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MT5824 Topics in Groups

Problem Sheet I: Revision and Re-Activation

1. Let H and K be subgroups of a group G. Define

HK = {hk | h ∈ H, k ∈ K }.

(a) Show that HK is a subgroup of G if and only if HK = KH.

(b) Show that if K is a normal subgroup of G, then HK is a subgroup of G.

(c) Give an example of a group G and two subgroups H and K such that HK is
not a subgroup of G.

(d) Give an example of a group G and two subgroups H and K such that HK is
a subgroup of G but neither H nor K are normal subgroups of G.

2. Let M and N be normal subgroups of G. Show that M ∩N and MN are normal
subgroups of G.

3. Let G be a group and H be a subgroup of G.

(a) If x and y are elements of G, show that Hx = Hy if and only if x ∈ Hy.

(b) Suppose T is a subset of G containing precisely one element from each
(right) coset of H in G (such a set T is called a (right) transversal to H
in G and has the property that |T | = |G : H|). Deduce that {Ht | t ∈ T }
is the set of all (right) cosets of H in G with distinct elements of T defining
distinct cosets.
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4. Let G be a (not necessarily finite) group with two subgroups H and K such that
K 6 H 6 G. The purpose of this question is to establish the index formula

|G : K| = |G : H| · |H : K|.

Let T be a transversal to K in H and U be a transversal to H in G.

(a) By considering the coset Hg or otherwise, show that if g is an element of G,
then Kg = Ktu for some t ∈ T and some u ∈ U .

(b) If t, t′ ∈ T and u, u′ ∈ U with Ktu = Kt′u′, first show that Hu = Hu′ and
deduce u = u′, and then show that t = t′.

(c) Deduce that TU = { tu | t ∈ T, u ∈ U } is a transversal to K in G and that

|G : K| = |G : H| · |H : K|.

(d) Show that this formula follows immediately from Lagrange’s Theorem if
G is a finite group.

5. Let G be a group and H be a subgroup of G.

(a) Show that H is a normal subgroup of G if and only if Hx = xH for all
x ∈ G.

(b) Show that if |G : H| = 2, then H is a normal subgroup of G.

6. Give an example of a finite group G and a divisor m of |G| such that G has no
subgroup of order m.

7. Let G = 〈x〉 be a cyclic group.

(a) If H is a non-identity subgroup of G, show that H contains an element of
the form xk with k > 0.

Choose k to be the smallest positive integer such that xk ∈ H. Show
that every element in H has the form xkq for some q ∈ Z and hence that
H = 〈xk〉. [Hint: Use the Division Algorithm.]

Deduce that every subgroup of a cyclic group is also cyclic.

(b) Suppose now that G is cyclic of order n. Let H be the subgroup considered
in part (a), so that H = 〈xk〉 where k is the smallest positive integer such
that xk ∈ H, and suppose that |H| = m.

Show that k divides n. [Hint: Why does xn ∈ H?]

Show that o(xk) = n/k and deduce that m = n/k.

Conclude that, if G is a cyclic group of finite order n, then G has a unique
subgroup of order m for each positive divisor m of n.

(c) Suppose now that G is cyclic of infinite order. Let H be the subgroup
considered in part (a), so that H = 〈xk〉 where k is the smallest positive
integer such that xk ∈ H.

Show that {1, x, x2, . . . , xk−1} is a transversal to H in G. Deduce that
|G : H| = k. [Hint: Use the Division Algorithm to show that if n ∈ Z, then
xn ∈ Hxr where 0 6 r < k.]

Conclude that, if G is a cyclic group of infinite order, then G has a unique
subgroup of index k for each positive integer k and that every non-trivial
subgroup of G is equal to one of these subgroups.
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8. Let V4 denote the Klein 4-group: that is V4 = {1, a, b, c} where a = (1 2)(3 4),
b = (1 3)(2 4) and c = (1 4)(2 3) (permutations of four points). Find three distinct
subgroups H1, H2 and H3 of V4 of order 2. Show that Hi ∩ Hj = 1 for all i 6= j
and V4 = HiHj for all i and j.

[Note that I am using the more conventional notation V4 for the Klein 4-group,
rather than the less frequently used K4 from MT4003. Here V stands for Vier-

gruppe.]

9. The dihedral group D2n of order 2n is generated by the two permutations

α = (1 2 3 . . . n), β = (2n)(3n−1) · · · .

