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Introduction

The purpose of this course is to take the study of groups further beyond the
contents of the previous course. Accordingly, we note:

Prerequisite: MT4003

The goal of the course will be to introduce a variety of topics in more
advanced group theory. We shall particularly be interested in topics that
have some relation to the research of the group theorists in St Andrews.

The topics considered will be as follows:

Revision: Review of the basic concepts of subgroup, normal subgroup, quo-
tient group and homomorphism. (Some new results will be proved
which will used later in the course.)

Group Actions: We will explain how a group can induced permutations
of a set and deduce structural properties about subgroups and homo-
morphisms.

Sylow’s Theorem: We review Sylow’s Theorem from the group action
viewpoint and illustrate some applications.

Composition series: We consider how a group can be decomposed into
essentially uniquely determined simple groups. This illustrates one
example of a “series” for a group.

Building groups: We discuss how groups may be constructed and in par-
ticular some ways in which the above decomposition may be reversed.
We shall review the direct product construction but also generalise it.

Soluble groups: We meet a particular class of groups that has a fairly
restricted structure. We shall prove Hall’s Theorem (a generalisation
of Sylow’s Theorem for soluble groups).

Nilpotent groups: We finish by discussing an even more restricted class
of groups, of which the typical example is the p-group.
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Themes: There will be two main themes which we shall attempt to exploit
during the course.

(i) Group Actions: essentially this boils down to a group inducing certain
permutations of a set and using this to obtain information about the
original group.

(ii) Series: If a group G has a collection of subgroups

G = G0 > G1 > G2 > · · · > Gn = 1

where Gi+1 is a normal subgroup of Gi for all i, then information
about the quotient groups Gi/Gi+1 (0 6 i 6 n−1) yields information
about G.

Recommended Texts: The following textbooks are appropriate and pos-
sibly useful for consultation. Only the first two are cheap enough to consider
buying!

• John S. Rose, A Course on Group Theory (Dover Publications, New
York, 1994), £6.50, QA171.R7.

• B. A. F. Wehrfritz, Finite Groups: A Second Course on Group Theory
(World Scientific, Singapore, 1999), £18, not in library.

• Derek J. S. Robinson, A Course in the Theory of Groups (Second
Edition), Graduate Texts in Mathematics 80 (Springer–Verlag, New
York, 1996), £52.50, QA171.R73.

• Joseph J. Rotman, The theory of groups: an introduction (Allyn &
Bacon, 1965). QA171.R7.

• M. I. Kargapolov & Ju. I. Merzljakov, Fundamentals of the Theory
of Groups, Graduate Texts in Mathematics 62 (Springer–Verlag, New
York, 1979). QA171.K28M4
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Section 1

Revision and Re-Activation

In this first section I shall principally recall definitions and results from
earlier lecture courses. Often I will omit the proof of results that have been
previously met during the lectures (though these notes will contain them).
I shall also establish the notation to be used throughout the course. In a
number of places I will be deviating slightly from that met in some of the
earlier courses, but I hope that I am being more consistent with typical
usage in the mathematical community when I do so.

Definition 1.1 A group G is a set with a binary operation (usually written
multiplicatively)

G×G→ G

(x, y) 7→ xy

such that

(i) the binary operation is associative:

x(yz) = (xy)z for all x, y, z ∈ G;

(ii) there is an identity element 1 in G:

x1 = 1x = x for all x ∈ G;

(iii) each element x in G possesses an inverse x−1:

xx−1 = x−1x = 1.

Comments:

(i) I have made no reference to ‘closure’ explicity as an axiom. The reason
for this is that this condition is actually built into the definition of
a binary operation. A binary operation takes two elements of our
group and creates a third element in the group, and so we have closure
automatically.
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(ii) Associativity ensures that we can safely omit brackets from a product
x1x2 . . . xn of n elements x1, x2, . . . , xn of a group. Thus, for example,
the following products are all equal:

x1(x2(x3x4)), (x1(x2x3))x4, ((x1x2)x3)x4, etc.

(iii) We can define powers xn where x ∈ G and n ∈ Z. Standard power laws
hold although we need to remember that in general group elements
do not commute (so, for example, we cannot easily expand (xy)n)
although we can expand the following inverse:

(xy)−1 = y−1x−1.

[Proof [Omitted in lectures]:

(y−1x−1)(xy) = y−1x−1xy = y−11y = y−1y = 1,

so multiplying on the right by the inverse of xy yields y−1x−1 =
(xy)−1.]

For completeness, let us record the term used for groups where all the
elements present do commute:

Definition 1.2 A group G is called abelian if all its elements commute;
that is, if

xy = yx for all x, y ∈ G.

Subgroups

Although one is initially tempted to attack groups by examining their ele-
ments, this turns out not to be terribly fruitful. Even an only moderately
sized group is unyielding to consideration of its multiplication table. Instead
one needs to find some sort of “structure” to study and this is provided by
subgroups and homomorphisms (and, particularly related to the latter, quo-
tient groups).

A subgroup of a group is a subset which is itself a group under the
multiplication inherited from the larger group. Thus:

Definition 1.3 A subset H of a group G is a subgroup of G if

(i) H is non-empty,

(ii) xy ∈ H and x−1 ∈ H for all x, y ∈ H.
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We write H 6 G to indicate that H is a subgroup of G. If G is a group,
the set containing the identity element (which I shall denote by 1) and the
whole group are always subgroups. We shall usually be interested in finding
other subgroups of a group.

We mention in passing that the above conditions for a subset to be a
subgroup are not the only ones used, but they are sufficient for our needs
(and easily memorable).

The identity element of G lies in every subgroup, so it is easy to see that
the conditions of Definition 1.3 are inherited by intersections. Therefore:

Lemma 1.4 If {Hi | i ∈ I } is a collection of subgroups of a group G, then
⋂

i∈I Hi is also a subgroup of G.

Proof: [Omitted in lectures] We have 1 ∈ Hi for all i, so
⋂

i∈I Hi 6= ∅.
Now let x, y ∈

⋂

i∈I Hi. Then for each i, x, y ∈ Hi, so xy ∈ Hi and x
−1 ∈ Hi

since Hi 6 G. We deduce that xy ∈
⋂

i∈I Hi and x
−1 ∈

⋂

i∈I Hi. Thus the
intersection is a subgroup. �

In general, the union of a family of subgroups of a group is not itself
a subgroup. This is not a disaster, however, as the following construction
provides a way around this.

Definition 1.5 Let G be a group and X be a subset of G. The subgroup
of G generated by X is denoted by 〈X〉 and is defined to be the intersection
of all subgroups of G which contain X.

Lemma 1.4 ensures that 〈X〉 is a subgroup of G. It is the smallest
subgroup ofG containingX (in the sense that it is contained in all other such
subgroups; that is, if H is any subgroup of G containing X then 〈X〉 6 H).

Lemma 1.6 Let G be a group and X be a subset of G. Then

〈X〉 = {xε11 x
ε2
2 . . . xεnn | n > 0, xi ∈ X, εi = ±1 for all i }.

Thus 〈X〉 consists of all products of elements of X and their inverses.

Proof: [Omitted in lectures] Let S denote the set on the right-hand
side. Since 〈X〉 is a subgroup (by Lemma 1.4) and by definition it con-
tains X, we deduce that 〈X〉 must contain all products of elements of X
and their inverses. Thus S ⊆ 〈X〉.

On the other hand, S is non-empty (for example, it contains the empty
product (where n = 0) which by convention is taken to be the identity
element 1), it contains all elements of X (the case n = 1 and ε1 = 1), is
clearly closed under products and

(xε11 x
ε2
2 . . . xεnn )−1 = x−εn

n x
−εn−1

n−1 . . . x−ε1
1 ∈ S.
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Hence S is a subgroup of G. The fact that 〈X〉 is the smallest subgroup
containing X now gives 〈X〉 6 S and we deduce the equality claimed in the
lemma. �

Now if H and K are subgroups of G, we have 〈H,K〉 available as the
smallest subgroup of G that contains both H and K. We usually use this
instead of the union.

We will wish to manipulate the subgroups of a group and understand
how they relate to each other. Useful in such a situation are diagrams where
we represent subgroups by nodes and use an upward line to denote inclusion.
For example, the following illustrates the phenomena just discussed:

✉

✉

✉ ✉

✉

✉

�
��

❅
❅❅
�
��

❅
❅❅

1

H ∩K

H K

〈H,K〉

G

(For subgroups H and K of G, we have H ∩ K as the largest subgroup
contained in H and K, and 〈H,K〉 as the smallest subgroup containing H
and K.)

Before discussing more familiar concepts from previous courses, we prove
a result that is extremely useful when manipulating subgroups.

Lemma 1.7 (Dedekind’s Modular Law) Let G be a group and H, K
and L be subgroups of G with K 6 L. Then

HK ∩ L = (H ∩ L)K.

(Here we define HK = {hk | h ∈ H, k ∈ K }. A similar formula defines the
set product (H ∩ L)K.)

As an aide memoire, the following diagram can be used to remember the
formula:

✉

✉

✉

✉✉❤

✉ ✉

✉

�
�
�
�

❅
❅
�
�
�
�

❅
❅

❅
❅
�
�

❅
❅

❅
❅

K H ∩ L

L

H

HK
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The circled node represents both HK ∩ L and (H ∩ L)K. (The diagram is
slightly misleading in the context of the previous discussion: HK (and the
other products appearing) need not be a subgroup, but the diagram is at
least useful to remember the result.)

Proof: H ∩ L 6 H, so immediately we have (H ∩ L)K ⊆ HK. Also
H ∩L and K are contained in L, so (H ∩L)K ⊆ L (since L is closed under
products). Thus

(H ∩ L)K ⊆ HK ∩ L.

Now let x ∈ HK ∩ L. Then x = hk where h ∈ H and k ∈ K. Now
h = xk−1 ∈ L since x ∈ L and k ∈ K 6 L. Thus h ∈ H ∩ L and so
x = hk ∈ (H ∩ L)K. �

Cosets

Subgroups enforce a rigid structure on a group: specifically a group is the
disjoint union of the cosets of any particular subgroup. Accordingly we need
the following definition.

Definition 1.8 Let G be a group, H be a subgroup of G and x be an
element of G. The (right) coset of H with representative x is the subset

Hx = {hx | h ∈ H }

of G.

We can equally well define what is meant by a left coset, but we shall
work almost exclusively with right cosets. For the latter reason we shall
simply use the term ‘coset’ and always mean ‘right coset’.

Theorem 1.9 Let G be a group and H be a subgroup of G.

(i) If x, y ∈ G, then Hx = Hy if and only if xy−1 ∈ H.

(ii) Any two cosets of H are either equal or are disjoint: if x, y ∈ G, then
either Hx = Hy or Hx ∩Hy = ∅.

(iii) G is the disjoint union of the cosets of H.

(iv) If x ∈ G, the map h 7→ hx is a bijection from H to the coset Hx.

Proof: [Omitted in lectures] (i) Suppose Hx = Hy. Then x = 1x ∈
Hx = Hy, so x = hy for some h ∈ H. Thus xy−1 = h ∈ H.

Conversely if xy−1 ∈ H, then hx = h(xy−1)y ∈ Hy for all h ∈ H, so
Hx ⊆ Hy. Also hy = hyx−1x = h(xy−1)−1x ∈ Hx for all h ∈ H, so
Hy ⊆ Hx. Thus Hx = Hy under this assumption.
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(ii) Suppose that Hx ∩ Hy 6= ∅. Then there exists z ∈ Hx ∩ Hy, say
z = hx = ky for some h, k ∈ H. Then xy−1 = h−1k ∈ H and we deduce
Hx = Hy by (i).

(iii) If x ∈ G, then x = 1x ∈ Hx. Hence the union of all the (right)
cosets of H is the whole of G. Part (ii) ensures this is a disjoint union.

(iv) By definition of the coset Hx, the map h 7→ hx is a surjective map
from H to Hx. Suppose hx = kx for some h, k ∈ H. Then multiplying on
the right by x−1 yields h = k. Thus this map is also injective, so it is a
bijection, as claimed. �

Write |G : H| for the number of cosets of H in G and call this the index
of H in G. The previous result tells us that our group G is the disjoint union
of |G : H| cosets of H and each of these contain |H| elements. Hence:

Theorem 1.10 (Lagrange’s Theorem) Let G be a group and H be a
subgroup of G. Then

|G| = |G : H| · |H|.

In particular, if H is a subgroup of a finite group G, then the order of H
divides the order of G. �

At this point we insert two results about the index of subgroups. The
first is frequently used while the second will be needed (much) later in the
course.

Lemma 1.11 Let H and K be subgroups of a group G with K 6 H 6 G.
Then

|G : K| = |G : H| · |H : K|.

I shall omit the proof (both in the lectures and these notes). In full
generality, it appears on Problem Sheet I, while for finite groups it is easily
deduced from Lagrange’s Theorem.

Lemma 1.12 Let G be a group and H and K be subgroups of G. Then

|G : H ∩K| 6 |G : H| · |G : K|.

Furthermore, if |G : H| and |G : K| are coprime integers, then

|G : H ∩K| = |G : H| · |G : K|.

Proof: Define a map from the set of cosets of H ∩ K to the Cartesian
product of the sets of cosets of H and of K by

φ : (H ∩K)x 7→ (Hx,Kx).
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Now

(H ∩K)x = (H ∩K)y if and only if xy−1 ∈ H ∩K

if and only if xy−1 ∈ H and xy−1 ∈ K

if and only if Hx = Hy and Kx = Ky.

So φ is well-defined and injective. Therefore

|G : H ∩K| 6 |G : H| · |G : K|. (1.1)

Now suppose that |G : H| and |G : K| are coprime integers. First note
that Equation (1.1) tells us that |G : H ∩ K| is an integer. We need to
establish the reverse inequality. Now H ∩K 6 H 6 G, so

|G : H ∩K| = |G : H| · |H : H ∩K|

by Lemma 1.11. It follows that |G : H ∩ K| is divisible by |G : H|. It is
similarly divisible by |G : K|. As these integers are coprime, we deduce

|G : H| · |G : K| divides |G : H ∩K|.

This establishes the required reverse inequality and completes the proof
when taken together with Equation (1.1). �

Orders of elements and Cyclic groups

Definition 1.13 If G is a group and x is an element of G, we define the
order of x to be the smallest positive integer n such that xn = 1 (if such
exists) and otherwise say that x has infinite order.

We write o(x) for the order of the element x.

If xi = xj for i < j, then xj−i = 1 and x has finite order and o(x) 6 j−i.
In particular, the powers of x are always distinct if x has infinite order.

If x has finite order n and k ∈ Z, write k = nq + r where 0 6 r < n.
Then

xk = xnq+r = (xn)qxr = xr (1.2)

(since xn = 1). Furthermore 1, x, x2, . . . , xn−1 are distinct (by the first line
of the previous paragraph). Hence:

Proposition 1.14 (i) If x ∈ G has infinite order, then the powers xi (for
i ∈ Z) are distinct.

(ii) If x ∈ G has order n, then x has precisely n distinct powers, namely
1, x, x2, . . . , xn−1. �
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Corollary 1.15 Let G be a group and x ∈ G. Then

o(x) = |〈x〉|.

If G is a finite group, then o(x) divides |G|. �

Equation (1.2) yields a further observation, namely:

xk = 1 if and only if o(x) | k.

In the case that a single element generates the whole group, we give a
special name:

Definition 1.16 A group G is called cyclic (with generator x) if G = 〈x〉.

Using ideas as just described, it is reasonably easy to establish the fol-
lowing (and also a corresponding result for infinite cyclic groups):

Theorem 1.17 Let G be a finite cyclic group of order n. Then G has
precisely one subgroup of order d for every divisor d of n.

The proof of this theorem is omitted. It, and more, can be found on
Problem Sheet I.

Normal subgroups and quotient groups

Definition 1.18 A subgroup N of a group G is called a normal subgroup
of G if g−1xg ∈ N for all x ∈ N and all g ∈ G. We write N P G to indicate
that N is a normal subgroup of G.

The element g−1xg is called the conjugate of x by g and is often denoted
by xg. We shall discuss this in greater detail in Section 2.

If N P G, then we write G/N for the set of cosets of N in G:

G/N = {Nx | x ∈ G }.

Theorem 1.19 Let G be a group and N be a normal subgroup of G. Then

G/N = {Nx | x ∈ G },

the set of cosets of N in G, is a group when we define the multiplication by

Nx ·Ny = Nxy

for x, y ∈ G.
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Proof: [Omitted in lectures] The part of this proof requiring the most
work is to show that this product is actually well-defined. Suppose that
Nx = Nx′ and Ny = Ny′ for some elements x, x′, y, y′ ∈ G. Then x = ax′

and y = by′ for some a, b ∈ N . Then

xy = (ax′)(by′) = ax′b(x′)−1x′y′ = ab(x
′)−1

x′y′.

Since N P G, we have b(x
′)−1

∈ N . Hence (xy)(x′y′)−1 = ab(x
′)−1

∈ N and
we deduce Nxy = Nx′y′. This shows that the above multiplication of cosets
is indeed well-defined.

It remains to show that the set of cosets forms a group under this mul-
tiplication. If x, y, z ∈ G, then

(Nx·Ny)·Nz = Nxy ·Nz = N(xy)z = Nx(yz) = Nx·Nyz = Nx·(Ny ·Nz).

Thus the multiplication is associative. We calculate

Nx ·N1 = Nx1 = Nx = N1x = N1 ·Nx

for all cosets Nx, so N1 is the identity element in G/N , while

Nx ·Nx−1 = Nxx−1 = N1 = Nx−1x = Nx−1 ·Nx,

so Nx−1 is the inverse of Nx in G/N .
Thus G/N is a group. �

Definition 1.20 If G is a group and N is a normal subgroup of G, we
call G/N (with the above multiplication) the quotient group of G by N .

We shall discuss quotient groups later in this section. They are best
discussed, however, in the context of homomorphisms, so we shall move onto
these in a moment. I shall just mention some results (one part of which I
shall prove, the rest appear on Problem Sheet I) which will be needed later.

Lemma 1.21 Let G be a group and let H and K be subgroups of G. Define
HK = {hk | h ∈ H, k ∈ K }. Then

(i) HK is a subgroup of G if and only if HK = KH;

(ii) if K is a normal subgroup of G then HK is a subgroup of G (and
consequently HK = KH);

(iii) if H and K are normal subgroups of G, then H ∩ K and HK are
normal subgroups of G;

(iv) |HK| · |H ∩K| = |H| · |K|.
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When H and K are finite, then we can rearrange the last formula to give

|HK| =
|H| · |K|

|H ∩K|
.

This holds even when HK is not a subgroup.

Proof: (iv) Define a map α : H ×K → HK by

(h, k) 7→ hk.

Then α is surjective. Fix a point x ∈ HK, say x = h0k0 for some fixed
h0 ∈ H and k0 ∈ K. Then for (h, k) ∈ H ×K,

(h, k)α = x if and only if hk = h0k0

if and only if h−1
0 h = k0k

−1 ∈ H ∩K

if and only if h = h0a, k = a−1k0 where a ∈ H ∩K.

Thus for each x ∈ HK, we see

{ (h, k) ∈ H ×K | (h, k)α = x } = { (h0a, a
−1k0) | a ∈ H ∩K }.

Hence we may partition H × K into |HK| subsets, each corresponding to
one point in HK and each of size |H ∩K|.

H ×K
HK

x

{x}α−1

This proves
|H ×K| = |HK| · |H ∩K|;

that is,
|H| · |K| = |HK| · |H ∩K|.

�
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Homomorphisms

Definition 1.22 Let G and H be groups. A homomorphism from G to H
is a map φ : G→ H such that

(xy)φ = (xφ)(yφ) for all x, y ∈ G.

Thus a homomorphism between two groups is a map which respects the
multiplications present.

Note that I am writing my maps on the right, as is conventional in much
of algebra. This has two advantages: the first is that when we compose a
number of maps we can read from left to right, rather than from right to left.
The second is that it will make certain proofs more notationally convenient.

