + b
√

2
over Q.

3. (a) Show that C is a simple extension of R.

(b) What are the irreducible polynomials over C?

(c) Show that if α is algebraic over C, then C(α) = C.

4. Let α be algebraic over the base field F . Show that every element of the simple exten-
sion F (α) is algebraic over F .

5. Show that the polynomial f(X) = X4 − 16X2 + 4 is irreducible over Q.

Let α be a root of f(X) in some field extension of Q. Determine the minimum polynomials
of α2 and of α3 − 14α over Q.

6. Determine the following degrees of field extensions:

(a) |Q( 5
√

3) : Q|
(b) |Q(e2πi/5) : Q|
(c) |Q(

√
2, i) : Q|

(d) |Q(
√

2i) : Q|
(e) |Q(

√
2,
√

5) : Q|
(f) |Q(

√
6, i) : Q(i)|

7. Let α ∈ C be a root of the polynomial X2 + 2X + 5. Express the element

α3 + α− 2

α2 − 3

of Q(α) as a linear combination of the basis {1, α}.

8. Show that Q(
√

2,
√

5) = Q(
√

2 +
√

5).

Determine the minimum polynomial of
√

2 +
√

5 over the following subfields:

(i) Q; (ii) Q(
√

2); (iii) Q(
√

5).
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9. Let α and β be algebraic elements over the base field F . Suppose that the minimum
polynomial of α over F has degree m, the minimum polynomial of β over F has degree n,
and that m and n are coprime. Show that |F (α, β) : F | = mn.

10. Let α be transcendental over the field F . Show that there is an isomorphism ψ from the
field F (X) of rational functions in the indeterminateX over F to the simple extension F (α)
satisfying Xψ = α and bψ = b for all b ∈ F .

11. (a) Show that the field A of algebraic numbers over Q is countable.

(b) Show that C is an infinite degree extension of A.

(c) Show that C contains elements that are transcendental over Q.
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Problem Sheet III: Splitting Fields and Normal Extensions

1. For each of the following polynomials f(X) and given base field F , determine the splitting
field K of f(X) over F and calculate the degree |K : F | of the extension:

(a) X2 + 1 over Q;

(b) X2 + 1 over R;

(c) X2 − 4 over Q;

(d) X4 + 4 over Q;

(e) X4 − 1 over Q;

(f) X4 + 1 over Q;

(g) X6 − 1 over Q;

(h) X6 + 1 over Q;

(i) X6 − 27 over Q.

2. For each of the following polynomials f(X) and given base field F , determine the degree
of the splitting field of f(X) over F :

(a) X3 − 2 over F5;

(b) X3 − 3 over F13.

[Hint: If f(X) is irreducible over the base field F , consider adjoining some root α to F
and examine the behaviour of f(X) over the resulting field F (α).]

3. Let p be a prime and f(X) = Xp − 2. Find the splitting field of f(X) over Q and show
that the degree of this extension is p(p− 1).

4. Let f(X) be a polynomial over a field F and let K be the splitting field of f(X) over F . If
L is an intermediate field (that is, F ⊆ L ⊆ K), show that K is the splitting field of f(X)
over L.

5. Let φ be an automorphism of a field F . Show that the set of fixed-points of φ,

FixF (φ) = { a ∈ F | aφ = a },

is a subfield of F . Hence deduce that φ is a P -isomorphism where P is the prime subfield
of F .

6. (a) Determine all automorphisms of Q.

(b) Determine all automorphisms of Q(
√

2).

(c) Determine all Q-automorphisms of Q(
√

2,
√

3).

(d) Show that the only automorphism of R is the identity.
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7. Suppose that f(X) is an arbitrary polynomial over a field F , K is the splitting field
for f(X) over F , and α and β are roots of f(X) in K. Does there necessarily exist an
automorphism of K that maps α to β?

8. Which of the following fields are normal extensions of Q? [As always, justify your answers.]

(a) Q(
√

2);

(b) Q( 4
√

2);

(c) Q(
√

2,
√

3);

(d) Q(θ), where θ4 − 10θ2 + 1 = 0.

9. Let F ⊆ K ⊆ L be field extensions where L is a finite extension of F . Prove, or give a
counterexample, to each of the following assertions:

(a) If L is a normal extension of K, then L is a normal extension of F .

(b) If L is a normal extension of F , then L is a normal extension of K.

(c) If L is a normal extension of F , then K is a normal extension of F .
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Problem Sheet IV: Separability; separable extensions; the Theorem of the
Primitive Element

1. Show that X3 + 5 is separable over F7.

2. Let F be a field of positive characteristic p and let f(X) be an irreducible polynomial
over F . Show that f(X) is inseparable over F if and only if it has the form

f(X) = a0 + a1X
p + a2X

2p + · · ·+ akX
kp

for some positive integer k and some coefficients a0, a1, . . . , ak ∈ F .

3. Let F ⊆ K ⊆ L be field extensions such that L is a separable extension of F .

(a) Show that K is a separable extension of F .