(a) Show that α generates a normal subgroup of D2n of index 2.

(b) Show that every element of D2n can be written in the form αiβj where
i ∈ {0, 1, . . . , n − 1} and j ∈ {0, 1}.

(c) Show that every element in D2n which does not lie in 〈α〉 has order 2.

10. The quaternion group Q8 of order 8 consists of eight elements

1,−1, i,−i, j,−j, k,−k

with multiplication given by

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

(a) Show that Q8 is generated by i and j.

(b) Show that 〈i〉 is a normal subgroup of Q8 of index 2.

(c) Show that every element of Q8 can be written as imjn where m ∈ {0, 1, 2, 3}
and n ∈ {0, 1}.

(d) Show that every element in Q8 which does not lie in 〈i〉 has order 4.

(e) Show that Q8 has a unique element of order 2.
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MRQ 2009

School of Mathematics and Statistics

MT5824 Topics in Groups

Problem Sheet II: Group Actions

1. (a) How many different ways can the cyclic group C3 of order three act on the
set {1, 2, 3, 4}?

(b) How many different ways can the cyclic group C4 of order four act on the
set {1, 2, 3}?

[Consider orbit decompositions and apply the Orbit-Stabiliser Theorem.]

2. (a) Let i1, i2, . . . , ik be distinct points in Ω = {1, 2, . . . , n} and let σ be a
permutation in Sn. By considering the effect on various points in Ω, or
otherwise, show that

σ−1(i1 i2 . . . ik)σ = (i1σ i2σ . . . ikσ).

Deduce that two permutations in Sn are conjugate if and only if they have
the same cycle structure.

(b) Give a list of representatives for the conjugacy classes in S5. How many
elements are there in each conjugacy class? Hence calculate the order of
and generators for the centralisers of these representatives.

3. Let G be a group and let Γ and ∆ be sets such that G acts on Γ and on ∆.
Define

(γ, δ)x = (γx, δx)

for all γ ∈ Γ, δ ∈ ∆ and x ∈ G. Verify that this is an action of G on the
set Γ × ∆.

Verify that the stabiliser of the pair (γ, δ) in this action equals the intersection
of the stabilisers Gγ and Gδ (these being the stabilisers under the actions of G
on Γ and ∆, respectively).

If G acts transitively on the non-empty set Ω, show that

{ (ω, ω) | ω ∈ Ω }

is an orbit of G on Ω× Ω. Deduce that G acts transitively on Ω×Ω if and only
if |Ω| = 1.

4. (a) There is a natural action of Sn on Ω = {1, 2, . . . , n}. Show this action is
transitive. How many orbits does Sn have on Ω × Ω?

(b) Repeat part (a) with the action of the alternating group An on Ω.
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5. Let G be a group and H be a subgroup of G. Show that the normaliser NG(H)
of H is the largest subgroup of G in which H is a normal subgroup.

[By largest, we mean that if L is any subgroup of G in which H is normal, then
L 6 NG(H). So you should check that (i) H P NG(H) and (ii) if H P L then
L 6 NG(H).]

6. Let G be a group and H be a subgroup of G. Let Ω be the set of right cosets
of H in G. Define an action of G on Ω by

Ω × G → Ω

(Hg, x) 7→ Hgx

for Hg ∈ Ω and x ∈ G.

(a) Verify that this action is well-defined and that it is indeed a group action.

(b) Is the action transitive?

(c) Show that the stabiliser of the coset Hx is the conjugate Hx of H.

(d) Let ρ : G → Sym(Ω) be the permutation representation associated to the
action of G on Ω. Show that

ker ρ =
⋂

x∈G

Hx.

(e) Show that ker ρ is the largest normal subgroup of G contained in H.

[That is, show that (i) it is a normal subgroup of G contained in H and
(ii) if K is any normal subgroup of G contained in H then K 6 ker ρ.

This kernel is called the core of H in G and is denoted by CoreG(H).]

7. If H is a subgroup of G of index n, show that the index of the core of H in G
divides n!.

8. Let G be a group and let G act on itself by conjugation. Show that the kernel
of the associated permutation representation ρ : G → Sym(G) is the centre Z(G)
of G. Deduce that Z(G) is a normal subgroup of G.

9. Let G be a group and let Aut G denote the set of all automorphisms of G. Show
that AutG forms a group under composition.