Related to homomorphisms we have the following definition.

Definition 1.23 Let φ : G → H be a homomorphism between two groups.
Then the kernel of φ is

kerφ = {x ∈ G | xφ = 1 },

while the image of φ is

imφ = Gφ = {xφ | x ∈ G }.

Note that kerφ ⊆ G while imφ ⊆ H here.

Lemma 1.24 Let φ : G → H be a homomorphism between two groups
G and H. Then

(i) 1φ = 1;

(ii) (x−1)φ = (xφ)−1 for all x ∈ G;

(iii) the kernel of φ is a normal subgroup of G;

(iv) the image of φ is a subgroup of H.

Proof: [Omitted in lectures] (i) 1φ = (1 · 1)φ = (1φ)(1φ) and multi-
plying by the inverse of 1φ yields 1 = 1φ.

(ii) (xφ)(x−1φ) = (xx−1)φ = 1φ = 1 and multiplying on the left by the
inverse of xφ yields (x−1)φ = (xφ)−1.

(iii) By (i), 1 ∈ ker φ. If x, y ∈ kerφ, then (xy)φ = (xφ)(yφ) = 1 · 1 = 1
and (x−1)φ = (xφ)−1 = 1−1 = 1, so we deduce xy ∈ kerφ and x−1 ∈ kerφ.
Therefore kerφ is a subgroup of G. Now if x ∈ kerφ and g ∈ G, then
(g−1xg)φ = (g−1φ)(xφ)(gφ) = (gφ)−11(gφ) = 1, so g−1xg ∈ kerφ. Hence
ker φ is a normal subgroup of G.

(iv) Let g, h ∈ imφ. Then g = xφ and h = yφ for some x, y ∈ G. Then
gh = (xφ)(yφ) = (xy)φ ∈ im φ and g−1 = (xφ)−1 = (x−1)φ ∈ imφ. Thus
imφ is a subgroup of G. �
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The kernel is also useful for determining when a homomorphism is in-
jective.

Lemma 1.25 Let φ : G → H be a homomorphism between two groups
G and H. Then φ is injective if and only if ker φ = 1.

Proof: Suppose φ is injective. If x ∈ ker φ, then xφ = 1 = 1φ, so x = 1 by
injectivity. Hence ker φ = 1.

Conversely suppose that ker φ = 1. If xφ = yφ, then (xy−1)φ =
(xφ)(yφ)−1 = 1, so xy−1 ∈ ker φ. Hence xy−1 = 1 and, upon multiply-
ing on the right by y, we deduce x = y. Hence φ is injective. �

Example 1.26 Let G be a group and N be a normal subgroup of G. Define
a map π : G→ G/N by

π : x 7→ Nx.

The definition of the multiplication in the quotient group G/N ensures that
π is a homomorphism. It is called the natural map (or canonical homomor-
phism). We see

ker π = {x ∈ G | Nx = N1 };

that is,
ker π = N,

and clearly imπ = G/N ; that is, π is surjective.

Thus, it is not just that every kernel is a normal subgroup, but also that
every normal subgroup is the kernel of some homomorphism.

Isomorphism Theorems

We shall finish this section by discussing the four important theorems that
relate quotient groups and homomorphisms. We shall need the concept of
isomorphism, so we recall that first.

Definition 1.27 An isomorphism between two groups G and H is a homo-
morphism φ : G→ H which is a bijection. We write G ∼= H to indicate that
there is an isomorphism between G and H, and we say that G and H are
isomorphic.

What this means is that if G and H are isomorphic groups, then the
elements of the two groups are in one-one correspondence in such a way
that the group multiplications produce precisely corresponding elements.
Thus essentially the groups are identical: we may have given the groups
different names and labelled the elements differently, but we are looking at
identical objects in terms of their structure.
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Theorem 1.28 (First Isomorphism Theorem) Let G and H be groups
and φ : G→ H be a homomorphism. Then ker φ is a normal subgroup of G,
imφ is a subgroup of H and

G/ ker φ ∼= imφ.

Proof (Sketch): We already know that kerφ P G, so we can form
G/ker φ. The isomorphism is the map

(ker φ)x 7→ xφ (for x ∈ G).

�

Omitted details: LetK = ker φ and define θ : G/K → imφ byKx 7→ xφ
for x ∈ G. We note

Kx = Ky if and only if xy−1 ∈ K

if and only if (xy−1)φ = 1

if and only if (xφ)(yφ)−1 = 1

if and only if xφ = yφ.

This shows that θ is well-defined and also that it is injective. By definition
of the image, θ is surjective. Finally

(
(Kx)(Ky)

)
θ = (Kxy)θ = (xy)φ = (xφ)(yφ) = (Kx)θ · (Ky)θ

for all x, y ∈ G, so θ is a homomorphism. Hence θ is the required isomor-
phism. (All other parts of the theorem are found in Lemma 1.24.) �

Rather than move straight on to the Second and Third Isomorphism
Theorems, I shall deal with the Correspondence Theorem next so that I can
use it when talking about the other Isomorphism Theorems. The Corre-
spondence Theorem essentially tells us how to handle quotient groups, at
least in terms of their subgroups, which is to some extent the principal way
of handling them anyway.

Theorem 1.29 (Correspondence Theorem) Let G be a group and let
N be a normal subgroup of G.

(i) There is a one-one inclusion-preserving correspondence between sub-
groups of G containing N and subgroups of G/N given by

H 7→ H/N whenever N 6 H 6 G.

(ii) Under the above correspondence, normal subgroups of G which con-
tain N correspond to normal subgroups of G/N .
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Note we are saying that every subgroup of G/N has the form H/N
where N 6 H 6 G. Specifically, if J is a subgroup of G/N , it corresponds
to H = {x ∈ G | Nx ∈ J } (the set of elements which are mapped into J by
the natural map G → G/N) and then J = H/N for this H. Also part (ii)
says:

H P G if and only if H/N P G/N

(for N 6 H 6 G).
If we view it that the ‘structure’ of a group is somehow the shape of

the diagram of subgroups (with those ‘special’ subgroups which are normal
indicated), then the Correspondence Theorem tells us how the structures of a
group and a quotient are related. The diagram of subgroups of the quotient
group G/N is simply that part of the diagram of subgroups sandwiched
between G and N .

✉

✉

✉

❅
❅
�
�

�
�
❅

❅
q q q

✉

✉

❅
❅
�
�

�
�
❅

❅
q q q✲✛

1

N

G

1 = {N1}

G/N

Proof: [Omitted in lectures] Let S denote the set of subgroups of G
that contain N (that is, S = {H | N 6 H 6 G }) and let T denote the set
of subgroups of G/N . Let π : G→ G/N denote the natural map x 7→ Nx.

First note that if H ∈ S , then N is certainly also a normal subgroup
of H and we can form the quotient group H/N . This consists of some of
the elements of G/N and forms a group, so is a subgroup of G/N . Thus we
do indeed have a map Φ: S → T given by H 7→ H/N . Also note that if
H1,H2 ∈ S with H1 6 H2, then we immediately obtain H1/N 6 H2/N , so
Φ preserves inclusions.

Suppose H1,H2 ∈ S and that H1/N = H2/N . Let x ∈ H1. Then
Nx ∈ H1/N = H2/N , so Nx = Ny for some y ∈ H2. Then xy−1 ∈ N , say
xy−1 = n for some n ∈ N . Since N 6 H2, we then have x = ny ∈ H2.
This shows H1 6 H2 and a symmetrical argument shows H2 6 H1. Hence
if H1Φ = H2Φ then necessarily H1 = H2, so Φ is injective.

Finally let J ∈ T . Let H be the inverse image of J under the natural
map π; that is,

H = {x ∈ G | xπ ∈ J } = {x ∈ G | Nx ∈ J }.

If x ∈ N , then Nx = N1 ∈ J , since N1 is the identity element in the
quotient group. Therefore N 6 H. If x, y ∈ H, then Nx,Ny ∈ J and so
Nxy = (Nx)(Ny) ∈ J and Nx−1 = (Nx)−1 ∈ J . Hence xy, x−1 ∈ H, so
we deduce that H is a subgroup which contains N . Thus H ∈ S . We now
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consider the image of this subgroup H under the map Φ. If x ∈ H, then
Nx ∈ J , so H/N 6 J . On the other hand, an arbitrary element of J has the
form Nx for some element x in G and, by definition, this element x belongs
to H. Hence every element of J has the form Nx for some x ∈ H and we
deduce J = H/N = HΦ. Thus Φ is surjective.

This completes the proof of Part (i).
(ii) We retain the notation of Part (i). SupposeH ∈ S and that H P G.

Consider a coset Nx in H/N (with x ∈ H) and an arbitrary coset Ng
in G/N . Now g−1xg ∈ H since H P G, so (Ng)−1(Nx)(Ng) = Ng−1xg ∈
H/N . Thus H/N P G/N .

Conversely suppose J P G/N . Let H = {x ∈ G | Nx ∈ J }, so that
J = H/N (as in the last paragraph of (i)). Let x ∈ H and g ∈ G. Then
Nx ∈ J , so Ng−1xg = (Ng)−1(Nx)(Ng) ∈ J by normality of J . Thus
g−1xg ∈ H, by definition of H, and we deduce that H P G.

Hence normality is preserved by the bijection Φ. �

Theorem 1.30 (Second Isomorphism Theorem) Let G be a group, let
H be a subgroup of G and let N be a normal subgroup of G. Then H ∩N is
a normal subgroup of H, NH is a subgroup of G, and

H/(H ∩N) ∼= NH/N.

Proof: The natural map π : x 7→ Nx is a homomorphism G → G/N . Let
φ be the restriction to H; i.e., φ : H → G/N given by x 7→ Nx for all x ∈ H.
Then φ is once again a homomorphism,

ker φ = H ∩ ker π = H ∩N

and

imφ = {Nx | x ∈ H } = {Nnx | x ∈ H, n ∈ N } = NH/N.

By the First Isomorphism Theorem, H ∩N P H, NH/N 6 G/N and

H/(H ∩N) ∼= NH/N.

Finally NH is a subgroup of G by the Correspondence Theorem. �

Theorem 1.31 (Third Isomorphism Theorem) Let G be a group and
let H andK be normal subgroups of G such that K 6 H 6 G. ThenH/K is
a normal subgroup of G/K and

G/K

H/K
∼= G/H.
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This theorem then tells us about the behaviour of normal subgroups of
quotient groups and their associated quotients. Specifically, via the Cor-
respondence Theorem we know that a normal subgroup of the quotient
group G/K has the form H/K where K 6 H P G. Now we would like
to know what the quotient group by this normal subgroup is, and the Third
Isomorphism Theorem tells us that it is the same as the quotient in the orig-
inal group. In terms of our diagrams of subgroups we have the following:

✉

✉

✉

✉

1

K

H

G }
isomorphic
quotients

{

✉

✉

✉

1 = {K1}

H/K

G/K

Proof: Define θ : G/K → G/H by Kx 7→ Hx for x ∈ G. This is a well-
defined map [if Kx = Ky, then xy−1 ∈ K 6 H, so Hx = Hy] which
is easily seen to be a homomorphism [

(
(Kx)(Ky)

)
θ = (Kxy)θ = Hxy =

(Hx)(Hy) = (Kx)θ · (Ky)θ for all x, y ∈ G] and clearly im θ = G/H. The
kernel is

ker θ = {Kx | x ∈ H } = H/K.

Hence, by the First Isomorphism Theorem, H/K P G/K and

G/K

H/K
∼= G/H.

�

This completes our rapid review of previous group theory, at least for
now. Certain results will be reviewed later when we need them, while various
examples will appear on problem sheets and during the course.
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Section 2

Group Actions

The purpose of this section is to explain what it means for a group to ‘act’
on a set. There are two principal reasons for doing so.

(i) This is the main way that group theory applies to other branches of
mathematics as well as to computer science and the physical sciences.

(ii) This gives us a useful set of terminology and technology for referring
to the behaviour of a group. For example, if we can say that a finite
group G acts on its set of Sylow p-subgroups, then all the methods
and results of this section can be applied to deduce information about
the original group G. This will be the main reason we shall need this
technology in this course.

Let G be a group and Ω be a set. A group action of G on Ω will be
a map µ : Ω × G → Ω satisfying certain properties. In order to make the
properties more intuitive we shall denote the image of a pair (ω, x) under µ
by ωx.

Definition 2.1 A group action is a map

µ : Ω×G→ Ω

(ω, x) 7→ ωx

(where Ω is a set and G is a group) such that

(i) (ωx)y = ωxy for all ω ∈ Ω and x, y ∈ G,

(ii) ω1 = ω for all ω ∈ Ω.

We then say that G acts on Ω.

We shall think of an action as a method of applying the element x of
the group G to points in the set Ω. Thus the first condition states that
applying two elements x and y in sequence has the same effect as applying the
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product xy, while the second condition is the requirement that the identity
element produces the effect of the identity map when it is applied.

We shall spend some time developing the theory of group actions. First
we shall present some examples which illustrate the concept’s usefulness and
allow us to recall some standard groups at the same time.

Example 2.2 (i) Let Ω = {1, 2, . . . , n}. Recall that the symmetric group
of degree n is denoted by Sn and consists of all bijections σ : Ω →
Ω. Such a bijection is called a permutation of Ω and we multiply
permutations by composing them as maps.

Then Sn acts on Ω by
(i, σ) 7→ iσ

(the effect of applying the permutation σ to the number i ∈ Ω). The
two conditions hold immediately: the first follows since multiplication
in Sn is composition and the second holds since the identity element
in Sn is the identity permutation (the map which fixes all points of Ω).

(ii) Recall that the dihedral group of order 2n is the subgroup of Sn gen-
erated by the following two permutations:

α = (1 2 3 . . . n)

β =

(
1 2 3 . . . n
1 n n− 1 . . . 2

)

= (2 n)(3 n−1) . . . .

I shall denote this group by D2n. (This is a slight modification from
the notation used in MT4003, but at least consistent with my preferred
textbooks.) Recall this has the following properties:

o(α) = n, o(β) = 2, βα = α−1β.

Now consider a regular n-gon with vertices labellled from 1 to n.

1
2

3

n
α

β

Applying α to the vertices induces an anti-clockwise rotation of the
regular n-gon. Applying β produces a reflection in the axis through
vertex 1. Hence both α and β induce transformations of the regular
n-gon and consequently any produce of them does so also.

Conclusion: D2n acts on the vertices of a regular n-gon.
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(iii) Let V be a vector space of dimension n over a field F . Fix a basis
{e1, e2, . . . , en} for V . Any linear transformation T : V → V can be
represented by an n × n matrix with entries from F and the trans-
formation is invertible when the corresponding matrix is non-singular
(i.e., has non-zero determinant).

Recall that the general linear group of degree n over F is

GLn(F ) = {A | A is an n× n matrix over F with detA 6= 0 }.

Then GLn(F ) acts on V : a matrix A in GLn(F ) moves the vector v
(from V ) according to the linear transformation determined by A.

These give us examples of group actions arising in combinatorial, geo-
metrical and linear arenas. We shall also find lots of examples occurring of
groups acting on something related to their own structure. We shall first
develop the theory of group actions so that we can use the group theoretical
examples to prove things about groups.

Orbits

Definition 2.3 Let G be a group, let Ω be a set and let G act on Ω. If
ω ∈ Ω, the orbit containing ω is defined to be

ωG = {ωx | x ∈ G }.

Thus, the orbit containing ω consists of all the points of Ω we can arrive
at by applying element of the group G to ω.

The basic properties of orbits are as follows.

Proposition 2.4 Let G be a group, let Ω be a set and let G act on Ω. Let
ω, ω′ ∈ Ω. Then

(i) ω ∈ ωG;

(ii) either ωG = (ω′)G or ωG ∩ (ω′)G = ∅.

Thus part (ii) asserts that any two orbits are either disjoint or are equal.
The proposition then yields:

Corollary 2.5 Let the group G act on the set Ω. Then Ω is the disjoint
union of its orbits. �

There are some similarities to our result that says a group is the disjoint
union of the cosets of a subgroup. The difference here is that it is not
necessarily the case that all the orbits have the same size.

It remains to prove Proposition 2.4.
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Proof of Proposition 2.4: (i) We have ω = ω1, so ω ∈ ωG.
(ii) Suppose α ∈ ωG ∩ (ω′)G. Hence there exist x, y ∈ G such that

α = ωx = (ω′)y. Apply y−1:

ωxy−1

= (ωx)y
−1

= ((ω′)y)y
−1

= (ω′)yy
−1

= (ω′)1 = ω′.

Now if g ∈ G, we have

(ω′)g = (ωxy−1

)g = ωxy−1g ∈ ωG

and we deduce (ω′)G ⊆ ωG.
Similarly from (ω′)y = ωx, we deduce

ωg = (ω′)yx
−1g for all g ∈ G

and hence ωG ⊆ (ω′)G.
Hence if ωG ∩ (ω′)G 6= ∅, then ωG = (ω′)G. �

The following definition relates to this disjoint union of orbits.

Definition 2.6 We say that a group G acts transitively on a set Ω if it has
precisely one orbit for its action.

Thus G acts transitively on Ω if for all ω, ω′ ∈ Ω there exists x ∈ G
such that ω′ = ωx. (For this is what it means for ω′ to lie in the orbit
containing ω.)

Stabilisers

Definition 2.7 Let the group G act on the set Ω. If ω ∈ Ω, then the
stabiliser of ω in G is defined to be

Gω = {x ∈ G | ωx = ω }.

Thus the stabiliser of ω is the set of all group elements which fix ω.

Lemma 2.8 LetG act on Ω and ω ∈ Ω. The stabiliser Gω of ω is a subgroup
of G.

Proof: We easily check the conditions to be a subgroup. First ω1 = ω,
since we have an action, so 1 ∈ Gω. Suppose x, y ∈ Gω. Then

ωxy = (ωx)y = ωy = ω

so xy ∈ Gω, while

ωx−1

= (ωx)x
−1

= ωxx−1

= ω1 = ω

so x−1 ∈ Gω. Hence Gω is a subgroup of G. �
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The crucial reason why stabilisers help us is the following:

Theorem 2.9 (Orbit-Stabiliser Theorem) Let G be a group, let Ω be
a set and let G act on Ω. If ω ∈ Ω, then

|ωG| = |G : Gω|.

Thus the ‘length’ of an orbit equals the index of the corresponding sta-
biliser.

Proof: We demonstrate the existence of a bijection from the set of cosets
of the stabiliser Gω to the orbit of ω. Define

φ : Gωx 7→ ωx.

We first check that this is well-defined. Suppose Gωx = Gωy for some
x and y. Then xy−1 ∈ Gω, so

ωxy−1

= ω.

Apply y:
ωxy−1y = ωy.

Therefore
ωx = ωy.

Hence φ is well-defined.
Suppose x, y ∈ G and that (Gωx)φ = (Gωy)φ; that is,

ωx = ωy.

Therefore, upon applying y−1,

ωxy−1

= ωyy−1

= ω1 = ω,

so xy−1 ∈ Gω and we deduce Gωx = Gωy. Thus φ is injective.
Finally clearly the image of φ is the orbit of ω.
Hence φ : Gωx 7→ ωx does define a bijection from the set of cosets of Gω

to the orbit of ω. Thus
|ωG| = |G : Gω|.

�

One thing to consider is the following observation: Suppose G acts on
the set Ω and that ω and ω′ are two points that lie in the same orbit. We
know that orbits are either disjoint or equal, so

ωG = (ω′)G.
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Hence, by the Orbit-Stabiliser Theorem,

|G : Gω| = |G : Gω′ |.

In particular, if G is a finite group, we can deduce already that |Gω| = |Gω′ |.
In fact, we can observe not only that this is true but far much more in general
as the following result shows.

Proposition 2.10 Let G be a group, let Ω be a set and let G act on Ω.
If two points ω and ω′ lie in the same orbit of G on Ω, then the stabilisers
Gω and Gω′ are conjugate in G.