(b) Show that L is a separable extension of K.

4. Find α such that Q(
√

2, i) = Q(α).

5. Let p be a prime, F = Fp(t) be the field of rational functions over the finite field Fp, and
f(X) be the following polynomial from the polynomial ring F [X]:

f(X) = Xp − t.

(a) Show that f(X) has no roots in F .

(b) Let α be a root of an irreducible factor of f(X) in some extension field. Show that
K = F (α) is a splitting field for f(X) and that

f(X) = (X − α)p

over the field K.

(c) By considering the factorization of g(X) over K, or otherwise, show that it is impossi-
ble to factorize f(X) as f(X) = g(X)h(X) where g(X), h(X) ∈ F [X] are polynomials
over F of smaller degree than f(X).

(d) Conclude that f(X) is a inseparable polynomial over F .
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Problem Sheet V: Finite Fields

1. (a) Find an irreducible polynomial of degree 3 over F2 and hence construct the addition
and multiplication tables of the field F8 of order 8.

(b) Find an irreducible polynomial of degree 2 over F3 and hence construct the addition
and multiplication tables of the field F9 of order 9.

2. Let F ⊆ K be an extension of finite fields.

(a) Show that K is a normal extension of F .

(b) Show that K is a separable extension of F .

3. Consider the Galois field Fpn for order pn where p is a prime number and n is a positive
integer.

(a) If F is a subfield of Fpn , show that F ∼= Fpd for some divisor d of n. [Hint: Recall
|Fpn : Fp| = n.]

(b) Suppose that d is a divisor of n.

(i) Set k = n/d, r =
∑k−1

i=0 p
id = (pn − 1)/(pd − 1) and

g(X) =
r∑
i=1

Xpn−i(pd−1)−1.

Show that
g(X) (Xpd −X) = Xpn −X.

(ii) Show that Fpn contains precisely pd roots of Xpd −X.

(iii) Show that L = { a ∈ Fpn | ap
d

= a } is a subfield of Fpn of order pd.

(c) Conclude that Fpn has a unique subfield of order pd for each divisor d of n.

4. (a) Using information about the Galois field F16 of order 16, or otherwise, factorizeX15−1
into a product of polynomials irreducible over F2.

[Hint: What are the subfields of F16? If an element lies in a particular subfield, what
is the degree of its minimum polynomial?]

(b) Using information about the Galois field F27 of order 27, or otherwise, find the degrees
of the irreducible factors of X26 − 1 over F3. Find the number of irreducible factors
of each degree.
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5. The following question provides an alternative solution to Question 8(a) on Problem
Sheet I.

(a) Show that 10 is a generator for the multiplicative group of the field F17 of order 17.

(b) Let F be a finite field with prime subfield F17. If x ∈ F is such that x4 = 10, what
is the order of x in the multiplicative group F ∗ of F?

(c) Hence (and not otherwise!) show that X4 + 7 is irreducible over F17.

6. A primitive nth root of unity in a finite field F is an element x of order n in the multi-
plicative group F ∗. [The terminology indicates that x satisfies xn = 1 and that its powers
1, x, x2, . . . , xn−1 are the n distinct roots of Xn − 1 in F .]

Let q be a power of a prime.

(a) Show that the Galois field Fq of order q contains a primitive nth root of unity if and
only if q ≡ 1 (mod n).

(b) Suppose that n and q are coprime. Show that the splitting field of Xn − 1 over Fq
is Fqm where m is minimal subject to qm ≡ 1 (mod n).

(c) For each value of n in the range 1 6 n 6 12, determine the degree of the splitting
field of Xn − 1 over F5.

(d) Determine for which n in the range 1 6 n 6 12 does the Galois field F536 of order 536

contain a primitive nth root of unity?

7. Let F be a finite field with q elements where q is odd. Prove that the splitting field
of X4 + 1 over F has degree one or two and that X4 + 1 factorizes in F [X] either as a
product of four distinct linear polynomials when 8 divides q − 1 or as a product of two
distinct quadratic irreducible polynomials when 8 does not divide q − 1.

[Hint: Consider the elements −α, 1/α and −1/α where α is a root of X4 + 1 in some
extension of F .]

8. Let G be a finite abelian group.

(a) If x1 and x2 are elements of G with coprime orders, show that x1x2 has order given
by o(x1x2) = o(x1) o(x2).

(b) Suppose p1, p2, . . . , pk are distinct prime numbers and that x1, x2, . . . , xk ∈ G with
o(xi) = pαi

i . Show that

o(x1x2 . . . xk) = o(x1) o(x2) . . . o(xk) = pα1
1 pα2

2 . . . pαk
k .

9. Give an example of a finite group (necessarily non-abelian) which has no element of order
equal to its exponent.
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Problem Sheet VI: Galois groups, the Galois correspondence and the
Fundamental Theorem of Galois Theory

1. Let F be a field not of characteristic 2 and let K be an extension of F of degree 2. Show
that K is a Galois extension of F .