For g ∈ G, let τg : G → G be the map given by conjugation by g; that is,

τg : x 7→ g−1xg for all x ∈ G.

Show that the map τ : g 7→ τg is a homomorphism τ : G → AutG. What is the
kernel of τ?

Write InnG for the image of τ . Thus InnG is the set of inner automorphisms

of G. Show that InnG is a normal subgroup of AutG. [Hint: Calculate the effect
of φ−1τgφ on an element x, where φ ∈ AutG, τg ∈ InnG and x ∈ G.]
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MT5824 Topics in Groups

Problem Sheet III: Cauchy’s Theorem and Sylow’s Theorem

1. Let H be a subgroup of the symmetric group Sn of index 2. Show that H = An.
[Hint: Show that H contains all squares of elements in Sn.]

2. Let G be a finite group, let p be a prime number and write |G| = pnm where
p does not divide m. The purpose of this question is to use group actions to show
G has a subgroup of order pn; that is, G has a Sylow p-subgroup.

(a) Let Ω be the collection of all subsets of G of size pn:

Ω = {S ⊆ G | |S| = pn }.

Show that

|Ω| =

(

pnm

pn

)

= m

(

pnm − 1

pn − 1

)(

pnm − 2

pn − 2

)

. . .

(

pnm − pn + 2

2

)(

pnm − pn + 1

1

)

.

(b) Let j be an integer with 1 6 j 6 pn − 1. Show that if the prime power pi

divides j, then pi divides pn − j. Conversely show that if pi divides pn − j,
then pi divides j.

Deduce that |Ω| is not divisible by p. [Examine each factor in the above
formula and show that the power of p dividing the numerator coincides with
the power dividing the denominator.]

(c) Show that we may define a group action of G on Ω by

Ω × G → Ω

(S, x) 7→ Sx = { ax | a ∈ S }.

(d) Express Ω as a disjoint union of orbits:

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωk.

Show that p does not divide |Ωi| for some i.

(e) Let S ∈ Ωi and let P = GS , the stabiliser of S in the action of G on Ω.
Show that p does not divide |G : P | and deduce that pn divides |P |.

(f) Fix a0 ∈ S. Explain why a0x ∈ S for all x ∈ P . Show that x 7→ a0x is an
injective map P → S. Deduce that |P | 6 pn.

(g) Conclude that P is a Sylow p-subgroup of G.
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3. Show that there is no simple group of order equal to each of the following num-
bers:

(i) 30; (ii) 48; (iii) 54; (iv) 66; (v) 72;

(vi) 84; (vii) 104; (viii) 132; (ix) 150; (x) 392.

[Note: These are not necessarily in increasing order of difficulty!]

4. Let G be a finite group, N be a normal subgroup of G and P be a Sylow
p-subgroup of G.

(a) Show that P ∩ N is a Sylow p-subgroup of N .

(b) Show that PN/N is a Sylow p-subgroup of G/N .

[Hint: Show that the subgroup is of order a power of p and has index not divisible
by p. In both parts expect to use the formula for the order of PN and the fact
that P already has the required property as a subgroup of G.]

5. Let G be a finite group, p be a prime number dividing the order of G, and let
P be a Sylow p-subgroup of G. Define

Op(G) =
⋂

g∈G

P g.

Show that Op(G) is the largest normal p-subgroup of G.
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MT5824 Topics in Groups

Problem Sheet IV: Composition series and the Jordan–Hölder

Theorem

1. Let G be a group and N be a normal subgroup of G. If G/N and N both have
composition series, show that G has a composition series and that the set of
composition factors of G equals the union of those of G/N and those of N .

[Use the Correspondence Theorem to lift the terms of a composition series to a
chain of subgroups between G and N .]

2. Let p, q and r be prime numbers with p < q < r. Let G be a group of order pqr.

(a) Suppose that G does not have a unique Sylow r-subgroup. Show that it has
a unique Sylow q-subgroup Q.

[Hint: How many elements of order r must there be and how many elements
of order q if there were no normal Sylow q-subgroup?]

(b) Show that G/Q has a unique Sylow r-subgroup of the form K/Q where
K P G and |K| = qr.

(c) Show that K has a unique Sylow r-subgroup and deduce that, in fact, G has
a unique Sylow r-subgroup R (contrary to the assumption in (a)).