Proof: Since ω and ω′ lie in the same orbit, there exists x ∈ G such that
ω′ = ωx. We shall show that

Gω′ = (Gω)
x = x−1Gωx;

i.e.,
Gωx = (Gω)

x. (2.1)

Let g ∈ Gω, so that x−1gx ∈ (Gω)
x. Then

(ω′)x
−1gx = (ωx)x

−1gx

= ωxx−1gx

= ωgx

= ωx (as g ∈ Gω)

= ω′.

Hence x−1gx ∈ Gω′ ; that is, (Gω)
x ⊆ Gω′ .

For the reverse inclusion, note first that from ω′ = ωx, we deduce

(ω′)x
−1

= ωxx−1

= ω,

so from the already established inclusion above we get

(Gω′)x
−1

⊆ Gω;

that is,
xGω′x−1 ⊆ Gω.

Multiply on the left by x−1 and on the right by x:

Gω′ ⊆ x−1Gωx = (Gω)
x.

Thus Gω′ = (Gω)
x, as required. �

We shall continue to develop the theory of group actions later, but we
shall first consider a couple of examples which illustrate how we can apply
this theory to the study of groups.
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Conjugation

Example 2.11 (Conjugation Action) Let G be a group and attempt to
define an action of G on itself by

G×G→ G

(g, x) 7→ x−1gx = gx,

the conjugate of g by x. We need to check the conditions to be a group
action:

(i) (gx)y = y−1(x−1gx)y = y−1x−1gxy = (xy)−1g(xy) = gxy for all
g, x, y ∈ G;

(ii) g1 = 1−1g1 = 1g1 = g for all g ∈ G.

Thus we have a genuine action of G on itself. We should therefore consider
the orbits and stabilisers for this action.

If g ∈ G, the orbit of G containing g (for this conjugation action) is

gG = { gx | x ∈ G } = {x−1gx | x ∈ G },

the set of all conjugates of g. This is called the conjugacy class of g (in G).
The stabiliser of g under this action is

Gg = {x ∈ G | gx = g }

= {x ∈ G | x−1gx = g }

= {x ∈ G | gx = xg };

i.e., with this particular action, the stabiliser of g consists of the set of
elements of G which commute with g.

Definition 2.12 If G is a group and g is an element of G, the centraliser
of g (in G) is

CG(g) = {x ∈ G | gx = xg }.

We may now apply the standard facts about group actions to make
deductions about conjugation in a group.

Proposition 2.13 Let G be a group. Then

(i) G is the disjoint union of its conjugacy classes;

(ii) the centraliser of an element g is a subgroup of G;

(iii) the number of conjugates of an element g equals the index of its cen-
traliser;
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(iv) if g, x ∈ G then
CG(g

x) = CG(g)
x.

Proof: (i) Immediate from Corollary 2.5: a set is the disjoint union of the
orbits in a group action.

(ii) Immediate from Lemma 2.8: a stabiliser is a subgroup.
(iii) Immediate from the Orbit-Stabiliser Theorem (Theorem 2.9: the

length of an orbit equals the index of the corresponding stabiliser.
(iv) Immediate from Proposition 2.10 (and specifically Equation 2.1). �

(This material also appeared in MT4003, but we are able to deduce it
immediately from the technology of group actions. Thus group actions form
a natural setting to discuss conjugation.)

We continue our discussion of conjugation to determine more properties.

Let G be a finite group. Then G is the disjoint union of its conjugacy
classes:

G = C1 ∪ C2 ∪ · · · ∪ Ck.

Hence

|G| = |C1|+ |C2|+ · · ·+ |Ck|

=

k∑

i=1

|G : CG(gi)|,

where gi is a representative for the conjugacy class Ci. Suppose that |Ci| = 1
for 1 6 i 6 ℓ and |Ci| > 1 for i > ℓ. Then

|G| = ℓ+

k∑

i=ℓ+1

|G : CG(gi)|.

Note

|Ci| = 1 if and only if gxi = gi for all x ∈ G

if and only if gix = xgi for all x ∈ G.

Definition 2.14 If G is a group, the centre of G is

Z(G) = { g ∈ G | gx = xg for all x ∈ G };

that is, the set of elements in G which commute with all elements of G.

The centre of G can easily be seen to be a subgroup of G. [Proof
[Omitted in lectures]: 1x = x = x1 for all x ∈ G, so 1 ∈ Z(G). If
g, h ∈ Z(G), then (gh)x = ghx = gxh = xgh = x(gh) for all x ∈ G, so
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gh ∈ Z(G) and upon multiplying the equation gx = xg on the left and on
the right by g−1, we obtain xg−1 = g−1(gx)g−1 = g−1(xg)g−1 = g−1x for
all x ∈ G, so g−1 ∈ Z(G). Hence Z(G) is a subgroup of G.]

Our discussion above now establishes:

Theorem 2.15 (Class Equation) Let G be a finite group. Then

|G| = |Z(G)|+
k∑

i=ℓ+1

|G : CG(xi)|

where xℓ+1, . . . , xk are representatives for the conjugacy classes of length
greater than 1. �

Conjugation on subgroups

Example 2.16 (Conjugation action on subsets and subgroups)
Let G be a group and let P(G) denote the set of all subsets of G (the power
set of G). We define an action of G on P(G) by

P(G) ×G→ P(G)

(A, x) 7→ Ax = x−1Ax = {x−1ax | a ∈ A }.

A similar argument to Example 2.11 checks that this is indeed an action
(this basically only relies on associativity of the group multiplication and the
formula for the inverse of a product of two elements). The orbit containing
the subset A is the set of all conjugates of A and the stabiliser is the so-called
‘normaliser’ of A:

Definition 2.17 If G is a group and A is a subset of G, the normaliser
of A (in G) is

NG(A) = {x ∈ G | Ax = A }.

Since this is a stabiliser, it is always a subgroup of G (by Lemma 2.8).
We shall be most interested in the case when we conjugate subgroups. To
discuss this further we shall need to examine conjugation more carefully.

Let G be a group and fix an element x ∈ G. Write τx for the map which
is conjugation by x:

τx : G→ G

g 7→ gx = x−1gx.
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Observations:

(i)
(gh)τx = x−1ghx = x−1gx · x−1hx = (gτx)(hτx)

for all g, h ∈ G; that is, τx is a homomorphism.

(ii)
gτxτx−1 = x(x−1gx)x−1 = g

so that τxτx−1 = idG, and similarly τx−1τx = idG. Hence τx is an
invertible map (it has τx−1 as its inverse).

Invertible homomorphisms are, of course, called isomorphisms, but in
the special case where the homomorphism is from a group back to itself, we
give it a special name.

Definition 2.18 Let G be a group. An automorphism of G is a map G→ G
which is an isomorphism.

We have shown that τx (conjugation by x) is an automorphism of our
group.

Now if H is a subgroup of G, its image under this automorphism must
still be a subgroup. Hence the conjugate

Hx = {x−1hx | h ∈ H }

is also a subgroup of G. Furthermore, the Orbit-Stabiliser Theorem (Theo-
rem 2.9) tells us that the number of conjugates of H equals the index of its
normaliser (this being the stabiliser for this action).

We record all this in the following observation.

Proposition 2.19 Let G be a group.

(i) If x ∈ G, the conjugation map τx : g 7→ gx is an automorphism of G.

(ii) If H is a subgroup of G and x ∈ G, the conjugate Hx is a subgroup
of G.

(iii) If H is a subgroup of G, the normaliser NG(H) of H in G is a subgroup
of G.

(iv) If H is a subgroup of G, the number of conjugates of H in G equals
the index |G : NG(H)| of the normaliser in G. �

We call the automorphism τx : g 7→ gx an inner automorphism of G.
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Permutation representations

The Orbit-Stabiliser Theorem tells us about the link between a group action
and the indices of particular subgroups. We shall now construct a homo-
morphism associated to the group action. The image of the homomorphism
lies within a symmetric group, so we recall the definition of the latter group.

Definition 2.20 Let Ω be any set. A permutation of Ω is a bijection
σ : Ω → Ω. The set of all permutations of Ω is called the symmetric group
on Ω and is denoted by Sym(Ω). It forms a group under composition of
maps:

ωστ = (ωσ)τ

for ω ∈ Ω and σ, τ ∈ Sym(Ω).

Associativity is immediately checked, while all permutations possess in-
verses since they are bijective. We recover our friend the symmetric group Sn
by considering the special case when Ω = {1, 2, . . . , n}.

Now let G be a group, Ω be a set and let G act on Ω. If x ∈ G, then we
induce a map from Ω to itself by

ρx : Ω → Ω

ω 7→ ωx.

Now
ωρxρx−1 = (ωx)x

−1

= ωxx−1

= ω1 = ω

and
ωρx−1ρx = (ωx−1

)x = ωx−1x = ω1 = ω.

Hence ρxρx−1 = ρx−1ρx = 1, so ρx is a bijection and therefore

ρx ∈ Sym(Ω) for all x ∈ G.

So to each element of G we associate a permutation of Ω. (Note that it
is not an isomorphism: Ω is merely a set and does not necessarily have any
group structure.) We therefore have a map

ρ : G→ Sym(Ω)

x 7→ ρx.

Now
ωρxρy = (ωx)y = ωxy = ωρxy

for all ω ∈ Ω and x, y ∈ G, so

ρxρy = ρxy for all x, y ∈ G.
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Thus
(xρ)(yρ) = (xy)ρ for all x, y ∈ G;

i.e., ρ is a homomorphism. We record this as follows.

Theorem 2.21 Let G be a group, let Ω be a set and let G act on Ω. For
each x ∈ G, the map

ρx : ω 7→ ωx (for ω ∈ Ω)

is a permutation of Ω. The map

ρ : G→ Sym(Ω)

x 7→ ρx

is a homomorphism.

We refer to the homomorphism ρ as a permutation representation of G.
The kernel of ρ is often called the kernel of the action. This kernel consists
of the elements x of G such that

ωx = ω for all x ∈ G;

i.e., the elements of G which fix all points in Ω.

Example 2.22 (Right Regular Action) Let G be a group and attempt
to define an action of G on itself by

G×G→ G

(g, x) 7→ gx.

We check the conditions of a group action:

(i) (gx)y = g(xy) for all g, x, y ∈ G (by associativity),

(ii) g1 = g for all g ∈ G.

So we do indeed have a group action: this is called the right regular action
of G (on itself by right multiplication).

Theorem 2.21 provides us with a homomorphism ρ : G→ Sym(G). What
is the kernel of ρ?

x ∈ ker ρ if and only if ρx = 1

if and only if gρx = g for all g ∈ G

if and only if gx = g for all g ∈ G

if and only if x = 1.

Hence ker ρ = 1 and so ρ is one-one. It follows that G is isomorphic to im ρ
and we have proved Cayley’s Theorem.
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Theorem 2.23 (Cayley’s Theorem) Every group is isomorphic to a sub-
group of a symmetric group. �

Our final general example is extremely important: it will occur through-
out the course. Verification of the details appears on Tutorial Sheet II.

Example 2.24 (Action on Cosets) Let G be a group and H be a sub-
group of G. Let Ω = {Hg | g ∈ G }, the set of cosets of H in G. We define
an action of G on Ω as follows:

Ω×G→ Ω

(Hg, x) 7→ Hgx.

This can be checked to be a well-defined action of G on Ω which is transitive
(i.e., there is exactly one orbit). The stabiliser of the coset Hg is the conju-
gate Hg of the original subgroup H. Since we have an action, we associate a
permutation representation ρ : G → Sym(Ω). The basic properties of ρ are
summarised as follows:

Theorem 2.25 Let H be a subgroup of G, let Ω = {Hx | x ∈ G }, and let
G act on Ω by right multiplication. Let ρ : G → Sym(Ω) be the associated
permutation representation.

(i) If H < G, then Gρ is a non-trivial subgroup of Sym(Ω);

(ii) ker ρ =
⋂

x∈GH
x;

(iii) the kernel ker ρ is the largest normal subgroup of G contained in H.

Definition 2.26 We call this intersection
⋂

x∈GH
x (occurring as the kernel

here) the core of H in G and denote it by CoreG(H).

p-Groups

We finish our section on group actions by establishing some tools concern-
ing actions of p-groups. We then apply them to deduce results about the
structure of such groups.

Definition 2.27 Let p be a prime number. A finite group G is called a
p-group if its order is a power of p:

|G| = pn for some n > 0.

An important tool relating to p-groups is the following:
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Lemma 2.28 Let G be a finite p-group and let G act on the finite set Ω.
Define

FixG(Ω) = {ω ∈ Ω | ωx = ω for all x ∈ G },

the set of fixed-points in the action. Then

|FixG(Ω)| ≡ |Ω| (mod p).

(Recall that to say two numbers are congruent modulo p means that
their difference is divisible by p. Thus we are saying that

|FixG(Ω)|+ kp = |Ω|

for some integer k > 0.)

Proof: Express Ω as a disjoint union of orbits:

Ω = Ω1 ∪Ω2 ∪ · · · ∪ Ωk.

Suppose (without loss of generality) that |Ωi| = 1 for i = 1, 2, . . . , ℓ and
|Ωi| > 1 for i = ℓ+ 1, . . . , k. So

FixG(Ω) = Ω1 ∪ Ω2 ∪ · · · ∪ Ωℓ and |FixG(Ω)| = ℓ.

By the Orbit-Stabiliser Theorem (Theorem 2.9),

|Ωi| = |G : Gωi
| = |G|/|Gωi

|

for all i, where ωi ∈ Ωi. Now |G| is a power of the prime p and hence
each |Ωi| is also a power of p. Therefore

p divides |Ωi| for i = ℓ+ 1, . . . , k.

Hence

|Ω| = |Ω1|+ |Ω2|+ · · ·+ |Ωk|

= |FixG(Ω)|+
k∑

i=ℓ+1

|Ωi|

≡ |FixG(Ω)| (mod p).

�

As an application we shall prove:

Proposition 2.29 Let G be a finite p-group. If N is a non-trivial normal
subgroup of G, then

N ∩ Z(G) 6= 1.
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In particular, since G is a normal subgroup of itself, we obtain:

Corollary 2.30 The centre of a non-trivial finite p-group is itself non-
trivial. �

Proof of Proposition 2.29: Since N P G, we have gx = x−1gx ∈ N
for all g ∈ N and x ∈ G. Consequently we may define an action of G on N
by

N ×G→ N

(g, x) 7→ gx = x−1gx.

(The conditions for an action follow from by the same argument as in Ex-
ample 2.11. What is special here is that normality ensures that when we
apply an element of G to an element of N we end up back inside N .) Now
G is a p-group, so by Lemma 2.28:

|FixG(N)| ≡ |N | ≡ 0 (mod p)

(since |N | = pr for some r > 1). Note

FixG(N) = { g ∈ N | x−1gx = g for all x ∈ G }

= { g ∈ N | gx = xg for all x ∈ G }

= { g ∈ N | g ∈ Z(G) }

= N ∩ Z(G).

Thus
|N ∩ Z(G)| ≡ 0 (mod p),

so
N ∩ Z(G) 6= 1.

�

We shall meet several further applications of Lemma 2.28 in the next
section.
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Section 3

Cauchy’s Theorem and

Sylow’s Theorem

Sylow’s Theorem was proved in the previous course (MT4003). Later in this
section, I shall prove it (with the exception of existence of Sylow subgroups,
which will be relegated to a problem sheet). This will be done again since
it illustrates a major application of group actions. We begin with a related,
but weaker, result.

Theorem 3.1 (Cauchy’s Theorem) Let G be a finite group, let p be a
prime number and suppose that p divides |G|. Then G possesses an element
of order p.

One standard method of proof for this theorem is to proceed by induction
on |G|. The following is a slick proof relying on group actions.

Proof: Let

Ω = { (x1, x2, . . . , xp) | xi ∈ G for all i and x1x2 . . . xp = 1 }.

Note that if x1, x2, . . . , xp−1 are arbitrary elements of G, then there is a
unique choice of xp such that (x1, x2, . . . , xp) ∈ Ω, namely

xp = (x1x2 . . . xp−1)
−1.

Hence
|Ω| = |G|p−1.

Let H be a cyclic group of order p, say H = 〈π〉 where π is the p-cycle
(1 2 . . . p). Let H act on Ω by cyclically permuting the entries:

(x1, x2, . . . , xp)
π = (x2, x3, . . . , xp, x1).
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Note that if (x1, x2, . . . , xp) ∈ Ω, then

x2x3 . . . xpx1 = x−1
1 · x1x2 . . . xp · x1

= x−1
1 · 1 · x1 = 1.

Hence (x2, x3, . . . , xp, x1) ∈ Ω. Thus we have defined a map

Ω×H → Ω
(
(x1, x2, . . . , xp), π

i
)
7→ (xi+1, . . . , xp, x1, . . . , xi)

and this is an action of H on Ω. Since H is a p-group, Lemma 2.28 gives

|FixH(Ω)| ≡ |Ω| (mod p)

= |G|p−1

≡ 0 (mod p). (3.1)

Now note that (x1, x2, . . . , xp) ∈ FixH(Ω) means that

(x1, x2, . . . , xp) = (x1, x2, . . . , xp)
π = (x2, x3, . . . , xp, x1)

so
x1 = x2 = · · · = xp.

Hence

FixH(Ω) = { (x, x, . . . , x) | (x, x, . . . , x) ∈ Ω }

= { (x, x, . . . , x) | x ∈ G, xp = 1 }.

Certainly (1, 1, . . . , 1) ∈ FixH(Ω), so Equation (3.1) implies that

|FixH(Ω)| > p.

In particular, there exists x ∈ G with x 6= 1 such that

xp = 1.

Hence o(x) = p. �

Corollary 3.2 A finite group is a p-group if and only if every element has
order equal to a power of p.

Proof: If G is a p-group, then a corollary of Lagrange’s Theorem (Corol-
lary 1.15) shows that every element has order dividing |G|, so every element
has order equal to a power of p.

Conversely if G is not a p-group, then there exists a prime q 6= p which
divides |G|. Cauchy’s Theorem provides an element in G of order q and this
is not a power of p. �
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We now turn to consider Sylow’s Theorem.

Definition 3.3 Let p be a prime number and G be a finite group. Write
|G| = pnm where p does not dividem. A Sylow p-subgroup ofG is a subgroup
of order pn.

Note that if |G| = pnm where p ∤ m and P is a Sylow p-subgroup of G,
then |G : P | = m. Lagrange’s Theorem tells us that a Sylow p-subgroup is
a p-subgroup of the largest possible order.

Theorem 3.4 (Sylow’s Theorem) Let p be a prime number,G be a finite
group and write |G| = pnm where p does not divide m. Then

(i) G has a Sylow p-subgroup;

(ii) any two Sylow p-subgroups are conjugate in G;

(iii) the number of Sylow p-subgroups of G is congruent to 1 (mod p) and
divides m;

(iv) any p-subgroup of G is contained in a Sylow p-subgroup.

Before proving the last three parts of this theorem, comments should be
made as to what the theorem actually achieves for us. Part (i) guarantees
existence of a subgroup within a finite group. This is useful since the best
result we had previously was a theorem that could only be used for non-
existence (Lagrange’s Theorem). Once we have a subgroup, then we can
act on the cosets and the entire machinery of the previous section can be
exploited. Part (ii) tells us that these subgroups occur in a very restricted
manner. Once we have a single Sylow p-subgroup P , then obviously every
conjugate of P will also be a Sylow p-subgroup (since they all have the
same order). This second part of the theorem guarantees that all the Sylow
p-subgroups of the group arise in this way and so once we have one Sylow
p-subgroup, we have all others in an expected manner. Part (iii) provides
useful numeric restrictions upon how many Sylow subgroups occur. Finally,
part (iv) tells us something stronger than Lagrange’s Theorem does about
the p-subgroups of G. Lagrange’s Theorem tells us that Sylow p-subgroups
are the largest p-subgroups of G in terms of subgroup order. The final
part of the theorem tells us they are also maximal in terms of containment.
Specifically, if we were to draw a diagram of the subgroups of G as suggested
in Chapter 1, then the p-subgroups of G all occur as the collections of the
nodes below a Sylow p-subgroup in the diagram.