2. Find an example of field extensions F ⊆ K ⊆ L such that K is a Galois extension of F ,
L is a Galois extension of K, but L is not a Galois extension of F .

[Hint: Consider 4
√

2.]

3. Let n be a natural number and F = Q( n
√

2). Show that |F : Q| = n. Show that Gal(F/Q) is
trivial or cyclic of order 2 according to whether n is odd or even.

4. Let f(X) = X4 + 5X2 + 5 over Q.

(a) Show that f(X) is irreducible over Q.

(b) Find a splitting field K for f(X) over Q.

(c) Find an element of order 4 in Gal(K/Q).

(d) Describe the Galois group Gal(K/Q) up to isomorphism.

5. Let f(X) = X8 − 1 over Q.

(a) Factorize f(X) into irreducible polynomials over Q.

(b) Find a splitting field K for f(X) over Q.

(c) Determine the elements of the Galois group Gal(K/Q).

(d) Describe the Galois group Gal(K/Q) up to isomorphism.

6. Describe the Galois group Gal(Q(i+
√

3)/Q).

7. For each of the following field extensions, find the Galois group, find all of its subgroups,
and find the subfield corresponding to each subgroup under the Galois correspondence.
Determine which of the subfields are normal extensions of the base field.

(a) The splitting field of X3 − 1 over Q.

(b) The splitting field of X3 − 2 over Q.

(c) The splitting field of X4 − 1 over Q.

(d) The splitting field of X5 − 1 over Q.

(e) The splitting field of X6 − 1 over Q.

(f) The splitting field of X6 +X3 + 1 over Q.

(g) Q( 3
√

5, i
√

3) over Q.

(h) The splitting field of X4 − 2 over Q(i).
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8. Let f(X) = X5 − 5X4 + 5 over some finite field F . For each of the following groups G
either find a finite field F such that the Galois group of f(X) over F is isomorphic to G,
or prove that no such field F exists.

(a) The trivial group 1.

(b) The Klein 4-group V4 ∼= C2 × C2.

(c) The cyclic group C5 of order 5.

(d) The cyclic group C6 of order 6.

(e) The cyclic group C10 of order 10.

(f) The symmetric group S5 of degree 5.

9. Let f(X) be an irreducible polynomial over the finite field Fp (where p is a prime number).
Show that if α is a root of f(X) in some extension field, then Fp(α) is a splitting field
for f(X) over Fp.
In each of the following cases, let α be a root of f(X). Show that f(X) is irreducible over Fp
and express the roots of f(X) as polynomials in α of degree less than the degree of f(X)
[that is, express the roots in terms of our standard basis for the usual extension Fp(α)
over Fp]:

(a) f(X) = X2 + 1, p = 7;

(b) f(X) = X3 + 2X2 +X + 1, p = 3.
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Problem Sheet VII: Radical extensions; solution of equations by radicals;
soluble groups

1. Find a normal radical extension of Q that contains Q( 3
√

2).

2. Find three radical extensions of Q all containing Q(
√

2) such that the Galois groups are
distinct.

3. Let f(X) = X3 − 3X + 1 and let K be the splitting field of f(X) over Q. Show that
|K : Q| = 3 and find a radical extension of Q containing K.

Show that K is not itself a radical extension of Q.

4. Show that X5 − 6X + 3 is not soluble by radicals over Q.

5. Let F be a field of characteristic zero. Show that a polynomial of the form X4 + bX2 + c
is soluble by radicals over F .

6. Let G be a soluble group with a chain of subgroups

G = G0 > G1 > G2 > . . . > Gd = 1

where, for i = 1, 2, . . . , d, Gi is a normal subgroup of Gi−1 and Gi−1/Gi is abelian.

(a) If H is a subgroup of G, show that H ∩ Gi is a normal subgroup of H ∩ Gi−1 and
that (H ∩Gi−1)/(H ∩Gi) is isomorphic to a subgroup of Gi−1/Gi for each i. [Hint:
Second Isomorphism Theorem.]

Deduce that subgroups of soluble groups are soluble.

(b) If A, B and C are subgroups of G with A 6 B, show that A(B ∩C) = AC ∩B. [This
result is known as the Modular Law.]

(c) If N is a normal subgroup of G, show that GiN/N is a normal subgroup of Gi−1N/N
and that (Gi−1N/N)/(GiN/N) is isomorphic to a quotient of Gi−1/Gi for each i.
[Hint: Use the Second and Third Isomorphism Theorems and the Modular Law.]

Deduce that quotients of soluble groups are soluble.

7. Let G be a group and N be a normal subgroup of G.

(a) If G/N is soluble, show that there is a chain of subgroups

G = G0 > G1 > . . . > Gk = N

such that Gi is a normal subgroup of Gi−1 and Gi−1/Gi is abelian for i = 1, 2, . . . , k.
[Hint: Correspondence Theorem.]

(b) Deduce that if G/N and N are soluble, then G is soluble.
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