[Hint: Why is a Sylow r-subgroup of K also a Sylow r-subgroup of G?
Remember that all the Sylow r-subgroups of G are conjugate.]

(d) Show that G/R has a unique Sylow q-subgroup.

(e) Deduce that G has a composition series

G = G0 > G1 > G2 > G3 = 1

where |G1| = qr and |G2| = r. Up to isomorphism, what are the composition
factors of G?

3. Let p be a prime number and let G be a non-trivial p-group. Show that G has a
chain of subgroups

G = G0 > G1 > G2 > · · · > Gn = 1

such that Gi is a normal subgroup of G and |G : Gi| = pi for i = 0, 1, . . . , n.

What are the composition factors of G?

[Hint: Use the fact that Z(G) 6= 1 to produce an element x ∈ Z(G) of order p.
Consider the quotient group G/K where K = 〈x〉 and apply induction.]

1



4. The dihedral group D8 has seven different composition series. Find all seven.

5. How many different composition series does the quaternion group Q8 have?

6. Let G be a group, N be a normal subgroup of G and suppose that

G = G0 > G1 > G2 > · · · > Gn = 1

is a composition series for G. Define Ni = N ∩ Gi for i = 0, 1, . . . , n.

(a) Show that Ni+1 is a normal subgroup of Ni for i = 0, 1, . . . , n − 1.

(b) Use the Second Isomorphism Theorem to show that

Ni/Ni+1
∼=

(Gi ∩ N)Gi+1

Gi+1
.

[Hint: Note that Ni+1 = Gi+1 ∩ (Gi ∩ N).]

(c) Show that (Gi ∩ N)Gi+1 is a normal subgroup of Gi containing Gi+1.

Deduce that (Gi ∩N)Gi+1/Gi+1 is either equal to Gi/Gi+1 or to the trivial
group. [Remember Gi/Gi+1 is simple.]

(d) Deduce that N possesses a composition series. [Hint: Delete repeats in the
series (Ni).]

7. Let G be a group, N be a normal subgroup of G and suppose that

G = G0 > G1 > G2 > · · · > Gn = 1

is a composition series for G. Define Qi = GiN/N for i = 0, 1, . . . , n.

(a) Show that Qi is a subgroup of G/N such that Qi+1 is a normal subgroup
of Qi for i = 0, 1, . . . , n − 1.

(b) Use Dedekind’s Modular Law to show that Gi+1N ∩ Gi = (Gi ∩ N)Gi+1.
Show that

Qi/Qi+1
∼=

Gi/Gi+1

(Gi ∩ N)Gi+1/Gi+1
.

[Hint: Use the Third Isomorphism Theorem, the Second Isomorphism The-
orem and note that GiN = Gi(Gi+1N) since Gi+1 6 Gi.]

(c) Show that (Gi ∩ N)Gi+1 is a normal subgroup of Gi containing Gi+1.

Deduce that (Gi ∩N)Gi+1/Gi+1 is either equal to Gi/Gi+1 or to the trivial
group. [Remember Gi/Gi+1 is simple.]

Hence show that the quotient on the right hand side in (b) is either trivial
or isomorphic to Gi/Gi+1.

(d) Deduce that G/N possesses a composition series.
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8. The purpose of this question is to prove the Jordan–Hölder Theorem.

Let G be a group and suppose that

G = G0 > G1 > · · · > Gn = 1

and
G = H0 > H1 > · · · > Hm = 1.

Proceed by induction on n.

(a) If n = 0, observe that G = 1 and that the Jordan–Hölder Theorem holds in
this (vacuous) case.

(b) Suppose n > 1. Consider the case when G1 = H1. Observe the conclusion
of the theorem holds for this case.

(c) Now suppose G1 6= H1. Use the fact that G0/G1 and H0/H1 are simple
to show that G1H1 = G. [Hint: Observe that it is a normal subgroup
containing both G1 and H1.]

(d) Define D = G1 ∩ H1. Show that D is a normal subgroup of G such that

G0/G1
∼= H1/D and H0/H1

∼= G1/D.

(e) Use Question 6 to see that D possesses a composition series

D = D2 > D3 > · · · > Dr = 1.

(f) Observe that we now have four composition series for G:

G = G0 > G1 > G2 > · · · > Gn = 1

G = G0 > G1 > D = D2 > · · · > Dr = 1

G = H0 > H1 > D = D2 > · · · > Dr = 1

G = H0 > H1 > H2 > · · · > Hm = 1.