Proof: (i) Omitted: see Problem Sheet III.
For the remaining three parts we shall make use of various facts already

established. The first two concern the product set HK from Lemma 1.21:
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• If H 6 G and K P G, then HK 6 G;

• |HK| = |H| · |K|/|H ∩K|.

Next, we shall be acting by conjugation so need to recall the normaliser
(which is the stabiliser for conjugation on subgroups) and a particular prop-
erty:

• NG(H) = {x ∈ G | Hx = H };

• H P NG(H).

Finally the conjugation action will feature a p-group doing the acting, so we
need to make use of Lemma 2.28:

• If H is a p-group acting on Ω, then |FixH(Ω)| ≡ |Ω| (mod p).

(ii)–(iv): Let P be a Sylow p-subgroup of G (which exists since we are
assuming part (i) to have been already proved). Let Σ be the set of all
conjugates of P :

Σ = {P g | g ∈ G }.

Conjugation by an element induces an automorphism of G. Hence Σ consists
of some of the Sylow p-subgroups. We must show that |Σ| ≡ 1 (mod p),
that Σ consists of all the Sylow p-subgroups of G and that every p-subgroup
of G is contained in some member of Σ.

First let P act by conjugation on Σ:

Σ× P → Σ

(Q,x) 7→ Qx = x−1Qx.

Since P is a p-group, we may apply Lemma 2.28:

|Σ| ≡ |FixP (Σ)| (mod p).

Certainly P is fixed in this action: P g = P for all g ∈ P . Suppose that
Q ∈ FixP (Σ). This means that

Qg = Q for all g ∈ P ;

that is, P 6 NG(Q). On the other hand, Q P NG(Q), so we may apply
Lemma 1.21(ii) to see that PQ is a subgroup of NG(Q), and hence a subgroup
of G. Part (iv) of the lemma tells us that

|PQ| =
|P | · |Q|

|P ∩Q|
,

so PQ is a p-subgroup of G. On the other hand, P 6 PQ and Q 6 PQ, so
as both P and Q are Sylow p-subgroups of G (that is, p-subgroups of G of
largest possible order), we must have

Q = PQ = P.
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Hence
FixP (Σ) = {P},

so
|Σ| ≡ |FixP (Σ)| = 1 (mod p).

Now let H be any p-subgroup of G. Let H act on our set Σ by conjuga-
tion:

Σ×H → Σ

(Q, g) 7→ Qg.

By Lemma 2.28,
|FixH(Σ)| ≡ |Σ| ≡ 1 (mod p).

Hence there exists at least one member of Σ, say Q, fixed by H:

Qg = Q for all g ∈ H.

Therefore H 6 NG(Q). Since Q P NG(Q), we see that HQ is a subgroup
of NG(Q), and hence of G, of order

|HQ| =
|H| · |Q|

|H ∩Q|
.

Thus HQ is a p-subgroup of G containing the Sylow p-subgroup Q. This
forces HQ = Q, so

H 6 HQ = Q.

Thus, every p-subgroup of G is contained in a conjugate of our original Sylow
p-subgroup P and these certainly are among the Sylow p-subgroups of G.
Consequently part (iv) of the Sylow’s Theorem is now established.

Part (ii) now follows quickly from what we have established. If R is any
Sylow p-subgroup of G, taking H = R in the above argument shows that
R 6 Q for some Q ∈ Σ. But R and Q are both Sylow p-subgroups of G,
so have the same order, so R = Q ∈ Σ. In conclusion, Σ consists of all
the Sylow p-subgroups of G, and therefore they are all conjugate, and the
number of Sylow p-subgroups is congruent to 1 (mod p).

To complete the proof of part (iii), recall that the number of conjugates
of a subgroup equals the index of its normaliser:

|Σ| = |G : NG(P )|.

Now P 6 NG(P ) 6 G, so

m = |G : P | = |G : NG(P )| · |NG(P ) : P |.

Hence |Σ| = |G : NG(P )| divides m. �
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Sylow’s Theorem turns out to be a very powerful tool in elucidating the
structure of a finite group. It is useful in finding subgroups and even normal
subgroups. In many ways it was the first result which enabled the search
for finite simple groups to begin.

Definition 3.5 A non-trivial group G is simple if the only normal sub-
groups it has are 1 and G.

The idea here is that if G is not simple then it has a non-trivial proper
normal subgroup N and we can break it down into two smaller groups
N and G/N which are hopefully easier to handle than G. When G is simple
this process yields nothing new: one of these groups is trivial and the other
is just a copy of G. Of course putting the information back together again
afterwards is far from straightforward. Later in the course we shall see that
in some sense there is a unique factorisation of groups into a number of
simple factors. We shall meet some ways of putting groups back together,
but this is very much an imprecise part of the theory. The few examples we
shall give will go very little way in showing how to put groups together.

Example 3.6 Let G be a group of order 40. Then G is not simple: indeed,
G has a normal Sylow 5-subgroup.

Proof: |G| = 40 = 23 · 5. By Sylow’s Theorem, G possesses at least one
Sylow 5-subgroup F , and the number of Sylow 5-subgroups is n5, where

n5 ≡ 1 (mod 5) and n5 | 8.

This forces n5 = 1, so F is the unique Sylow 5-subgroup of G. Hence

F g = F for all g ∈ G,

so F P G. �

Example 3.7 Let G be a group of order 56. Then G is not simple: indeed,
either G has a normal Sylow 2-subgroup or it has a normal Sylow 7-subgroup.

Proof: |G| = 56 = 23 ·7. Let n7 be the number of Sylow 7-subgroups of G.
Then

n7 ≡ 1 (mod 7) and n7 | 8.

Hence n7 = 1 or 8. If n7 = 1, then the unique Sylow 7-subgroup of G is
normal in G.

Suppose n7 = 8. Consider two distinct Sylow 7-subgroups S1 and S2
of G. Then |S1| = |S2| = 7. The intersection S1 ∩ S2 is a proper subgroup
of S1, so |S1 ∩ S2| divides 7, by Lagrange’s Theorem. Hence S1 ∩ S2 = 1.
It follows that each Sylow 7-subgroup of G contains 6 non-identity elements
(all of order 7) and these are contained in no other Sylow 7-subgroup. Hence
the Sylow 7-subgroups account for
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8× 6 = 48 elements of order 7.

SoG only contains 8 elements which do not have order 7. There can therefore
be only one Sylow 2-subgroup (of order 8 consisting of these remaining
8 elements) and this is normal in G. �

Example 3.8 Let G be a group of order 36. Then G is not simple.

Proof: Let H be a Sylow 3-subgroup of G. Then |G : H| = 4. Let G act
on the set of right cosets of H by right multiplication:

(Hx, g) 7→ Hxg

(see Example 2.24). A group action determines a permutation representation
and consequently we obtain a homomorphism ρ : G→ S4. Since |G| = 36 >

|S4| = 24, we certainly have ker ρ 6= 1. On the other hand, Theorem 2.25(i)
tells us that ker ρ 6= G (because Gρ 6= 1). It follows that ker ρ is a non-trivial
proper normal subgroup of G and hence G is not simple. �

Proposition 3.9 Let p and q be distinct primes and let G be a finite group
of order p2q. Then one of the following holds:

(i) p > q and G has a normal Sylow p-subgroup;

(ii) q > p and G has a normal Sylow q-subgroup;

(iii) p = 2, q = 3, G ∼= A4 and G has a normal Sylow 2-subgroup.

Proof: (i) Suppose p > q. Let np denote the number of Sylow p-subgroups
of G. Then

np ≡ 1 (mod p) and np | q.

The latter forces np = 1 or q. But 1 < q < p + 1, so q 6≡ 1 (mod p). Hence
np = 1, so G has a unique Sylow p-subgroup which must be normal.

(ii) and (iii): Suppose q > p. Let nq be the number of Sylow q-subgroups
of G. If nq = 1 then the unique Sylow q-subgroup of G would be normal
in G (and Case (ii) would hold). So suppose that nq 6= 1 (and we shall
endeavour to show Case (iii) holds). Now

nq ≡ 1 (mod q) and nq | p
2.

So nq = p or p2. But 1 < p < q + 1, so p 6≡ 1 (mod q). Hence nq = p2, so

p2 ≡ 1 (mod q);

that is,

q divides p2 − 1 = (p + 1)(p − 1).
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But q is prime, so either q divides p − 1 or it divides p + 1. However,
1 6 p − 1 < q, so the only one of these possibilities is that q divides p + 1.
However p < q, so p + 1 6 q so we are forced into the situation where
p+ 1 = q. Hence

p = 2, q = 3

and
|G| = 22 · 3 = 12.

Let T be a Sylow 3-subgroup of G (q = 3) and let G act on the set of
right cosets of T by right multiplication. This gives rise to the permutation
representation

ρ : G→ S4

(as |G : T | = 4, so we are acting on four points). Theorem 2.25 tells us that
the kernel of ρ is contained in T , while it must be a proper subgroup of T
as T R G. This forces ker ρ = 1, so ρ is injective. Hence

G ∼= im ρ.

Now im ρ is a subgroup of S4 of order 12 and therefore index 2. We deduce
that im ρ = A4 and so G ∼= A4.

Finally V4 is a Sylow 2-subgroup of A4 and V4 P S4 (and hence V4 P A4).
Therefore G has a normal Sylow 2-subgroup. �

These examples illustrate how we may apply Sylow’s Theorem to show
that certain groups are not simple. The next section discusses the im-
portance of simple groups within an appropriate notion of factorisation of
groups.
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Section 4

The Jordan–Hölder Theorem

We start with a general definition.

Definition 4.1 Let G be a group. A series for G is a finite chain of sub-
groups

G = G0 > G1 > G2 > · · · > Gn = 1

such that Gi+1 is a normal subgroup of Gi for i = 0, 1, . . . , n − 1. The
collection of quotient groups

G0/G1, G1/G2, . . . , Gn−1/Gn

are called the factors of the series and we call the number n the length of
the series.

Some authors refer to this as a subnormal series. Note that we do not
require each subgroup in the series to be normal in the whole group, only
that it is normal in the previous subgroup in the chain. A normal series is
a series where Gi is a normal subgroup of G for all i. Note also that the
length n is also the number of factors occurring.

Obviously the above definition is rather generic. We shall be interested
in three different types of series in this course and for all three we shall
require special properties of the factors. The first case is where the factors
are all required to be simple groups.

Definition 4.2 A composition series for a group G is a finite chain of sub-
groups

G = G0 > G1 > · · · > Gn = 1

such that, for i = 0, 1, . . . , n− 1, Gi+1 is a normal subgroup of Gi and the
quotient group Gi/Gi+1 is simple.

The quotient groups

G0/G1, G1/G2, . . . , Gn−1/Gn

are called the composition factors of G.
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Example 4.3 Let G = S4, the symmetric group of degree 4. We have the
following chain of subgroups:

S4 > A4 > V4 > 〈(1 2)(3 4)〉 > 1. (4.1)

We know A4 P S4 and V4 P A4. Since V4 is an abelian group, 〈(1 2)(3 4)〉 P
V4. Certainly 1 P 〈(1 2)(3 4)〉. Hence (4.1) is a series of subgroups each nor-
mal in the previous. We can calculate calculate the orders of each subgroup
and hence calculate the order of the quotient groups:

|S4/A4| = 2

|A4/V4| = 3

|V4/〈(1 2)(3 4)〉| = 2

|〈(1 2)(3 4)〉| = 2.

Thus the quotients are all of prime order. We now make use of the following
fact:

Proposition 4.4 Let p be a prime number. A group G of order p is cyclic
and is simple.

Proof: Let H be a subgroup of G. Then |H| divides |G|, by Lagrange’s
Theorem, so as |G| = p is prime, we deduce |H| = 1 or |H| = p = |G|. Hence
H = 1 or G. Thus the only subgroups G has are 1 and G, so certainly this
applies to its normal subgroups. Thus G is simple.

Now let x be a non-identity element in G. Then 〈x〉 6= 1, so we have
〈x〉 = G; i.e., G is cyclic. �

The conclusion is that the factors for the series (4.1) are simple groups
(and cyclic), so we have a composition series for S4. The composition factors
are

C2, C3, C2, C2.

Example 4.5 The infinite cyclic group G has no composition series.

Proof: Let G = 〈x〉, where o(x) = ∞, and suppose

G = G0 > G1 > G2 > · · · > Gn = 1

is a composition series for G. Then Gn−1 is a non-trivial subgroup of G,
so Gn−1 = 〈xk〉 for some positive integer k (see Tutorial Sheet I). Hence
Gn−1 is an infinite cyclic group, so is not simple. This contradicts our series
being a composition series. �
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To understand the behaviour of composition series, consider the situation
where we have subgroups

G > N > M > 1

with M P N . (The idea here is that M and N will be successive terms in a
series which we are testing to see whether or not it is a composition series.)
The Correspondence Theorem tells us that subgroups of N/M correspond to
subgroups of N which contain M . Furthermore under this correspondence,
normal subgroups of N/M correspond to normal subgroups of N which
contain M . We conclude that

N/M is simple if and only if the only normal subgroups of N
containing M are N and M themselves.

Proposition 4.6 Every finite group possesses a composition series.

Proof: Let G be a finite group. We have at least one series of subgroups,
namely

G > 1,

where each term is normal in the previous. Let

G = G0 > G1 > · · · > Gn = 1 (4.2)

be the longest possible series of subgroups of G (so Gi+1 P Gi for all i). This
certainly exists since G has only finitely many subgroups, so only finitely
many series. We claim that (4.2) is a composition series.

Suppose that it is not. Then one of the factors, say Gj/Gj+1, is not
simple. This quotient then possesses a non-trivial proper normal subgroup
and this corresponds to a subgroup N of G with

Gj+1 < N ⊳ Gj .

Then
G = G0 > G1 > · · · > Gj > N > Gj+1 > · · · > Gn = 1

is a series in G (note N P Gj , while certainly Gj+1 P N since Gj+1 P Gj)
and it is longer than (4.2). This contradicts our assumption that (4.2) is the
longest such series. Hence (4.2) is indeed a composition series for G. �

On the other hand, we have an example of an infinite group (namely the
infinite cyclic group) which does not possess a composition series. There are
infinite groups that possess composition series, but infinite simple groups
(which necessarily occur as some of the composition factors) are much less
well understood than finite simple groups.

The important thing about composition series is that the composition
factors occurring are essentially unique. This is the content of the following
important theorem.
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Theorem 4.7 (Jordan–Hölder Theorem) Let G be a group and let

G = G0 > G1 > G2 > · · · > Gn = 1

and
G = H0 > H1 > H2 > · · · > Hm = 1

be composition series for G. Then n = m and there is a one-one correspon-
dence between the two sets of composition factors

{G0/G1, G1/G2, . . . , Gn−1/Gn}

and
{H0/H1,H1/H2, . . . ,Hm−1/Hm}

such that corresponding factors are isomorphic.

What this theorem tells us is that once we have determined one com-
position series for a (say, finite) group, then we have uniquely determined
composition factors which can be thought of the ways of breaking our orig-
inal group down into simple groups. Thus this is analogous to a ‘prime
factorisation’ for groups.

To finish this section we shall present a few examples. However, to
recognise when we have a composition series, we shall need to be able to
recognise simple groups. We have already observed (Proposition 4.4) that
cyclic groups of order p (p primes) are simple. It is not hard to show that
these are all the abelian simple groups. The following theorem was (hope-
fully) established in the previous course.

Theorem 4.8 Let n > 5. The alternating group An of degree n is simple.

It is worth pointing out that at this point in time much much more is
actually known. A mammoth effort by a large collection of mathematicians
from the 1950s to the 1980s succeeded in classifying the finite simple groups.
The complete proof runs to tens of thousands of pages of extremely compli-
cated mathematics, and some doubt whether this actually is truly complete.
More work is still currently being done so as to check, clarify and simplify
the proof. Nevertheless it is generally accepted that this Classification is cor-
rect, though typically when relying upon it a mathematician would normally
state that he or she is doing so.

Theorem 4.9 (Classification of Finite Simple Groups) Let G be a fi-
nite simple group. Then G is one of the following:

(i) a cyclic group of prime order;

(ii) an alternating group An where n > 5;
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(iii) one of sixteen families of groups of Lie type;

(iv) one of twenty-six sporadic simple groups.

The groups of Lie type are essentially ‘matrix-like’ groups which preserve
geometric structures on vector spaces over finite fields. For example, the first
(and most easily described) family is

An(q) = PSLn+1(q) =
SLn+1(q)

Z(SLn+1(q))
;

that is, we successively construct the group GLn+1(q) of invertible (n+1)×
(n+1) matrices with entries from a field F containing q elements; then take
those of determinant 1

SLn+1(q) = {A ∈ GLn+1(q) | detA = 1 },

the so-called special linear group; then factor out the centre (which happens
to consist of all scalar matrices)

Z(SLn+1(q)) = {λI | λn+1 = 1 in F },

to form
PSLn+1(q) = SLn+1(q)/Z(SLn+1(q))

and we have constructed a simple group (provided either n > 2, or n = 1
and q > 4).

The remaining twenty-six sporadic groups are as listed in the following
table:
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Mathieu M11 7 920
Mathieu M12 95 040
Janko J1 175 560
Mathieu M22 443 520
Janko J2 604 800
Mathieu M23 10 200 960
Higman–Sims HS 44 352 000
Janko J3 50 232 960
Mathieu M24 244 823 040
McLaughlin McL 898 128 000
Held He 4 030 387 200
Rudvalis Ru 145 926 144 000
Suzuki Suz 448 345 497 600
O’Nan O’N 460 815 505 920
Conway Co3 495 766 656 000
Conway Co2 42 305 421 312 000
Fischer Fi22 64 561 751 654 400
Harada–Norton HN 273 030 912 000 000
Lyons Ly 51 765 179 004 000 000
Thompson Th 90 745 943 887 872 000
Fischer Fi23 4 089 470 473 293 004 800
Conway Co1 4 157 776 806 543 360 000
Janko J4 86 775 571 046 077 562 880
Fischer Fi′24 1 255 205 709 190 661 721 292 800
Baby Monster B 4 154 781 481 226 426 191 177 580 544 000 000
Monster M see below

|M| = 808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000

Unsurprisingly, we omit the proof of Theorem 4.9.

We finish the section by giving a few examples of composition series and
composition factors.

Example 4.10 Let G be a finite abelian group of order n. Write

n = pr11 p
r2
2 . . . prss

where p1, p2, . . . , ps are the distinct prime factors of n. If

G = G0 > G1 > G2 > · · · > Gm = 1

is a composition series, then the composition factors

G0/G1, G1/G2, . . . , Gm−1/Gm
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are abelian simple groups. They are therefore cyclic of prime order. Now

|G| = |G0/G1| · |G1/G2| · . . . · |Gm−1/Gm|.

This must be the prime factorisation of |G| = n and hence the composition
factors of G are

Cp1 , Cp1 , . . . , Cp1
︸ ︷︷ ︸

r1 times

, Cp2 , Cp2 , . . . , Cp2
︸ ︷︷ ︸

r2 times

, . . . , Cps , Cps , . . . , Cps
︸ ︷︷ ︸

rs times

.

Although the Jordan–Hölder Theorem tells us that the composition fac-
tors are essentially uniquely determined, the composition series need not be
unique. For example, if G = 〈x〉 is cyclic of order 30, then we have several
different composition series; e.g.,

G = 〈x〉 > 〈x2〉 > 〈x6〉 > 1

where the composition factors are C2, C3 and C5, and

G = 〈x〉 > 〈x3〉 > 〈x15〉 > 1

where the composition factors are C3, C5 and C2; etc.

Later in the course we shall characterise the finite groups whose compo-
sition factors are cyclic as being the soluble groups.

Our final example has a unique composition series:

Example 4.11 Let n > 5 and consider the symmetric group Sn of degree n.
We have the following series:

Sn > An > 1 (4.3)

which has factors C2 and An. Both of these are simple groups, so (4.3) is a
composition series for Sn. Furthermore it can be shown that Sn has precisely
three normal subgroups (namely those occurring in the above series) and
hence (4.3) is the only composition series for Sn.

To produce any more examples of composition series would probably
require us to have more examples of groups. The Jordan–Hölder Theorem
does also raise the question of how we put the composition factors back
together. We have a unique decomposition but how complicated is the
reverse process? The answers turns out to be rather difficult, but in the
next section we shall meet some ways of creating new groups and this will
give some ways of putting the composition factors back together.
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Section 5

Building Groups

The purpose of this section is to describe two ways in which groups can be
built using smaller groups. They are very much not the only ways that the
decomposition process used to produce composition series can be reversed,
but they are the easiest two to describe and handle. The first is the direct
product, which was mentioned in the MT4003 course.

Direct products

Definition 5.1 Let G1, G2, . . . , Gn be a collection of groups (all of whose
binary operations are written multiplicatively). The (external) direct prod-
uct is

G1 ×G2 × · · · ×Gn = { (x1, x2, . . . , xn) | xi ∈ Gi for all i }

with componentwise multiplication

(x1, x2, . . . , xn)(y1, y2, . . . , yn) = (x1y1, x2y2, . . . , xnyn).

It is easy to check that G = G1 × G2 × · · · × Gn is a group. We shall
denote the identity element in each group Gi by 1. The identity element
of G is then

(1, 1, . . . , 1)

(the sequence containing the identity element of the group Gi in the ith
position), while

(x1, x2, . . . , xn)
−1 = (x−1

1 , x−1
2 , . . . , x−1

n ).

Write
Ḡi = { (1, . . . , 1, x, 1, . . . , 1) | x ∈ Gi }

(where x occurs in the ith component). Then Ḡi is a subgroup of G; indeed
the map

x 7→ (1, . . . , 1, x, 1, . . . , 1)
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is an isomorphism between Gi and Ḡi. Furthermore

(y1, . . . , yn)
−1(1, . . . , 1, x, 1, . . . , 1)(y1, . . . , yn) = (1, . . . , 1, y−1

i xyi, 1, . . . , 1),

so Ḡi P G (for i = 1, 2, . . . , n).
Note that

(x1, x2, . . . , xn) = (x1, 1, . . . , 1)(1, x2, 1, . . . , 1) . . . (1, . . . , 1, xn),

so
G = Ḡ1Ḡ2 . . . Ḡn.

Also

Ḡ1 . . . Ḡi−1Ḡi+1 . . . Ḡn

= { (x1, . . . , xi−1, 1, xi+1, . . . , xn) | xj ∈ Gj for j 6= i },

so
Ḡi ∩ Ḡ1 . . . Ḡi−1Ḡi+1 . . . Ḡn = 1.

We give the following name to the situation we have just described:

Definition 5.2 Let G be a group and let H1, H2, . . . , Hn be subgroups
of G. We say that G is the (internal) direct product of the subgroups Hi if

(i) Hi is a normal subgroup of G for all i;

(ii) G = H1H2 . . . Hn;

(iii) Hi ∩H1H2 . . . Hi−1Hi+1 . . . Hn = 1 for all i.

Theorem 5.3 (i) The external direct product G1 ×G2 × · · · ×Gn is the
internal direct product of the subgroups Ḡ1, Ḡ2, . . . , Ḡn defined above.

(ii) Let G be the internal direct product of the subgroupsH1, H2, . . . , Hn.
Then

G ∼= H1 ×H2 × · · · ×Hn.

In view of this theorem it is usual not to distinguish between internal
and external direct products. We often even go so far as to write ‘=’ in
part (ii) instead of ‘∼=’.

It should be noted that the condition for internal direct product is con-
siderably stronger than ‘Hi ∩Hj = 1 for i 6= j’. This latter condition is not
sufficient to ensure we have a direct product.
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Proof: We have already noted that (i) holds.
(ii) Define φ : H1 ×H2 × · · · ×Hn → G by

(x1, x2, . . . , xn) 7→ x1x2 . . . xn.

This is surjective since G = H1H2 . . . Hn. To show that φ is a homomor-
phism, we shall first show that elements from distinct Hi commute. Let
x ∈ Hi and y ∈ Hj where i 6= j. Consider the element

x−1y−1xy.

(This is the commutator which we shall discuss in greater detail later in the
course.) Note that

x−1(y−1xy) ∈ Hi as Hi P G

and
(x−1y−1x)y ∈ Hj as Hj P G.

Thus x−1y−1xy ∈ Hi ∩Hj = 1, so x−1y−1xy = 1 and therefore xy = yx.
Now if (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ H1 ×H2 × · · · ×Hn, then

(x1, . . . , xn)φ · (y1, . . . , yn)φ = x1x2 . . . xny1y2 . . . yn

= x1y1 · x2 . . . xny2 . . . yn

= x1y1 · x2y2 · . . . · xnyn

= (x1y1, x2y2, . . . , xnyn)φ

=
[
(x1, . . . , xn)(y1, . . . , yn)

]
φ.

Hence φ is a homomorphism.
Finally if (x1, x2, . . . , xn) ∈ kerφ, then

x1x2 . . . xn = 1,

so

xi = x−1
i−1 . . . x

−1
2 x−1

1 x−1
n . . . x−1

i+1

= x−1
1 . . . x−1

i−1x
−1
i+1 . . . x

−1
n ,

so
xi ∈ Hi ∩H1H2 . . . Hi−1Hi+1 . . . Hn = 1.

Therefore xi = 1 for all i and we deduce that kerφ = 1.
This shows that φ is an isomorphism, so

G ∼= H1 ×H2 × · · · ×Hn.

�
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How direct products help us: Suppose we have a group G and we
manage to find a system H1, H2, . . . , Hn of (normal) subgroups such that
G is the internal direct product. The theorem then tells us that

G ∼= H1 ×H2 × · · · ×Hn

(an external direct product). The group multiplication in the latter is es-
sentially straightforward: once we know how to multiply in each Hi (which
should be easier since they are supposed to be smaller than G) then the
multiplication in G is easily understood.

Semidirect products

We now wish to consider the situation where a group G can be expressed as
G = HN with H ∩N = 1 and only N P G. (The direct product situation
is when H P G also holds.) An element in G is expressible as g = hn where
h ∈ H and n ∈ N . If we attempt to multiply two elements of G, then we
calculate

(h1n1)(h2n2) = h1h2 · (h
−1
2 n1h2)n2.

Here h1h2 ∈ H, h−1
2 n2h2 ∈ N (as N P G) and so (h−1

2 n1h2)n2 ∈ N . To
be able to work effectively in G, we need to be able to (i) multiply in H,
(ii) multiply in N , and (iii) conjugate elements of N by elements of H. The
semidirect product construction is designed to encode these three pieces of
information.

We shall follow the same strategy as for direct products. We shall define
an external semidirect product, establish certain properties and then define
an internal semidirect product which will be isomorphic to an external one.

We shall need the following object as part of the construction. Recall
(from Definition 2.18) that an automorphism of a group G is a map G→ G
which is an isomorphism.

Definition 5.4 Let G be a group. The automorphism group of G is denoted
by AutG and consists of all automorphisms of G:

AutG = {φ : G→ G | φ is an automorphism }.

The product of two automorphisms φ and ψ is the composite φψ.

It is left as an exercise to check that AutG is a group. (It is very similar
to the proof that a symmetric group forms a group. Indeed AutG is a
subgroup of the symmetric group Sym(G).)
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Definition 5.5 Let H and N be groups and let φ : H → AutN be a homo-
morphism. The (external) semidirect product of N by H via φ is denoted
by H ⋉φ N and is the set

H ⋉φ N = { (h, n) | h ∈ H, n ∈ N }

with multiplication given by

(h1, n1)(h2, n2) = (h1h2, n
h2φ
1 n2).

If h ∈ H, then hφ is an automorphism of N and we shall write nhφ for
the image of an element n ∈ N under the automorphism hφ. (The reason for
using exponential notation is twofold: firstly to make the notation easier to
distinguish and secondly to be suggestive in a way that we shall use later.)
This means that the multiplication in H ⋉φ N at least has meaning.

(As an aside, the above semidirect product might also be denoted by
N ⋊φ H, but this usually involves other additional notational adjustments
so we avoid it.)

Proposition 5.6 The semidirect product H ⋉φ N is a group.

Proof: We need to check the axioms of a group. First associativity (which
is straightforward, but messy):

[(h1, n1)(h2, n2)] (h3, n3) = (h1h2, n
h2φ
1 n2)(h3, n3)

= (h1h2h3, (n
h2φ
1 n2)

h3φn3)

= (h1h2h3, n
(h2φ)(h3φ)
1 nh3φ

2 n3),

while

(h1, n1) [(h2, n2)(h3, n3)] = (h1, n1)(h2h3, n
h3φ
2 n3)

= (h1h2h3, n
(h2h3)φ
1 nh3φ

2 n3)

= (h1h2h3, n
(h2φ)(h3φ)
1 nh3φ

2 n3).

Comparing these products we deduce that the binary operation on the
semidirect product is associative.

Identity:
(1, 1)(h, n) = (1h, 1hφn) = (h, 1n) = (h, n)

(as the automorphism hφ must map 1 to 1) and

(h, n)(1, 1) = (h1, n1φ1) = (h, nid) = (h, n)

(as the automorphism 1φ must be the identity so map n to n). Hence (1, 1) is
the identity element in H ⋉φ N .
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Inverses:

(h, n)
(

h−1, (n(h
−1)φ)−1

)

= (hh−1, (n(h
−1)φ)(n(h

−1)φ)−1) = (1, 1)

and
(

h−1, (n(h
−1)φ)−1

)

(h, n) =
(

h−1h, [(n(h
−1)φ)−1]hφn

)

=
(

1, (n(h
−1)φ.hφ)−1n

)

(1)

=
(

1, (n(h
−1h)φ)−1n

)

(2)

=
(

1, (n1φ)−1n
)

= (1, n−1n) (3)

= (1, 1)

(as (1) hφ is an homomorphism so maps inverses to inverses, (2) φ is a
homomorphism, and (3) 1φ is the identity map so maps n to n). Thus
(h−1, (n(h

−1)φ)−1) is the inverse of (h, n) in H ⋉φ N .
This completes the proof that H ⋉φ N is a group. �

Now define

H̄ = { (h, 1) | h ∈ H } and N̄ = { (1, n) | n ∈ N }.

Define α : H → H̄ by h 7→ (h, 1) and β : N → N̄ by n 7→ (1, n). Clearly
α and β are bijections. Now

(h1α)(h2α) = (h1, 1)(h2, 1) = (h1h2, 1
h2φ1) = (h1h2, 1) = (h1h2)α

and

(n1β)(n2β) = (1, n1)(1, n2) = (1, n1φ1 n2) = (1, n1n2) = (n1n2)β.

Hence α and β are isomorphisms. It follows that H̄ and N̄ are subgroups
of G = H ⋉φ N which are isomorphic to H and N respectively.

Clearly H̄ ∩ N̄ = 1. Also

(h, 1)(1, n) = (h1, 11φn) = (h, n),

so G = H̄N̄ . So far these observations have some similarity to the direct
product. The difference appears, however, when we consider conjugation:

(h, 1)−1(1, n)(h, 1) = (h−1, 1)(1, n)(h, 1)

= (h−1, n)(h, 1)

= (1, nhφ)
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so
(h, 1)−1(1, n)(h, 1) = (1, nhφ). (5.1)

We conclude that an element of H̄ conjugates an element of N̄ back into N̄
and it does so by applying the corresponding automorphism of N to the
component from N . So we then have H̄ 6 NG(N̄), while N̄ 6 NG(N̄) is
always true. Hence G = H̄N̄ 6 NG(N̄) and we have

N̄ P G.

We summarise these observations as follows:

Theorem 5.7 Let H and N be groups, let φ : H → AutN be a homomor-
phism and G = H ⋉φ N , the semidirect product of N by H via φ. Then

(i) N̄ = { (1, n) | n ∈ N } is a normal subgroup of G;

(ii) H̄ = { (h, 1) | h ∈ H } is a subgroup of G;

(iii) H̄ ∩ N̄ = 1 and G = H̄N̄ . �

The Second Isomorphism Theorem then tells us that

G/N̄ = H̄N̄/N̄ ∼= H̄/(H̄ ∩ N̄) = H̄ ∼= H.

So our semidirect product has a normal subgroup isomorphic to N and
quotient group isomorphic to H.

We are now in a position to define what is meant by the internal version
of the semidirect product.

Definition 5.8 Let G be a group. We say that G is the (internal) semidi-
rect product of a subgroup N by another subgroup H if

(i) N P G,

(ii) G = HN , and

(iii) H ∩N = 1.

In the situation when these conditions hold, we say that H is a comple-
ment to N . We shall also sometimes write G = H ⋉N .

We now seek to show that an internal semidirect product is isomorphic
to some external semidirect product of N by H. There are various stages
to proceed through, but the most significant is to work out what the homo-
morphism φ : H → AutN is.

Let G be an internal semidirect product of N by H. We shall define a
map θ : H ×N → G by

(h, n) 7→ hn.
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(At this point, we do not assume any group theoretical structure on the set
product H ×N . It will eventually become a semidirect product.)

Now G = HN , so every element of G can be written in the form hn
where h ∈ H and n ∈ N . Therefore θ is surjective.

Suppose hn = h′n′ where h, h′ ∈ H and n, n′ ∈ N . Then

h′h−1 = (n′)−1n ∈ H ∩N = 1.

This forces h = h′ and n = n′. Therefore this expression for an element of G
as a product is unique and we deduce that θ is injective.

We now know that θ is a bijection, but we seek to endow the domain
of θ with the structure of an (external) semidirect product and consequently
need to specify a homomorphism φ : H → AutN to use when constructing
this group.

Let h ∈ H. Then Nh = N in the group G since N P G. Hence we have
a map

φh : N → N

n 7→ nh.

Its inverse is φh−1 : n 7→ nh
−1

, so φh is a bijection. Also

(mn)φh = h−1(mn)h = h−1mh · h−1nh = (mφh)(nφh).

Hence φh ∈ AutN . Finally

nφhk = (hk)−1n(hk) = k−1(h−1nh)k = nφhφk

for n ∈ N , so
φhk = φhφk for all h, k ∈ H.

We deduce that φ : h 7→ φh is a homomorphism H → AutN . We use this
map φ to construct our semidirect product.

Now θ is a bijection

θ : H ⋉φ N → G

(h, n) 7→ hn.

Let (h1, n1), (h2, n2) ∈ N ⋊φ H. Then

((h1, n1)(h2, n2)) θ = (h1h2, n
h2φ
1 n2)θ

= (h1h2, n
h2

1 n2)θ

= h1h2n
h2

1 n2

= h1h2 · h
−1
2 n2h2 · n2

= h1n1h2n2

= (h1, n1)θ · (h2, n2)θ.

Hence θ is a homomorphism and consequently is an isomorphism.
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Theorem 5.9 Let G be the internal semidirect product of N by H. Then
G ∼= H ⋉φ N where φ : H → AutN is the homomorphism given by

hφ : n 7→ nh

for n ∈ N and h ∈ H. �

As a consequence there is really no difference between external semidirect
products and internal semidirect products. We shall therefore simply refer
to the ‘semidirect product.’ Note that in both versions the homomorphism φ
is simply telling us how the subgroup H acts by conjugation on the normal
subgroup N .

For notational simplicity, we shall principally use internal semidirect
products: there are simply fewer brackets kicking around and we can of-
ten suppress explicit reference to the homomorphism φ. Thus if we have
a group G with subgroups H and N such that N P G, G = HN and
H ∩ N = 1, then we know that G is a semidirect product. We know its
multiplication is then determined by the multiplication in the two smaller
groups H and N together with an understanding of the way in which H acts
by conjugation on N (i.e., we have the map φ determined). Provided we
have this information available, we then ‘understand’ the structure of H⋉N .

In the examples which follow, we shall in the end be specifying the
multiplication in our groups. We shall do this by means of a presentation.
These were introduced briefly in MT4003. We shall use them in a very
simple form. Informally a presentation has the form

G = 〈x1, x2, . . . , xd | r1 = s1, . . . , rk = sk 〉

and this indicates that G is the group generated by the elements x1, x2,
. . . , xd subject to the requirement that the expressions (known as relations)

r1 = s1, . . . , rk = sk

hold (i.e., the element in G given by the product r1 equals the product s1).
For example,

Cn = 〈x | xn = 1 〉,

while
D2n = 〈x, y | xn = y2 = 1, y−1xy = x−1 〉.

We shall be interested in presentations for semidirect products: we shall
be giving information that specify the multiplications in the two subgroups
N and H, while the conjugation of elements of H on those of N will also be
specified (and it should be clear from the presentation that N is then forced
to be a normal subgroup).
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Example 5.10 Let G be a group of order 20. Let n5 denote the number of
Sylow 5-subgroups of G. Sylow’s Theorem tells us that

n5 ≡ 1 (mod 5) and n5 | 4.

Therefore n5 = 1, so G has a unique Sylow 5-subgroup, say F . Then F P G
and |F | = 5.

Let T be a Sylow 2-subgroup of G, so |T | = 4. Then

T ∩ F = 1

by Lagrange’s Theorem, while Lemma 1.21 tells us that

|TF | =
|T | · |F |

|T ∩ F |
=

4 · 5

1
= 20.

Hence G = TF , F P G and T ∩ F = 1. Thus G = T ⋉ F , the semidirect
product of F by T .

We know that |F | = 5, so F ∼= C5; say F = 〈x〉 where o(x) = 5.
We need to understand what possibilities there are for a homomorphism
φ : T → AutF .

Consider any automorphism α of F . Then α : F → F is a homomorphism
so is determined by its effect on the generator x (if we know what xα is, then
(xi)α = (xα)i is determined for each i). Note that as α must be surjective,
it must map x to another generator of F . Thus xα = x, x2, x3 or x4. (Note
x5 = 1, while these four elements all have order 5, so generate F and hence
determine surjective homomorphisms F → F ; i.e., automorphisms of F .)
Thus

|AutF | = 4.

Indeed AutF ∼= C4, since β : x 7→ x2 is a generator:

xβ2 = (xβ)β = (x2)β = (xβ)2 = (x2)2 = x4

xβ3 = (xβ2)β = (x4)β = (xβ)4 = (x2)4 = x8 = x3

xβ4 = (xβ3)β = (x3)β = (xβ)3 = (x2)3 = x6 = x.

So β4 = idF and o(β) = 4. Thus AutF = 〈β〉.
We now understand the structure of AutF . What about T ? Since

|T | = 4, there are two possibilities:

T ∼= C4 or T ∼= C2 × C2
∼= V4.
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Case 1: T ∼= C4.
If φ : T → AutF , then consider the image of φ is a subgroup of the cyclic

group AutF = 〈β〉. Hence either Tφ = 1, 〈β2〉 or 〈β〉. We can choose our
generator y for T such that y is mapped to our chosen generator for Tφ.
Hence either yφ = 1, or yφ = β2, or yφ = β (in the last case, φ is an
isomorphism, in the first two, the kernel is non-trivial). Thus we have one
of the following three possibilities:

yφ = id: x 7→ x, yφ = β2 : x 7→ x4, yφ = β : x 7→ x2.

(We have saved ourselves some work by choosing y after we have determined
what Tφ is. The possibility that a generator z of T is mapped to β3 = β−1

is not considered, for in that case we choose y = z−1.)
Therefore there are at most three essentially different possibilities in

Case 1:

G = 〈x, y | x5 = y4 = 1, y−1xy = x 〉

= 〈x, y | x5 = y4 = 1, xy = yx 〉

= C5 × C4
∼= C20 (5.2)

G = 〈x, y | x5 = y4 = 1, y−1xy = x4 〉 (5.3)

G = 〈x, y | x5 = y4 = 1, y−1xy = x2 〉. (5.4)

Note that (5.3) and (5.4) are non-abelian groups, while (5.2) is abelian. All
three groups have a unique Sylow 5-subgroup F . In (5.3), we calculate

y−2xy2 = y−1(y−1xy)y = y−1x4y = (y−1xy)4 = (x4)4 = x16 = x,

so y2 commutes with x. We deduce that

CG(F ) = { g ∈ G | gh = hg for all h ∈ F }

is a group of order 10 (it contains x and y2) for the group (5.3). A similar
calculation in (5.4) shows that CG(F ) = F for this group. Hence there two
non-abelian groups are not isomorphic.