Apply the case of part (b) (twice) and the isomorphisms of part (d) to
complete the induction step of the proof.

9. Let G be a simple group of order 60.

(a) Show that G has no proper subgroup of index less than 5. Show that if
G has a subgroup of index 5, then G ∼= A5.

[Hint for both parts: If H is a subgroup of index k, act on the set of cosets to
produce a permutation representation. What do we know about the kernel?]

(b) Let S and T be distinct Sylow 2-subgroups of G. Show that if x ∈ S ∩ T
then |CG(x)| > 12. Deduce that S ∩ T = 1. [Hint: Why are S and T
abelian?]

(c) Deduce that G has at most five Sylow 2-subgroups and hence that indeed
G ∼= A5. [Hint: The number of Sylow 2-subgroups equals the index of a
normaliser.]

Thus we have shown that there is a unique simple group of order 60 up to
isomorphism.
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Problem Sheet V: Direct products and semidirect products

1. Give an example of two groups G and H and a subgroup of the direct product
G × H which does not have the form G1 × H1 where G1 6 G and H1 6 H.

2. Let M and N be normal subgroups of a group G. By considering the map

g 7→ (Mg,Ng),

or otherwise, show that G/(M ∩ N) is isomorphic to a subgroup of the direct
product G/M × G/N .

3. Using Question 2, or otherwise, show that if m and n are coprime integers, then
Cm × Cn

∼= Cmn.

4. Let X1, X2, . . . , Xn be non-abelian simple groups and let

G = X1 × X2 × · · · × Xn.

(In this question we shall identify the concepts of internal and external direct
products. Thus we shall speak a subgroup of G containing a direct factor Xi

when, if we were to use the external direct product notation strictly, we might
refer to it containing the subgroup X̄i in the notation of the lectures.)

Prove that a non-trivial normal subgroup of G necessarily contains one of the
direct factors Xi. Hence show that every normal subgroup of G has the form

Xi1 × Xi2 × · · · × Xik

for some subset {i1, i2, . . . , ik} of {1, 2, . . . , n}.

[Hint: If N is a non-trivial normal subgroup of G, choose a non-identity ele-
ment (x1, x2, . . . , xn) ∈ N . Consider conjugating this element by the element
(1, . . . , 1, g, 1, . . . , 1).]

Now suppose X1, X2, . . . , Xn are abelian simple groups. Is it still true that every
normal subgroup of the direct product has this form?
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5. Let p be a prime number.

(a) Show that Aut Cp
∼= Cp−1.

(b) Show that Aut(Cp × Cp) ∼= GL2(Fp) (where Fp = Z/pZ denotes the field of
p elements).

[For (a), let Cp = 〈x〉. Observe that an automorphism α is given by x 7→ xm

where m is a representative for a non-zero element of Fp. Recall the multiplication
group of a finite field is cyclic.

For (b), write Cp × Cp additively and view it as a vector space over Fp. Show
that automorphisms of the group then correspond to invertible linear maps.]

6. Let G = 〈x〉 be a cyclic group. Show that AutG is abelian.

7. Show that the dihedral group D2n is isomorphic to a semidirect product of a
cyclic group of order n by a cyclic group of order 2. What is the associated
homomorphism φ : C2 → Aut Cn?

8. Show that the quaternion group Q8 may not be decomposed (in a non-trivial
way) as a semidirect product.

[Hint: How many elements of order 2 does Q8 contain?]

9. Show that the symmetric group S4 of degree 4 is isomorphic to a semidirect
product of the Klein 4-group V4 by the symmetric group S3 of degree 3.

Show that S4 is also isomorphic to a semidirect product of the alternating
group A4 by a cyclic group of order 2.

10. Let G be a group of order pq where p and q are primes with p < q.

(a) If p does not divide q − 1, show that G ∼= Cpq, the cyclic group of order pq.

(b) If p does divide q − 1, show that there are essentially two different groups
of order pq.

11. Classify the groups of order 52 up to isomorphism.

12. Show that a group of order 30 is isomorphic to one of

C30, C3 × D10, D6 × C5, D30.

13. Classify the groups of order 98 up to isomorphism.

14. Classify the groups of order 117 up to isomorphism.
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Problem Sheet VI: Soluble groups

1. Let G and H be groups.

(a) Show that (G × H)′ = G′ × H ′. Deduce that (G × H)(i) = G(i) × H(i) for
all i > 0.