We therefore do have three distinct groups: these groups definitely do
exist since we can construct them using the semidirect product construction.

Case 2: T ∼= C2 × C2.
If Tφ = 1 (i.e., ker φ = T ), choose any pair of generators y and z for T .

We deduce

G = 〈x, y, z | x5 = y2 = z2 = 1, xy = yx, xz = zx, yz = zy 〉

= C5 × C2 × C2
∼= C2 × C10.
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If Tφ 6= 1, then Tφ is a subgroup of AutF = 〈β〉, so must be cyclic. In
addition, all elements in T have order dividing 2, so the same must be true
of its image. Therefore Tφ = 〈β2〉. Pick y ∈ T such that yφ = β2. Note
|Tφ| = 2, so by the First Isomorphism Theorem, |kerφ| = 2. Choose z ∈ T
such that z generates this kernel. Then T = 〈y, z〉 and

G = 〈x, y, z | x5 = y2 = z2 = 1, yz = zy, xz = zx, y−1xy = x4 〉.

Consider x′ = xz. As x and z commute and o(x) and o(z) are coprime, we
have o(x′) = o(x)o(z) = 10. Also (x′)2 = x2z2 = x2, which generates F ,
while (x′)5 = x5z5 = z. Hence G = 〈x′, y〉 and

y−1x′y = y−1xzy = y−1xyz = x4z = (xz)9 = (x′)−1.

Hence

G = 〈x′, y | (x′)10 = y2 = 1, y−1x′y = (x′)−1 〉
∼= D20.

Conclusion: There are essentially five different groups of order 20.

Our final example has a more complicated aspect in that ideas from
linear algebra become useful.

Example 5.11 Let G be a group of order 147 = 3·72 with non-cyclic Sylow
7-subgroups. The number of Sylow 7-subgroups divides 3 and is congruent
to 1 (mod 7). Hence there is a unique Sylow 7-subgroup P . By assumption,
P ∼= C7 × C7.

Now (temporarily) write the group operation in P additively, so P =
F7 ⊕ F7, where F7 = Z/7Z is the field containing 7 elements. Thus P is a
vector space of dimension 2 over the field F7. A homomorphism P → P
then corresponds to a linear transformation, so automorphisms correspond
to invertible linear transformations:

AutP ∼= GL2(F7) = {A | A is a 2× 2 matrix over F7 with detA 6= 0 }.

If z is a generator for the Sylow 3-subgroup of G, then z induces an auto-
morphism of P via conjugation; that is, z induces an invertible linear trans-
formation T of P such that T 3 = I. Hence the minimal polynomial m(X)
of T divides

X3 − 1 = (X − 1)(X − 2)(X − 4) (over F7)

and must be of degree at most 2. In particular, m(X) is a product of linear
factors, so T is diagonalisable. Hence we may choose a new basis {x, y}
for P such that the matrix of T with respect to this basis is

(
λ 0
0 µ

)

,
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where λ, µ ∈ {1, 2, 4}. For example, one such group occurs when λ = 2 and
µ = 4. Returning to a multiplicative notation we therefore have a group
given by

〈x, y, z | x7 = y7 = z3 = 1, xy = yx, z−1xz = x2, z−1yz = y4 〉.

There are many more examples occurring here.
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Section 6

Soluble Groups

We have already met the concept of a composition series for a group. In
the next section we shall consider groups whose composition factors are all
abelian. We can think of this as the class of groups we can build using only
abelian groups.

To give a general description of these groups we need the following con-
cept.

Definition 6.1 Let G be a group and x, y ∈ G. The commutator of x and y
is the element

[x, y] = x−1y−1xy.

Note that the following equations hold immediately:

[x, y] = x−1xy

[x, y] = (y−1)xy

and

xy = yx[x, y]. (6.1)

The latter tells us that the commutator essentially measures by how much
x and y fail to commute.

Lemma 6.2 Let G and H be groups, let φ : G → H be a homomorphism
and let x, y, z ∈ G. Then

(i) [x, y]−1 = [y, x];

(ii) [x, y]φ = [xφ, yφ];

(iii) [x, yz] = [x, z] [x, y]z ;

(iv) [xy, z] = [x, z]y [y, z].
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Proof: (i) [x, y]−1 = (x−1y−1xy)−1 = y−1x−1yx = [y, x].
(ii) [x, y]φ = (x−1y−1xy)φ = (xφ)−1(yφ)−1(xφ)(yφ) = [xφ, yφ].
(iii) For this and part (iv), we shall rely on Equation (6.1) and view it

as telling us how to exchange group elements at the expense of introducing
commutators. (This is known as ‘collection’.) So

xyz = yzx[x, yz]

but if we collect one term at a time we obtain

xyz = yx[x, y]z

= yxz[x, y]z

= yzx[x, z] [x, y]z .

Hence
yzx[x, yz] = yzx[x, z] [x, y]z ,

so
[x, yz] = [x, z] [x, y]z .

(iv)
xyz = zxy[xy, z]

and

xyz = xzy[y, z]

= zx[x, z]y[y, z]

= zxy[x, z]y [y, z].

Comparing we deduce
[xy, z] = [x, z]y [y, z].

�

Both parts (iii) and (iv) can be proved by a more simple-minded ex-
pansion of the terms on both sides, but I believe more can be learnt and
understood via the collection process.

Definition 6.3 Let G be a group. The derived subgroup (or commutator
subgroup) G′ of G is the subgroup generated by all commutators of elements
from G:

G′ = 〈 [x, y] | x, y ∈ G 〉.

Part (i) of Lemma 6.2 tells us that the inverse of a commutator is again
a commutator, but we have no information about products of commutators.
Consequently, a typical element of G′ has the form

[x1, y1] [x2, y2] . . . [xn, yn]

where xi, yi ∈ G for each i.
Iterating this construction yields the derived series:
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Definition 6.4 The derived series (G(i)) (for i > 0) is the chain of sub-
groups of the group G defined by

G(0) = G

and
G(i+1) = (G(i))′ for i > 0.

So G(1) = G′, G(2) = (G′)′ = G′′, etc. We then have a chain of subgroups

G = G(0) > G(1) > G(2) > · · · .

We shall see later that this is indeed a series in the sense of Definition 4.1
(in that each term is normal in the previous). Indeed far more is true as we
shall see.

Definition 6.5 A group G is called soluble (solvable in the U.S.) if G(d) = 1
for some d. The least such d is called the derived length of G.

Since when forming the derived series, we take the derived subgroup of
the previous term at each stage, once we have a repetition then the series
becomes constant. Thus if G is a soluble group of derived length d, its
derived series has the form

G = G(0) > G(1) > G(2) > · · · > G(d) = 1.

We seek to understand the properties a soluble group really has and
to produce equivalent formulations so that examples can be more easily
described. Accordingly, we being by establishing basic properties of the
derived subgroup and the derived series.

Lemma 6.6 (i) If H is a subgroup of G, then H ′ 6 G′.

(ii) If φ : G→ K is a homomorphism, then G′φ 6 K ′.

(iii) If φ : G→ K is a surjective homomorphism, then G′φ = K ′.

Proof: (i) If x, y ∈ H, then [x, y] is a commutator of elements of G so
belongs to the derived subgroup of G:

[x, y] ∈ G′ for all x, y ∈ H.

Therefore
〈 [x, y] | x, y ∈ H 〉 6 G′,

so H ′ 6 G′.
(ii) If x, y ∈ G, then [x, y]φ = [xφ, yφ] ∈ K ′. Since K ′ is closed under

products, it follows that any product of commutators in G is mapped into K ′

by φ. Thus G′φ 6 K ′.
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(iii) Let a, b ∈ K. Since φ is surjective, there exists x, y ∈ G such that
a = xφ and b = yφ. Thus

[a, b] = [xφ, yφ] = [x, y]φ ∈ G′φ.

Thus
[a, b] ∈ G′φ for all a, b ∈ K.

This forces K ′ 6 G′φ. Using (ii) gives K ′ = G′φ, as required. �

Lemma 6.7 Subgroups and homomorphic images of soluble groups are
themselves soluble.

Proof: Let G be a soluble group and H be a subgroup of G.

Claim: H(i) 6 G(i) for all i.
We prove the claim by induction on i. The case i = 0 is the inclusion

H 6 G which holds by assumption.
Now suppose H(i) 6 G(i). Apply Lemma 6.6(i) to give

(H(i))′ 6 (G(i))′;

that is,
H(i+1)

6 G(i+1).

This completes the induction.
Now since G is soluble, G(d) = 1 for some d. Therefore, as H(d) 6 G(d),

we have H(d) = 1 and so we deduce that H is soluble.

Now let K be a homomorphic image of G. Thus there exists a surjective
homomorphism φ : G→ K.

Claim: K(i) = G(i)φ for all i.
We prove the claim by induction on i. The case i = 0 is the equation

K = Gφ which holds by assumption.
Now suppose K(i) = G(i)φ. Thus φ induces a surjective homomorphism

G(i) → K(i) and Lemma 6.6(iii) gives

(K(i))′ = (G(i))′φ;

that is,
K(i+1) = G(i+1)φ.

This completes the induction.
Now as G is soluble we have G(d) = 1 and thus

K(d) = G(d)φ = 1φ = 1.

Hence K is soluble. �
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It follows that quotient groups (which are the same as homomorphic
images) of soluble groups are themselves soluble. There is a rather strong
converse to the above lemma as well.

Proposition 6.8 Let G be a group and N be a normal subgroup of G such
that both G/N and N are soluble. Then G is soluble.

Proof: Let π : G→ G/N be the natural map. By assumption (G/N)(d) =
1 and N (e) = 1 for some d and e. Now, by the second claim in Lemma 6.7,
we have

G(d)π = (G/N)(d) = 1.

Hence
G(d)

6 ker π = N.

Therefore, by the first claim in Lemma 6.7,

(G(d))(e) 6 N (e) = 1;

that is,
G(d+e) = 1.

Thus G is soluble. �

We have observed that if φ : G→ K is a surjective homomorphism then
G′φ = K ′. In particular, if φ is an automorphism of G (that is, an iso-
morphism G → G), then G′φ = G′. We give the following special name to
subgroups satisfying this property.

Definition 6.9 A subgroup H of a group G is said to be a characteristic
subgroup of G if xφ ∈ H for all x ∈ H and all automorphisms φ of G.

The definition requires that Hφ 6 H for all automorphisms φ of G. But
then we have Hφ−1 6 H and applying φ then yields H 6 Hφ. Thus H is
a characteristic subgroup if and only if Hφ = H for all automorphisms φ
of G.

The notation for being a characteristic subgroup is less consistently de-
veloped than for, say, being a normal subgroup. I shall write

H charG

to indicate that H is a characteristic subgroup of G.
Our observation above then is that

G′ charG

for all groups G and we shall soon see that all terms in the derived series
are also characteristic.
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Lemma 6.10 Let G be a group.

(i) If H charG, then H P G.

(ii) If K charH and H charG, then K charG.

(iii) If K charH and H P G, then K P G.

Thus there is considerable difference between characteristic subgroups
and normal subgroups. For example, note that in general

• K P H P G does not imply K P G.

• If φ : G → K is a homomorphism and H charG, then it does not fol-
low necessarily that Hφ charGφ. (Consequently the Correspondence
Theorem does not work well with characteristic subgroups.)

• If H 6 L 6 G and H charG, then it does not necessarily follow that
H charL.

Proof of Lemma 6.10: (i) If x ∈ G, then τx : g 7→ gx is an automorphism
of G. Hence if H charG, then

Hx = Hτx = H for all x ∈ G,

so H P G.
(ii) Let φ be an automorphism of G. ThenHφ = H (as H charG). Hence

the restriction φ|H of φ to H is an automorphism of H and we deduce

xφ ∈ K for all x ∈ K

(since this is the effect that the restriction φ|H has when applied to elements
of K). Thus K charG.

(iii) Let x ∈ G. Then Hx = H (as H P G) and therefore τx : g 7→ gx (for
g ∈ H) is a bijective homomorphismH → H; that is, τx is an automorphism
of H. Since K charH, we deduce that Kx = Kτx = K. Thus K P G. �

We have seen that G′ charG holds. Recall the definition of the derived
series:

G(0) = G, G(i+1) = (G(i))′ for i > 0.

Therefore

G(i) charG(i−1) charG(i−2) char · · · charG(1) charG(0) = G.

Applying Lemma 6.10(ii) we see that each G(i) is a characteristic subgroup
(and hence a normal subgroup) of G for each i.
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Proposition 6.11 The derived series

G = G(0)
> G(1)

> G(2)
> · · ·

is a chain of subgroups each of which is a characteristic subgroup of G and
hence each of which is a normal subgroup of G. �

In particular, if G is a soluble group of derived length d then we have

G = G(0) > G(1) > · · · > G(d) = 1

and this is a normal series (each term is normal in G). In particular, we can
consider the factors

G(0)/G(1), G(1)/G(2), . . . , G(d−1)/G(d);

i.e., the quotient groups G(i)/(G(i))′ for i = 0, 1, . . . , d− 1.
We now seek to elucidate information about these factors.

Lemma 6.12 Let G be a group and N be a normal subgroup of G. Then
G/N is abelian if and only if G′ 6 N .

In particular, G/G′ is an abelian group and it is the largest quotient
group of G which is abelian. We often call G/G′ the abelianisation of G.

Proof: Suppose G/N is abelian. Then

Nx ·Ny = Ny ·Nx for all x, y ∈ G,

so
N [x, y] = (Nx)−1(Ny)−1(Nx)(Ny) = N1 for all x, y ∈ G.

Thus [x, y] ∈ N for all x, y ∈ G and we obtain G′ 6 N .
Conversely if G′ 6 N , then [x, y] ∈ N for all x, y ∈ G and reversing the

above steps shows that G/N is abelian. �

In particular, the factors occurring in the derived series are all abelian.
So if G is a soluble group, it has the derived series as a normal series with
all factors abelian. The following result strengthens this and puts it into
context.

Theorem 6.13 Let G be a group. The following conditions are equivalent:

(i) G is soluble;

(ii) G has a chain of subgroups

G = G0 > G1 > G2 > · · · > Gn = 1

such that Gi is a normal subgroup of G and Gi−1/Gi is abelian for
i = 1, 2, . . . , n;

69



(iii) G has a chain of subgroups

G = G0 > G1 > G2 > · · · > Gn = 1

such that Gi is a normal subgroup of Gi−1 and Gi−1/Gi is abelian for
i = 1, 2, . . . , n.

We describe Condition (ii) as saying that G has a normal series with
abelian factors, while (iii) says that G has a series (or subnormal series)
with abelian factors.

Proof: (i) ⇒ (ii): The derived series is such a chain of subgroups.
(ii) ⇒ (iii): Immediate: If Gi P G for Gi 6 Gi−1 6 G, then Gi P Gi−1.
(iii) ⇒ (i): Suppose

G = G0 > G1 > G2 > . . . > Gn = 1

is a series where Gi−1/Gi is abelian for all i.

Claim: G(i) 6 Gi for all i.
We prove the claim by induction on i. Since G(0) = G = G0, the claim

holds for i = 0.
Suppose G(i) 6 Gi. Now Gi+1 P Gi and Gi/Gi+1 is abelian. Hence

(Gi)
′ 6 Gi+1 by Lemma 6.12. Further, by Lemma 6.6(i), (G(i))′ 6 (Gi)

′.
Hence

G(i+1) = (G(i))′ 6 (Gi)
′
6 Gi+1.

Hence by induction G(n) 6 Gn = 1, so G(n) = 1 and G is soluble. �

We now have a characterisation that a group is soluble if and only if it
has a series with abelian factors. We shall obtain a further such equivalence
by linking solubility to composition series. First, however, we note the
following:

Example 6.14 An abelian groupG is soluble. Indeed in an abelian groupG

[x, y] = x−1y−1xy = 1 for all x and y,

so G′ = 1. (Of course, the condition G′ = 1 is equivalent to G being
abelian.)

In particular, the infinite cyclic group is soluble, though we know (Ex-
ample 4.5) that this group does not have a composition series. Accordingly
we cannot hope for composition series to give us complete information about
soluble groups.

It turns out that as long as we avoid the infinite soluble groups, compo-
sition series do tell us whether or not our group is soluble.
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Theorem 6.15 Let G be a group. Then the following conditions are equiv-
alent:

(i) G is a finite soluble group;

(ii) G has a composition series with all composition factors cyclic of prime
order.

Recall that the abelian simple groups are precisely the cyclic groups of
(various) prime orders. Thus part (ii) describes the groups with abelian
composition factors.

Proof: (ii) ⇒ (i): Let

G = G0 > G1 > G2 > · · · > Gn = 1

be a composition series for G and suppose that all the factors are cyclic.
Then Gi P Gi−1 and Gi−1/Gi is abelian for each i. Thus this is a chain of
subgroups as in part (iii) of Theorem 6.13 and therefore G is soluble by that
result. Further

|G| = |G0/G1| · |G1/G2| · . . . · |Gn−1/Gn|,

a product of finitely many primes, so G is finite.
(i) ⇒ (ii): Let G be a finite soluble group. Then by Theorem 6.13,

G possesses a chain of subgroups

G = G0 > G1 > G2 > · · · > Gn = 1 (6.2)

such that Gi P Gi−1 and Gi−1/Gi is abelian for all i. Note that G can only
have at most finitely many such series. Thus we may assume that (6.2) is
the longest series for G with abelian factors. Such a series must then be
a composition series: for if some Gi−1/Gi is not simple, then there exists
N P Gi−1 with Gi < N < Gi−1. We then obtain a series

G = G0 > · · · > Gi−1 > N > Gi > · · · > Gn = 1

which is longer than (6.2) and the new factors occurring here satisfy

N/Gi 6 Gi−1/Gi and Gi−1/N ∼=
Gi−1/Gi

N/Gi

(by the Third Isomorphism Theorem). Since Gi−1/Gi is abelian, we see
that N/Gi and Gi−1/N are abelian. This contradicts the assumption that
(6.2) is the longest series with abelian factors.

We now deduce that (6.2) is indeed a composition series and hence the
composition factors of G are abelian. Since the only abelian simple groups
are cyclic of prime order, we deduce that all the composition factors of G
are cyclic of prime order (for various primes). �
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So far this section has been rather devoid of examples. We have ob-
served that all abelian groups are soluble, but this is not particularly far
reaching. On the other hand, our two characterisation theorems, Theo-
rems 6.13 and 6.15 do far better for helping us recognise (finite) soluble
groups. These theorems tell us that a soluble group is one that is built from
abelian groups.

Example 6.16 The symmetric group S4 of degree 4 is soluble. Indeed in
Example 4.3 we observed that

S4 > A4 > V4 > 〈(1 2)(3 4)〉 > 1

is a composition series for S4 and the composition factors are C2, C3, C2

and C2. Hence S4 is soluble by Theorem 6.15.

Example 6.17 The dihedral group D2n of order 2n is soluble. Indeed
D2n contains an element α of order n, so 〈α〉 has index 2 so is normal.
Thus

D2n > 〈α〉 > 1

is a series for D2n with both factors cyclic. Hence D2n is soluble by Theo-
rem 6.13.

Example 6.18 The symmetric group Sn of degree n is insoluble if n > 5.
Indeed we know that An is non-abelian simple group, so is insoluble by
Theorem 6.15. As a subgroup of a soluble group is always soluble, it must
be the case that Sn is insoluble also.

Careful analysis of the examples in Section 3 shows that the groups we
considered that were not simple in 3.6–3.9 are also soluble groups.

Finite soluble groups

For the rest of this section we shall work only with finite groups. Our goal
is to study finite soluble groups in much greater detail and in particular
prove Hall’s Theorem concerning finite soluble groups. We shall prove these
by induction on the group order. The method will involve working with
quotients and so we begin by studying normal subgroups which are as small
as possible.

Minimal normal subgroups

For the moment we shall work with arbitrary finite groups without assuming
that they are also soluble. Solubility will return in due course.
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Definition 6.19 Let G be a finite group. A minimal normal subgroup of G
is a non-trivial normal subgroup of G which has no non-trivial proper sub-
group which is also normal in G.

Thus M is a minimal normal subgroup of G if

(i) 1 < M P G;

(ii) if 1 6 N 6M and N P G, then either N = 1 or N =M .

Note that, apart from the trivial group, all finite groups have minimal
normal subgroups. To see this, we start with the group G itself. If this isn’t
a minimal normal subgroup, then there is a proper subgroup below it which
is normal. If this isn’t minimal, then there is a proper subgroup below it
which is normal in G. Repeating this process must eventually stop (since
G is finite) and yield a minimal normal subgroup.

We shall prove the following description of minimal normal subgroups.

Theorem 6.20 A minimal normal subgroup of a finite group G is a direct
product of isomorphic simple groups.

In the case of a minimal normal subgroup of a finite soluble group, these
simple groups will be cyclic of prime order. We shall work towards the proof
of this theorem next. First we make the following definition.

Definition 6.21 A non-trivial group G is called characteristically simple if
the only characteristic subgroups it has are 1 and G.

(Recall, from Definition 6.9, that a characteristic subgroup of G is a
subgroup which is closed under applying all automorphisms of G.)

Lemma 6.22 A minimal normal subgroup of a group is characteristically
simple.

Proof: Let M be a minimal normal subgroup of the group G. Let K be a
characteristic subgroup of M . Then

K charM P G,

so K P G by Lemma 6.10(iii). Thus minimality of M forces K = 1 or
K =M . Hence M is indeed characteristically simple. �

Theorem 6.20 then follows immediately from the following result. (The
advantage of proving Theorem 6.23 over a direct attempt on Theorem 6.20
is that we can concentrate only on the characteristically simple group rather
than having to juggle both the minimal normal subgroup and its embedding
in the larger group.)
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Theorem 6.23 A characteristically simple finite group is a direct product
of isomorphic simple groups.

Proof: Let G be a finite group which is characteristically simple. Let S be
a minimal normal subgroup of G. (So S 6= 1. It is possible that S = G.)
Consider the following set

D = {N P G | N = S1 × S2 × · · · × Sk where each Si is a

minimal normal subgroup of G isomorphic to S }.

(Recall what we mean by the direct product here: it is an internal direct
product, so we need Si ∩ S1 . . . Si−1Si+1 . . . Sk = 1 for each i, as well as
N = S1S2 . . . Sk. We already assume Si P G, so the requirement Si P N
comes for free.)

Note that S ∈ D , so D certainly contains non-trivial members. Choose
N ∈ D of largest possible order.

Claim: N = G.
Suppose our maximal member N of D is not equal to G. Then as G is

characteristically simple, N cannot be a characteristic subgroup of G. Hence
there exists an automorphism φ of G such that

Nφ 
 N.

Let N = S1 × S2 × · · · × Sk where each Si is a minimal normal subgroup
of G isomorphic to S. Therefore there exists i such that

Siφ 
 N.

Now φ is an automorphism of G, so Siφ is a minimal normal subgroup of G.
Now N ∩ Siφ P G and N ∩ Siφ is properly contained in Siφ (as Siφ 
 N).
Therefore, by minimality, N ∩ Siφ = 1. It follows that

N · Siφ = N × Siφ = S1 × S2 × · · · × Sk × Siφ

and
N · Siφ P G.

This shows that N · Siφ ∈ D . This contradicts N being a maximal member
of D .

Therefore
G = N = S1 × S2 × · · · × Sk,

where each Si is a minimal normal subgroup of G isomorphic to our original
minimal normal subgroup S.
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It remains to check that S is simple. If J P S1, then

J P S1 × S2 × · · · × Sk = G.

Therefore, as S1 is a minimal normal subgroup of G, we must have J = 1
or J = S1. Hence S1 (and accordingly S) is simple.

We have shown that, indeed, G is a direct product of isomorphic simple
groups. �

We have now established Theorems 6.20 and 6.23 in a general setting.
We are, however, only interested in soluble groups in the current section and
Theorem 6.15 tells us that the only simple groups which can be occurring in
this world are cyclic groups of prime order. Thus in a finite soluble group,
a minimal normal subgroup is a direct product of cyclic groups of order p
(for some prime p). We give a special name to these groups:

Definition 6.24 Suppose that p is a prime number. An elementary abelian
p-group G is an abelian group such that

xp = 1 for all x ∈ G.

Recall that a finite abelian group is a direct product of cyclic groups. It
follows that a finite group is an elementary abelian p-group if and only if

G ∼= Cp × Cp × · · · × Cp
︸ ︷︷ ︸

d times

for some d.
Putting together Theorem 6.15 and Theorem 6.20 gives:

Theorem 6.25 A minimal normal subgroup of a finite soluble group is an
elementary abelian p-group for some prime number p. �

This result will be used in the induction step of our proof of Hall’s
Theorem. We now move on to describe the type of subgroup this theorem
concerns.

Hall subgroups

Definition 6.26 Let π be a set of prime numbers and let G be a finite
group. A Hall π-subgroup of G is a subgroup H of G such that |H| is a
product involving only the primes in π and |G : H| is a product involving
only primes not in π.

If p is a prime number, then a Hall {p}-subgroup is precisely the same
thing as a Sylow p-subgroup.

75



Example 6.27 Consider the alternating group A5 of degree 5. Here

|A5| = 60 = 22 · 3 · 5.

So a Hall {2, 3}-subgroup of A5 has order 12. We already know of a subgroup
with this order: thus, A4 is a Hall {2, 3}-subgroup of A5.

A Hall {2, 5}-subgroup of A5 would have order 20 and index 3, while
a Hall {3, 5}-subgroup of A5 would have order 15 and index 4. If H were
one of these, then we could let A5 act on the cosets of H and obtain a
homomorphism ρ : A5 → Sr (where r = 3 or 4). Here ker ρ 6= 1 and ker ρ 6=
A5 (as ker ρ 6 H), which would contradict the fact that A5 is simple.

Hence A5 does not have any Hall π-subgroups for π = {2, 5} or π =
{3, 5}.

So in insoluble groups, some Hall π-subgroups might exist, while others
might not (in fact, it is a theorem that some definitely do not!). This
is in stark contrast to soluble groups where we shall observe that Hall
π-subgroups always do exist:

Theorem 6.28 (P. Hall, 1928) Let G be a finite soluble group and let
π be a set of prime numbers. Then

(i) G has a Hall π-subgroup;

(ii) any two Hall π-subgroups of G are conjugate;

(iii) any π-subgroup of G is contained in a Hall π-subgroup.

A subgroup of G is called a π-subgroup if its order is a product involving
only the primes in π. There is a clear analogy between this theorem of Hall
and Sylow’s Theorem (Theorem 3.4).

Hall subgroups and this theorem are named after Philip Hall (1904–
1982), a British mathematician who did groundbreaking research into the
theory of finite and infinite groups in the early and mid-parts of the twentieth
century.

A number of tools are needed in the course of this theorem. The one
remaining fact that has not already been established is the following result.
This first appeared in the context of nilpotent groups, and we shall use it in
that context in the next section, but it is also needed for the hardest part
of the proof of Hall’s Theorem.

Lemma 6.29 (Frattini Argument) Let G be a finite group, N be a nor-
mal subgroup of G and P be a Sylow p-subgroup of N . Then

G = NG(P )N.
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The name of the lemma suggests (correctly) that it is the method of
proof that is actually most important here. The idea can be adapted to
many situations and turns out to be very useful.

Proof: Let x ∈ G. Since N P G, we have

P x
6 Nx = N,

so P x is a Sylow p-subgroup of N . Sylow’s Theorem then tells us that
P x and P are conjugate in N :

P x = Pn for some n ∈ N.

Therefore
P xn−1

= P,

so y = xn−1 ∈ NG(P ). Hence x = yn ∈ NG(P )N . The reverse inclusion is
obvious, so

G = NG(P )N.

�

Proof of Theorem 6.28: Our strategy is to prove part (i) and deduce
part (iii) by showing that a π-subgroup is contained in a conjugate of the
Hall π-subgroup found already. We shall then deduce part (ii) at the end.
The argument is by induction on the group order dividing into several cases.
Since the same cases arise in the proof of both (i) and (iii), we shall actually
step through doing both parts together. (A proof of (i) can be extracted by
just deleting the second half of each case.)

Thus we shall prove the following:

• G has a Hall π-subgroup H;

• if L is a π-subgroup of G then L is contained in some conjugate of H.

We prove these statements by induction on the order of G. Both are trivial
if |G| = 1. Assume then that |G| > 1 and that these statements hold for
soluble groups of order smaller than G. Write |G| = mn where m is a
product involving primes in π and n is a product involving primes not in π.
(A Hall π-subgroup of G is then a subgroup of order m.) We can assume
that m > 1 since otherwise the statements are trivially true.

Let M be a minimal normal subgroup of G. By Theorem 6.25, M is
elementary abelian. We consider two cases according to the prime dividing
the order of M .
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Case 1: M is an elementary abelian p-group where p ∈ π. Write |M | = pα.
Then

|G/M | = mn/pα = m1n,

where m = m1p
α. By induction, the above statements hold for G/M . The

Correspondence Theorem tells us that a Hall π-subgroup of G/M has the
form H/M where H is a subgroup of G containing M . Then

|H/M | = m1

so
|H| = m1|M | = m1p

α = m.

Hence H is a Hall π-subgroup of G.
Now let L be any π-subgroup of G. The image LM/M (∼= L/(L ∩M))

of L in the quotient group is a π-subgroup of G/M . Hence, by induction,
some conjugate of H/M contains LM/M , say

LM/M 6 (H/M)Mx = Hx/M

where x ∈ G. Thus
L 6 LM 6 Hx.

This completes Case 1.

Case 2: No minimal normal subgroup of G is an elementary abelian
p-group with p ∈ π. In particular, our minimal normal subgroup M of G
satisfies |M | = qβ where q /∈ π.

Then
|G/M | = mn/qβ = mn1

where n = n1q
β. We now further subdivide according to n1.

Subcase 2A: n1 6= 1.
By induction, G/M has a Hall π-subgroup, which has the form K/M

where K is a subgroup of G containing M and

|K/M | = m.

Then
|K| = m|M | = mqβ = mn/n1 < mn.

We shall further apply induction to K. This has smaller order than G and
hence possesses a Hall π-subgroup. Let H be a Hall π-subgroup of K. Then
|H| = m, so H is also a Hall π-subgroup of G.

Now let L be a π-subgroup of G. Now the image LM/M of L in the
quotient group is a π-subgroup of G/M . Hence, by induction, LM/M is
contained in some conjugate of K/M ; say

LM/M 6 (K/M)Mx = Kx/M
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where x ∈ G. Hence L 6 LM 6 Kx, so Lx−1

6 K. Then Lx−1

is a
π-subgroup of K and by induction (again) we deduce Lx−1

6 Hy for some
y ∈ K. Hence

L 6 Hyx

and we have completed Subcase 2A.

Subcase 2B: n1 = 1, so |G| = mqβ.
Note also that the general assumption of Case 2 still applies: G has no

minimal normal subgroup which is elementary abelian-p for p ∈ π.
Now |G/M | = m > 1. Let N/M be a minimal normal subgroup of G/M .

Then N/M is an elementary abelian p-group for some p ∈ π (since m is a
product involving only primes in π), say |N/M | = pα. Then N P G and

|N | = pαqβ.

Let P be a Sylow p-subgroup of N . Let us now apply the Frattini Argument
(Lemma 6.29):

G = NG(P )N.

But N = PM , so
G = NG(P )PM = NG(P )M

(as P 6 NG(P )).
Now consider J = NG(P ) ∩M . Since M is abelian, J P M . Also since

M P G, J = NG(P ) ∩M P NG(P ). Hence

J P NG(P )M = G.

But M is a minimal normal subgroup of G, so J = 1 or J =M .
If J = NG(P ) ∩ M = M , then M 6 NG(P ), so G = NG(P ). Hence

P is a normal p-subgroup of G and some subgroup of P is a minimal normal
subgroup of G and this is then an elementary abelian p-group with p ∈ π.
This is contrary to the general assumption made for Case 2.

Thus J = 1, so NG(P ) ∩M = 1. Now

mqβ = |G| = |NG(P )M | = |NG(P )| · |M |,

so |NG(P )| = m. Hence H = NG(P ) is our Hall π-subgroup. (We have now
completed the existence part of the whole theorem!)

Now consider some π-subgroup L of G. We have G = HM above, so

LM = LM ∩G

= LM ∩HM

= (LM ∩H)M

by Dedekind’s Modular Law (Lemma 1.7). Now LM ∩H is a π-group (as a
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Figure 6.1: Subcase 2B: LM ∩HM = (LM ∩H)M

subgroup of H) and

|LM : LM ∩H| =
|(LM ∩H)M |

|LM ∩H|

=
|M |

|LM ∩H ∩M |
= |M |

(since H ∩M = 1 as they have coprime order). Hence LM ∩ H is a Hall
π-subgroup of LM .

If LM < G, we can apply induction to the group LM to see that some
conjugate of the Hall π-subgroup LM ∩H contains the π-subgroup L:

L 6 (LM ∩H)x 6 Hx

for some x ∈ G (indeed we could pick x ∈ LM). We would then be done.
So suppose LM = G. Then as L∩M = 1 (they have coprime order) we

see
|G| = |LM | = |L| · |M |,

so |L| = mqβ/qβ = m. Also, since M 6 N , we have G = LN (we already
know that G = LM). Thus

|G| = |LN | =
|L| · |N |

|L ∩N |
,

so

|L ∩N | =
|L| · |N |

|G|
=
m · pαqβ

mqβ
= pα.

Thus L∩N is a Sylow p-subgroup of N . By Sylow’s Theorem, it is conjugate
to the Sylow p-subgroup P which we already know about, say

L ∩N = P x where x ∈ G

(indeed we can pick x ∈ N). Now L ∩N P L, so

L 6 NG(L ∩N) = NG(P
x) = NG(P )

x = Hx.

Thus L is contained in some conjugate of our Hall π-subgroup H.
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This completes the proof of the both statements. We have now shown
that if G is a finite soluble group, then G has a Hall π-subgroup H (i.e.,
part (i) of Theorem 6.28 holds), and every π-subgroup of G is contained in
a conjugate of H (and thus part (iii) of Theorem 6.28 holds).

Now let K be any Hall π-subgroup of G. By the second statement,
K 6 Hx for some x ∈ G. But these subgroups have the same order, so we
deduce K = Hx and so part (ii) of Theorem 6.28 holds.

This completes the proof of Hall’s Theorem. �

Sylow systems and Sylow bases

We shall now examine some consequences of Hall’s Theorem. Specifically
we shall see how the Sylow subgroups of a soluble group can be arranged to
have special properties. We begin with the following definition.

Definition 6.30 If p is a prime number, we write p′ for the set of all
primes not equal to p. A Hall p′-subgroup of a finite group G is called
a p-complement.

Note that 2′ then denotes the set of all odd primes.
The reason for the above nomenclature is as follows. Let G be a fi-

nite group and write |G| = pnm where p does not divide m. Then a Hall
p′-subgroup H has order m, while a Sylow p-subgroup P has order pn. As
they have coprime orders, we see H ∩ P = 1 and therefore

|HP | = |H| · |P | = |G|,

so
G = HP, H ∩ P = 1.

This is the situation we referred to as H and P being complements (see
Definition 5.8, although neither subgroup is necessarily normal here).

Now let G be a finite soluble group and write

|G| = pn1

1 p
n2

2 . . . pnk

k

where p1, p2, . . . , pk are the distinct prime factors of |G|. By Hall’s Theorem,
G has a Hall p′-subgroup for each prime. Let Q1, Q2, . . . , Qk be Hall
p′i-subgroups for i = 1, 2, . . . , k, respectively. Thus they are characterised
by

|Qi| = |G|/pni

i and |G : Qi| = pni

i .
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Claim: Q1 ∩Q2 ∩ · · · ∩Qt is a Hall {pt+1, . . . , pk}-subgroup of G.

We are intersecting subgroups whose indices are coprime. We recall the
principal fact from Lemma 1.12 which we need: if |G : H| and |G : K| are
coprime integers, then

|G : H ∩K| = |G : H| · |G : K|.

Proof of Claim: This is certainly true when t = 1. Suppose then, as an
inductive hypothesis, that the intersection H = Q1 ∩Q2 ∩ · · · ∩Qt is a Hall
{pt+1, . . . , pk}-subgroup of G. Then

|H| = p
nt+1

t+1 . . . pnk

k and |G : H| = pn1

1 . . . pnt
t .

Now apply Lemma 1.12: H and Qt+1 have coprime indices, so

|G : H ∩Qt+1| = |G : H| · |G : Qt+1| = pn1

1 . . . pnt

t p
nt+1

t+1 .

Hence |H ∩ Qt+1| = p
nt+2

t+2 . . . pnk

k , so H ∩ Qt+1 = Q1 ∩ · · · ∩ Qt+1 is a Hall
{pt+2, . . . , pk}-subgroup of G. Thus the claim holds by induction. �

In particular, Pk = Q1∩Q2∩ . . . Qk−1 is a Hall {pk}-subgroup of G; that
is, a Sylow pk-subgroup of G.

Generalising in the obvious way, we deduce that

Pr =
⋂

i 6=r

Qi

is a Sylow pr-subgroup of G (for r = 1, 2, . . . , k).
Now consider the two Sylow subgroups Pk−1 and Pk. Firstly Pk−1∩Pk =

1 (since they have coprime orders), so

|Pk−1Pk| = |Pk−1| · |Pk| = p
nk−1

k−1 p
nk

k = |PkPk−1|.

Further, by construction, both Pk−1 and Pk are contained in the inter-
section Q1 ∩ Q2 ∩ · · · ∩ Qk−2 and by our claim this intersection is a Hall
{pk−1, pk}-subgroup of G; that is,

|Q1 ∩Q2 ∩ · · · ∩Qk−2| = p
nk−1

k−1 p
nk

k .

Now since it is a subgroup, this Hall subgroup is closed under products, so
we deduce that

Pk−1Pk, PkPk−1 ⊆ Q1 ∩Q2 ∩ · · · ∩Qk−2.

Finally the subsets occurring in the previous inclusion all have the same
size, so we deduce

Pk−1Pk = Q1 ∩Q2 ∩ · · · ∩Qk−2 = PkPk−1.

Generalising in the obvious way, we deduce that for all r 6= s:

PrPs = PsPr.
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Definition 6.31 Let G be a finite group and let p1, p2, . . . , pk be the
distinct prime factors of |G|.

(i) A Sylow system for G is a collection Q1, Q2, . . . , Qk such that Qi is a
Hall p′i-subgroup of G (for i = 1, 2, . . . , k).

(ii) A Sylow basis for G is a collection P1, P2, . . . , Pk such that Pi is a
Sylow pi-subgroups of G (for i = 1, 2, . . . , k) and such that

PiPj = PjPi for all i and j.

We have shown:

Theorem 6.32 A finite soluble group possesses a Sylow system and a Sylow
basis. �

Recall that the product HK of two subgroups is a subgroup if and only
if HK = KH. Consequently, if we start with a Sylow basis P1, P2, . . . , Pk

for a finite soluble group G, then we can form

Pi1Pi2 . . . Pis

for any subset {i1, i2, . . . , is} ⊆ {1, 2, . . . , k}. The fact that the Sylow sub-
groups in our Sylow basis permute ensures that this is a subgroup and it is
easy to see that its order is p

ni1

i1
p
ni2

i2
. . . p

nis

is
. Thus we have formed a Hall

subgroup for the appropriate collection of primes. Hence a Sylow basis is a
nice collection of Sylow subgroups from which we may easily construct Hall
subgroups.