(b) Deduce that the direct product of two soluble groups is a soluble group.
Could this result be deduced from other results proved in lectures?

2. Calculate the terms in the derived series for the following groups:

(i) S3; (ii) D8; (iii) A4; (iv) S4; (v) A5; (vi) S5.

[It may well help to remember that G′ is the smallest normal subgroup of G such
that G/G′ is abelian.]

3. Let p be a prime number and let G be a finite p-group. Show that G is soluble.

[Hint: Proceed by induction, using the fact that Z(G) 6= 1 for a non-trivial
p-group G.]

4. Show that 1 and G are always characteristic subgroups of a group G. Give an
example of a normal subgroup N of a group G such that N is not a characteristic
subgroup of G.

5. Let G be a finite group and suppose that P is a Sylow p-subgroup of G (for
some prime p) which is actually normal in G. Prove that P is a characteristic
subgroup of G.

[Hint: Where does an automorphism map a Sylow p-subgroup?]

6. Let G be any group and let n be an integer. Define

Gn = 〈 gn | g ∈ G 〉,

the subgroup of G generated by all its nth powers. Show that Gn is a character-
istic subgroup of G. Show that every element in the quotient group G/Gn has
order dividing n.
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7. (a) Give an example of a group G with subgroups K and H such that K P H,
H P G but K 6P G.

(b) Give an example of a group G with a characteristic subgroup H and a
homomorphism φ : G → K such that Hφ is not a characteristic subgroup
of Gφ.

(c) Give an example of a group G with subgroups H and L such that H 6 L 6

G, H char G, but H is not a characteristic subgroup of L.

(d) Give an example of a group G with subgroups K and H such that K P H,
H is a characteristic subgroup of G but K 6P G.

[Hint: A little thought should tell you that |G| > 8 is required for many of these
examples. There are examples without making the groups considerably larger
than this minimum.]

8. (a) Let M and N be normal subgroups of a group G that are both soluble.
Show that MN is soluble.

[Hint: M P MN . What can you say about the quotient MN/M?]

(b) Deduce that a finite group G has a largest normal subgroup S which is
soluble.

[‘Largest’ in the usual sense of containing all others. This normal subgroup S
is called the soluble radical of G.]

(c) Prove that S is the unique normal subgroup of G such that S is soluble and
G/S has no non-trivial abelian normal subgroup.

[Hint: To show G/S has no non-trivial abelian normal subgroup, remember
that if H is a group with N P H such that H/N and N are soluble, then
H is soluble. Use N = S and choose H such that H/S is abelian.]

9. (a) Let M and N be normal subgroups of a group G such that G/M and G/N
are both soluble. Show that G/(M ∩ N) is soluble.

[Hint: Use Question 2 on Problem Sheet V.]

(b) Deduce that a finite group G has a smallest normal subgroup R such that
the quotient G/R is soluble.

[‘Smallest’ in the usual sense of being contained in all others. This normal
subgroup R is called the soluble residual of G.]

(c) Prove that R is the unique normal subgroup of G such that G/R is soluble
and R′ = R.

[Hint: To show R′ = R, remember that if H is a group with N P H
such that H/N and N are soluble, then H is soluble. Use H = G/R′ and
N = R/R′.]
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10. The following is an alternative way of proving that a minimal normal subgroup
of a finite soluble group is an elementary abelian p-group.

Let G be a finite soluble group and M be a minimal normal subgroup of G.

(a) By considering M ′, prove that M is abelian. [Hint: M ′ char M .]

(b) By considering a Sylow p-subgroup of M , prove that M is a p-group for
some prime p.

(c) By considering the subgroup of M generated by all elements of order p,
prove that M is an elementary abelian p-group.

11. Let G be the semidirect product of a cyclic group N of order 35 by a cyclic
group C of order 4 where the generator of C acts by inverting the generator
of N :

G = N ⋊ C = 〈x, y | x35 = y4 = 1, y−1xy = x−1 〉.

Find a Hall π-subgroup H of G, its normaliser NG(H) and state how many Hall
π-subgroups G possesses when (i) π = {2, 5}, (ii) π = {2, 7}, (iii) π = {3, 5}
and (iv) π = {5, 7}.

12. Let p, q and r be distinct primes with p < q < r. Let G be a group of order pqr.

(a) Show that G is soluble.