Philip Hall proved far more than these results. The final two theorems
of this section will not be proved (though the first appears, in guided form,
on the problem sheet).

Theorem 6.33 (P. Hall) Let G be a finite soluble group. Then any two
Sylow bases for G are conjugate (that is, if P1, P2, . . . , Pk and R1, R2,
. . . , Rk are two Sylow bases for G, where Pi and Ri are Sylow subgroups
for the same prime, then there exists x ∈ G such that Ri = P x

i for all i).

This is much stronger than Sylow’s Theorem. The latter tells us that
each Ri is a conjugate of Pi. What the above theorem tells us is that when
the Sylow subgroups come from a Sylow basis then we can actually choose
the same element x to conjugate all the Sylow subgroups simultaneously.

Finally we have the following major converse to Hall’s Theorem.

Theorem 6.34 (P. Hall) Let G be a finite group which possesses a Hall
p′-subgroup for every prime p. Then G is soluble.

Putting Theorems 6.28 and 6.34 together, we see that a group is soluble
if and only if it has Hall π-subgroups for all collections π of primes. (In
particular, our observation that A5 was missing some Hall subgroups is no
longer surprising.)
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Section 7

Nilpotent Groups

Recall the commutator is given by

[x, y] = x−1y−1xy.

Definition 7.1 Let A and B be subgroups of a group G. Define the com-
mutator subgroup [A,B] by

[A,B] = 〈 [a, b] | a ∈ A, b ∈ B 〉,

the subgroup generated by all commutators [a, b] with a ∈ A and b ∈ B.

In this notation, the derived series is then given recursively by the for-
mula G(i+1) = [G(i), G(i)] for all i. We now make a new definition which is
similar but slightly less symmetrical in appearance.

Definition 7.2 The lower central series (γi(G)) (for i > 1) is the chain of
subgroups of the group G defined by

γ1(G) = G

and

γi+1(G) = [γi(G), G] for i > 1.

Definition 7.3 A group G is called nilpotent if γc+1(G) = 1 for some c.
The least such c is called the nilpotency class of G.

It is easy to see that G(i) 6 γi+1(G) for all i (by induction on i). Thus
if G is nilpotent, then it is soluble. Note also that γ2(G) = G′.

We need the basic properties of the lower central series, so that we can
study nilpotent groups.

Lemma 7.4 (i) If H is a subgroup of G, then γi(H) 6 γi(G) for all i.
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(ii) If φ : G → K is a surjective homomorphism, then γi(G)φ = γi(K) for
all i.

(iii) γi(G) is a characteristic subgroup of G for all i.

(iv) The lower central series of G is a chain of subgroups

G = γ1(G) > γ2(G) > γ3(G) > · · · .

Proof: (i) Proceed by induction on i. Note that γ1(H) = H 6 G = γ1(G).
If we assume that γi(H) 6 γi(G), then this together with H 6 G gives

[γi(H),H] 6 [γi(G), G]

so γi+1(H) 6 γi+1(G).

(ii) Again proceed by induction on i. Note that γ1(G)φ = Gφ = K =
γ1(K). Suppose γi(G)φ = γi(K). If x ∈ γi(G) and y ∈ G, then

[x, y]φ = [xφ, yφ] ∈ [γi(G)φ,Gφ] = [γi(K),K] = γi+1(K),

so γi+1(G)φ = [γi(G), G]φ 6 γi+1(K).
On the other hand, if a ∈ γi(K) and b ∈ K, then a = xφ and b = yφ for

some x ∈ γi(G) and y ∈ G. So

[a, b] = [xφ, yφ] = [x, y]φ ∈ [γi(G), G]φ = γi+1(G)φ.

Thus γi+1(K) = [γi(K),K] 6 γi+1(G)φ.
We deduce that γi+1(G)φ = γi+1(K) to complete the inductive step.

(iii) If φ is an automorphism of G, then φ : G→ G is a surjective homo-
morphism, so from (ii) we have

γi(G)φ = γi(G).

Thus γi(G) charG.

(iv) From (iii), γi(G) P G. Hence if x ∈ γi(G) and y ∈ G, then

[x, y] = x−1xy ∈ γi(G).

Hence
γi+1(G) = [γi(G), G] 6 γi(G) for all i.

�

We deduce two consequences immediately:
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Lemma 7.5 Subgroups and homomorphic images of nilpotent groups are
themselves nilpotent.

Proof: Let γc+1(G) = 1 and H 6 G. Then by Lemma 7.4(i), γc+1(H) 6
γc+1(G) = 1, so γc+1(H) = 1 and H is nilpotent.

If K is a homomorphic image of G, say φ : G → K is a surjective ho-
momorphism, then Lemma 7.4(ii) gives γc+1(K) = γc+1(G)φ = 1φ = 1, so
K is nilpotent. �

Note, however, that

N P G, G/N and N nilpotent 6⇒ G nilpotent.

In this way, nilpotent groups are different to soluble groups.

Example 7.6 Finite p-groups are nilpotent.

(In fact, we shall see later that finite p-groups are the archetypal nilpo-
tent group.)

Proof: Let G be a finite p-group, say |G| = pn. We proceed by induction
on |G|. If |G| = 1, then immediately G is nilpotent (as γ1(G) = G = 1).

Now suppose |G| > 1. Apply Corollary 2.30: Z(G) 6= 1. Consider the
quotient group G/Z(G). This is a p-group of order smaller than G, so by
induction it is nilpotent, say

γc+1(G/Z(G)) = 1.

Let π : G→ G/Z(G) be the natural homomorphism. Then by Lemma 7.4(ii),

γc+1(G)π = γc+1(G/Z(G)) = 1,

so γc+1(G) 6 kerπ = Z(G). Thus

γc+2(G) = [γc+1(G), G] 6 [Z(G), G] = 1,

so G is nilpotent. �

The example illustrates that the centre has a significant role in the study
of nilpotent groups. We make two further definitions:

Definition 7.7 The upper central series (Zi(G)) (for i > 0) is the chain of
subgroups of the group G defined by

Z0(G) = 1

and

Zi+1(G)/Zi(G) = Z(G/Zi(G)) for i > 0.
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Here suppose we know that Zi(G) P G. Then Z(G/Zi(G)) is a normal
subgroup of G/Zi(G), so corresponds to a normal subgroup Zi+1(G) of G
containing Zi(G) under the Correspondence Theorem. In this way we define
a chain of subgroups

1 = Z0(G) 6 Z1(G) 6 Z2(G) 6 · · · ,

each of which is normal in G. Here Z1(G) = Z(G).

Definition 7.8 A central series for a group G is a chain of subgroups

G = G0 > G1 > · · · > Gn = 1

such that Gi is a normal subgroup of G and Gi−1/Gi 6 Z(G/Gi) for all i.

Lemma 7.9 Let
G = G0 > G1 > · · · > Gn = 1

be a central series for G. Then

γi+1(G) 6 Gi and Zi(G) > Gn−i

for all i.

Proof: First observe γ1(G) = G = G0. Suppose that γi(G) 6 Gi−1 for
some i. Now if x ∈ γi(G) and y ∈ G, then

Gix ∈ Gi−1/Gi 6 Z(G/Gi),

so Gix commutes with Giy. Therefore

Gi[x, y] = (Gix)
−1(Giy)

−1(Gix)(Giy) = Gi,

so [x, y] ∈ Gi. Hence

γi+1(G) = [γi(G), G] 6 Gi.

Thus, by induction, the first inclusion holds.
Also Z0(G) = 1 = Gn. Suppose Zi(G) > Gn−i. Now since (Gi) is a

central series for G we have

Gn−i−1/Gn−i 6 Z(G/Gn−i).

Thus if x ∈ Gn−i−1 and y ∈ G, then

Gn−ix and Gn−iy commute; i.e., [x, y] ∈ Gn−i.
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Hence [x, y] ∈ Zi(G), so Zi(G)x and Zi(G)y commute. Since y is an arbitrary
element of G, we deduce that

Zi(G)x ∈ Z(G/Zi(G)) = Zi+1(G)/Zi(G)

and this holds for all x ∈ Gn−i−1. Thus Gn−i−1 6 Zi+1(G) and the second
inclusion holds by induction. �

We have now established the link between a general central series and
the behaviour of the lower and the upper central series.

Theorem 7.10 The following conditions are equivalent for a group G:

(i) γc+1(G) = 1 for some c;

(ii) Zc(G) = G for some c;

(iii) G has a central series.

Thus these are equivalent conditions for a group to be nilpotent.

Proof: If G has a central series (Gi) of length n, then Lemma 7.9 gives

γn+1(G) 6 Gn = 1 and Zn(G) > G0 = G.

Hence (iii) implies both (i) and (ii).
If Zc(G) = G, then

G = Zc(G) > Zc−1(G) > · · · > Z1(G) > Z0(G) = 1

is a central series for G (as Zi+1(G)/Zi(G) = Z(G/Zi(G))). Thus (ii) im-
plies (iii).

If γc+1(G) = 1, then

G = γ1(G) > γ2(G) > · · · > γc+1(G) = 1

is a central series for G. (For if x ∈ γi−1(G) and y ∈ G, then [x, y] ∈ γi(G),
so γi(G)x and γi(G)y commute for all such x and y; thus γi−1(G)/γi(G) 6
Z(G/γi(G)).) Hence (i) implies (iii). �

Further examination of the link between this proof and Lemma 7.9 shows

γc+1(G) = 1 if and only if Zc(G) = G.

Thus for a nilpotent group, the lower central series and the upper central
series have the same length.

My next goal is to develop further equivalent conditions for finite groups
to be nilpotent. Some of these observations work in greater generality.
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Proposition 7.11 Let G be a nilpotent group. Then every proper sub-
group of G is properly contained in its normaliser:

H < NG(H) whenever H < G.

Proof: Let
G = γ1(G) > γ2(G) > · · · > γc+1(G) = 1

be the lower central series. Then γc+1(G) 6 H but γ1(G) 66 H. Choose i as
small as possible so that γi(G) 6 H. Then γi−1(G) 66 H. Now

[γi−1(G),H] 6 [γi−1(G), G] = γi(G) 6 H,

so
x−1hxh−1 = [x, h−1] ∈ H for x ∈ γi−1(G) and h ∈ H.

Therefore
x−1hx ∈ H for x ∈ γi−1(G) and h ∈ H.

We deduce that Hx = H for all x ∈ γi−1(G), so that γi−1(G) 6 NG(H).
Therefore, since γi−1(G) 66 H, we deduce NG(H) > H. �

Let us now analyse how nilpotency affects the Sylow subgroups of a finite
group. This links into the previous proposition via the following lemma.

Lemma 7.12 Let G be a finite group and let P be a Sylow p-subgroup of G
for some prime p. Then

NG(NG(P )) = NG(P ).

Proof: Let H = NG(P ). Then P P H, so P is the unique Sylow
p-subgroup of H. (Note that as it is a Sylow p-subgroup of G and P 6 H, it
is also a Sylow p-subgroup of H, as it must have the largest possible order
for a p-subgroup of H.) Let g ∈ NG(H). Then

P g
6 Hg = H,

so P g is also a Sylow p-subgroup of H and we deduce P g = P ; that is,
g ∈ NG(P ) = H. Thus NG(H) 6 H, so we deduce

NG(H) = H,

as required. �

We can now characterise finite nilpotent groups as being built from
p-groups in the most simple way.

Theorem 7.13 Let G be a finite group. The following conditions on G are
equivalent:
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(i) G is nilpotent;

(ii) every Sylow subgroup of G is normal;

(iii) G is a direct product of p-groups (for various primes p).

Proof: (i) ⇒ (ii): Let G be nilpotent and P be a Sylow p-subgroup of G
(for some prime p). Let H = NG(P ). By Lemma 7.12, NG(H) = H. Hence,
by Proposition 7.11, we must have H = G. That is, NG(P ) = G and so
P P G.

(ii) ⇒ (iii): Let p1, p2, . . . , pk be the distinct prime factors of |G|, say

|G| = pn1

1 p
n2

2 . . . pnk

k ,

and assume that G has a normal Sylow pi-subgroup Pi for i = 1, 2, . . . , k.

Claim: P1P2 . . . Pj
∼= P1 × P2 × · · · × Pj for all j.

Certainly this claim holds for j = 1. Assume it holds for a value j and
consider N = P1P2 . . . Pj P G and Pj+1 P G. We have

|N | = |P1 × P2 × · · · × Pj |

= |P1| · |P2| · . . . · |Pj |

= pn1

1 p
n2

2 . . . p
nj

j ,

which is coprime to |Pj+1|. HenceN∩Pj+1 = 1 and thereforeNPj+1 satisfies
the conditions to be an (internal) direct product. Thus

NPj+1
∼= N × Pj+1

∼= P1 × P2 × · · · × Pj × Pj+1,

and by induction the claim holds.
In particular, note

|P1P2 . . . Pk| = |P1 × P2 × · · · × Pk| = |P1| · |P2| · . . . · |Pk| = |G|,

so
G = P1P2 . . . Pk

∼= P1 × P2 × · · · × Pk.

(iii) ⇒ (i): SupposeG = P1×P2×· · ·×Pk, a direct product of non-trivial
p-groups. Then

Z(G) = Z(P1)× Z(P2)× · · · × Z(Pk) 6= 1

(by Corollary 2.30). Then

G/Z(G) = P1/Z(P1)× P2/Z(P2)× · · · × Pk/Z(Pk)
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is a direct product of p-groups of smaller order. By induction, G/Z(G) is
nilpotent, say γc(G/Z(G)) = 1. Now apply Lemma 7.4(ii) to the natural
map π : G→ G/Z(G) to see that γc(G)π = γc(G/Z(G)) = 1. Thus γc(G) 6
ker π = Z(G) and hence

γc+1(G) = [γc(G), G] 6 [Z(G), G] = 1.

Therefore G is nilpotent. �

This now tells us that the study of finite nilpotent groups reduces to
understanding p-groups. There is plenty more that could be said here, but
not much time in the course. Instead, I shall finish by introducing the
concept of the Frattini subgroup which is of significance both in the study
of general groups and in the study of finite nilpotent (and p-) groups.

Definition 7.14 A maximal subgroup (or maximal proper subgroup) of a
group G is a subgroup M < G such that there is no subgroup H with
M < H < G.

Thus a maximal proper subgroup is a proper subgroup which is largest
amongst the proper subgroups.

If G is a nilpotent group, then Proposition 7.11 tells us that

M < NG(M) 6 G,

for any maximal subgroup M of G. The maximality of M forces NG(M) =
G; that is, M P G. Thus:

Lemma 7.15 Let G be a nilpotent group. Then every maximal subgroup
of G is normal in G. �

Definition 7.16 The Frattini subgroup Φ(G) of a group G is the intersec-
tion of all its maximal subgroups:

Φ(G) =
⋂

M maximal
in G

M.

(If G is an (infinite) group and G has no maximal subgroup, then Φ(G) =
G.)

If we apply an automorphism to a maximal subgroup, we map it to
another maximal subgroup. Hence the automorphism group permutes the
maximal subgroups of G and we deduce:

Lemma 7.17 If G is a group, then the Frattini subgroup Φ(G) is a char-
acteristic subgroup of G. �
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Our most comprehensive theorem characterising nilpotent finite groups
is then as follows:

Theorem 7.18 Let G be a finite group. The following conditions are equiv-
alent:

(i) G is nilpotent;

(ii) H < NG(H) for all H < G;

(iii) every maximal proper subgroup of G is normal;

(iv) Φ(G) > G′;

(v) every Sylow subgroup of G is normal;

(vi) G is a direct product of p-groups.

Proof: We have already proved that (i) ⇒ (ii) (Proposition 7.11), (ii) ⇒
(iii) (see the proof of Lemma 7.15) and (v) ⇒ (vi) ⇒ (i).

(iii) ⇒ (iv): Let M be a maximal subgroup of G. By assumption,
M P G. Since M is maximal, the Correspondence Theorem tells us that
G/M has no non-trivial proper subgroups. It follows first that G/M is cyclic
and so is abelian. Lemma 6.12 gives

G′ 6M.

Hence
G′ 6

⋂

M max G

M = Φ(G).

(iv) ⇒ (v): Let P be a Sylow p-subgroup of G and let N = P Φ(G)
(which is a subgroup of G, since Φ(G) P G by Lemma 7.17). Let x ∈ N
and g ∈ G. Then

x−1xg = [x, g] ∈ G′ 6 Φ(G) 6 N.

Hence xg ∈ N for all x ∈ N and g ∈ G, so N P G. Now P is a Sylow
p-subgroup of N (since it is the largest possible p-subgroup of G, so is
certainly largest amongst p-subgroups of N). Apply the Frattini Argument
(Lemma 6.29):

G = NG(P )N

= NG(P )P Φ(G)

= NG(P )Φ(G) (as P 6 NG(P )).
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From this we deduce that G = NG(P ): for suppose NG(P ) 6= G. Then
NG(P ) 6 M < G for some maximal subgroup M of G. By definition,
Φ(G) 6M , so

NG(P )Φ(G) 6M < G,

a contradiction. Hence NG(P ) = G and so P P G.

This completes all remaining stages in the proof. �

We shall complete the section by studying the Frattini subgroup of a
finite group.

Theorem 7.19 Let G be a finite group. Then the Frattini subgroup Φ(G)
is nilpotent.

Proof: Let P be a Sylow p-subgroup of Φ(G). The Frattini Argument
(Lemma 6.29) gives

G = NG(P )Φ(G).

If NG(P ) 6= G, then there is a maximal proper subgroup M of G with
NG(P ) 6M < G. By definition, Φ(G) 6M . Hence

NG(P )Φ(G) 6M < G,

contrary to above. Therefore NG(P ) = G. Hence P P G, and so in partic-
ular P P Φ(G). Therefore Φ(G) is nilpotent by Theorem 7.13. �

We have used one property of the Frattini subgroup twice now, so it is
worth drawing attention to it.

Definition 7.20 A subset S of a group G is a set of non-generators if it
can always be removed from a set of generators for G without affecting the
property of generating G.

Thus S is a set of non-generators if

G = 〈X,S〉 implies G = 〈X〉

for all subsets X ⊆ G.

Lemma 7.21 The Frattini subgroup Φ(G) is a set of non-generators for a
finite group G.

Proof: Let G = 〈X,Φ(G)〉. If 〈X〉 6= G, then there exists a maximal
subgroup M of G such that 〈X〉 6 M < G. By definition of the Frattini
subgroup, Φ(G) 6M . Hence X ∪Φ(G) ⊆M , so 〈X,Φ(G)〉 6M < G which
contradicts the assumption. Therefore G = 〈X〉 and so we deduce Φ(G) is
a set of non-generators for G. �
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Finally we prove:

Theorem 7.22 Let G be a finite group. Then G is nilpotent if and only if
G/Φ(G) is nilpotent.

Proof: By Lemma 7.5, a homomorphic image of a nilpotent group is nilpo-
tent. Consequently if G is nilpotent, then necessarily G/Φ(G) is nilpotent.

Conversely suppose G/Φ(G) is nilpotent. Let P be a Sylow p-subgroup
of G. Then PΦ(G)/Φ(G) is a Sylow p-subgroup of G/Φ(G). Hence

PΦ(G)/Φ(G) P G/Φ(G),

as G/Φ(G) is nilpotent. Therefore

P Φ(G) P G

by the Correspondence Theorem. Now P is a Sylow p-subgroup of P Φ(G)
(as even G has no larger p-subgroups), so we apply the Frattini Argument
(Lemma 6.29) to give

G = NG(P ) · P Φ(G).

Therefore
G = NG(P )Φ(G)

(as P 6 NG(P )). Now as Φ(G) is a set of non-generators for G (see
Lemma 7.21), we deduce

G = NG(P ).

Thus P P G. Hence G is nilpotent by Theorem 7.13. �

94