(b) Show that G has a unique Hall {q, r}-subgroup.

(c) How many Hall {p, r}-subgroups can G have? Can you construct examples
to show that these numbers are indeed possible?

[Hints: Review Question 2 on Problem Sheet IV. Consider the normaliser of
the Hall subgroup. Semidirect products are good ways to construct groups with
normal subgroups.]

13. A maximal subgroup of G is a proper subgroup M of G such that there is no
subgroup H strictly contained between M and G.

If p divides the order of the finite soluble group G, show that there is a maximal
subgroup of G whose index is a power of p. [Hint: Consider Hall p′-subgroups.]

Show, by an example, that this is false for insoluble groups.

14. Let G be a finite soluble group whose order is divisible by k distinct prime
numbers. Prove there is a prime p and a Hall p′-subgroup H such that |G| 6

|H|k/(k−1).

[Hint: Consider |G| = pn1

1 pn2

2 . . . pnk

k and consider the smallest value of pni

i .]
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15. The purpose of this question is to prove Theorem 6.33; that is, that any two
Sylow bases in a finite soluble group G are conjugate.

Let G be a finite soluble group and let p1, p2, . . . , pk be the distinct prime
factors of G. Let Si be the set of Hall p′i-subgroups of G (for i = 1, 2, . . . , k)
and let S be the collection of all Sylow bases of G; that is, the elements of S

are sequences (Pi) such that Pi is a Sylow pi-subgroup of G for i = 1, 2, . . . , k
and PiPj = PjPi for all i and j.

(a) Show that

(Q1, Q2, . . . , Qk) 7→

(

⋂

j 6=1

Qj,
⋂

j 6=2

Qj, . . . ,
⋂

j 6=k

Qj

)

is a bijection from S1 × S2 × · · · × Sk to S .

(b) Now fix a representative Qi in Si. Show that |Si| = |G : NG(Qi)|. Deduce
that |Si| is a power of the prime pi.

(c) Show that G acts on S according to the rule:

(

(Pi), g
)

7→ (P g
i )

for (Pi) ∈ S and g ∈ G. (As usual, P g
i denotes the conjugate of Pi by g.)

(d) Now concentrate on the specific Sylow basis (Pi) constructed from the Qi

as in lectures. [Also compare part (a).] Show that the stabiliser of (Pi)
under the above action is the intersection

⋂k
i=1 NG(Pi) of the normalisers of

the Pi, and that this coincides with the intersection
⋂k

j=1 NG(Qj).

(e) Use part (b) to show that

∣

∣

∣

∣

G :

k
⋂

j=1

NG(Qj)

∣

∣

∣

∣

=

k
∏

j=1

|G : NG(Qj)|.

[Hint: Coprime indices!]

(f) Use part (a) to deduce that G acts transitively on S .
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Problem Sheet VII: Nilpotent groups

1. Show that γ2(G) = G′. Deduce that abelian groups are nilpotent.

2. Show that Z(S3) = 1. Hence calculate the upper central series of S3 and deduce
that S3 is not nilpotent.

Show that γi(S3) = A3 for all i > 2. [Hint: We have calculated S′
3 previously

and now know that S3 is not nilpotent.]

Find a normal subgroup N of S3 such that S3/N and N are both nilpotent.

3. Show that Z(G × H) = Z(G) × Z(H).

Show, by induction on i, that Zi(G × H) = Zi(G) × Zi(H) for all i.

Deduce that a direct product of a finite number of nilpotent groups is nilpotent.

4. Let G be an finite elementary abelian p-group. Show that Φ(G) = 1.

5. Let G be a finite p-group.

If M is a maximal subgroup of G, show that |G : M | = p. [Hint: G is nilpotent,
so M P G.]

Deduce that GpG′ 6 Φ(G).

Use the previous question to show that Φ(G) = GpG′.

Show that G can be generated by precisely d elements if and only if G/Φ(G) is
a direct product of d copies of the cyclic group of order p.

6. Let G be a nilpotent group with lower central series

G = γ1(G) > γ2(G) > · · · > γc(G) > γc+1(G) = 1.

Suppose N is a non-trivial normal subgroup of G. Choose i to be the largest
positive integer such that N ∩ γi(G) 6= 1. Show that [N ∩ γi(G), G] = 1.

Deduce that N ∩ Z(G) 6= 1.
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