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Introduction

The purpose of this course is to introduce the detailed study of groups. These algebraic
structures occur throughout mathematics and the physical sciences since they are the
natural way to encode symmetry. They have been introduced in some previous courses
(MT2505 primarily, but also MT1003), but here we shall pursue a much more in-depth
study. In this course we shall encounter how to analyse the structure of a group — and
what the term “structure” signifies — and consider how to classify groups.

Prerequisite

• MT2505

As Honours students, a higher level of mathematical maturity will be expected com-
pared to the study of abstract algebra at 2000-level. Some of the content of MT2505
will be assumed (particularly an ability to manipulate permutations effectively), but some
material will be discussed again in order to take the study deeper.

Overview of course structure

Groups: Definitions and examples.

Subgroups: Finding groups inside larger groups. How to describe new groups via gen-
erating sets. Theoretical restrictions on subgroups. This provides the first example
of basic structure within groups.

Homomorphisms & quotient groups: Further examples of basic structure within
groups. Quotients enable us to “factorise” a group into smaller groups. The Corre-
spondence Theorem explains how the structure of a quotient group is related to that
of the original group, and in particular why is it more simplified. The Isomorphism
Theorems describe how the three aspects of structure (subgroups, homomorphisms,
and quotients) relate to each other.

Constructing groups: How to build new groups from old. We shall use one of these
constructions to describe a classification of all finite abelian groups.

Simple groups: These are the smallest building blocks from which to construct groups.
We shall establish that the alternating group An is simple whenever n > 5.

The centre, conjugation, and commutators: Three useful tools which enable us to
examine the structure of a group in more detail. We define two new classes of groups:
soluble groups and nilpotent groups. These are more general than abelian groups
but still more tractable to in-depth study than arbitrary groups. (My lecture notes
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for MT5824 Topics in Groups cover these concepts in more detail. Other lecturers
may cover other material instead in that module.)

Sylow’s Theorem: The most important theorem in finite group theory. We shall illus-
trate this with numerous applications.

Final applications: Classification of groups of small order, namely order p, p2, pq (p, q
distinct primes) and order 6 15.

Textbooks

Almost any textbook on group theory or abstract algebra is likely to cover the material
in this course and provide a good supplement to the lecture course. The following are
particularly recommended and are available for consultation in the library:

• R.B.J.T. Allenby, Rings, Fields and Groups: An Introduction to Abstract Algebra,
Chapters 5 and 6. Second Edition: Butterworth-Heinemann, 1991; QA162.A6F91.
First Edition: Edward Arnold, 1983; QA162.A6: Nicely written, reasonably modern,
and fits this course well.

• W. Ledermann, Introduction to Group Theory, Oliver and Boyd, 1973; QA171.L43:
Reasonably good fit to the course.

• John S. Rose, A Course on Group Theory, Dover, 1994, up to Chapter 6; QA171.R7:
Reasonably detailed at the level we want; quite cheap.

• T.S. Blyth & E.F. Robertson, Algebra Through Practice: A Collection of Problems
in Algebra with Solutions, Book 5: Groups, CUP, 1985; QA157.B6R7;5

• Thomas W. Hungerford, Algebra, Holt, Rinehart and Winston, 1974, Chapters 1
and 2; QA155.H8

• I. N. Herstein, Topics in Algebra, Second Edition, Wiley, 1975, Chapter 2;
QA159.H4F76: A classic text on general algebra, though less easy for modern readers,
also a little idiosyncratic in some definitions and notations.

• Derek J.S. Robinson, A Course in the Theory of Groups, Second Edition, Springer,
1996; QA171.R73: An advanced text, so goes quite rapidly through the material we
cover in its early chapters.

• Joseph J. Rotman, An Introduction to the Theory of Groups, Fourth Edition, Springer,
1995; QA171.R7: Similarly advanced, though perhaps slightly less speedy in its cov-
erage of our material.

Standard notation

The following are standard pieces of mathematical notation that will be used throughout
the notes.

x ∈ A: x is an element of the set A.

A = {x | . . . }: A is the set of those elements x that satisfy the condition present in the
second part of the bracket (replacing “. . . ”). Also written A = {x : . . . } in some
textbooks. The definitions that follow give examples of the use of this notation.
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A ∩B: The intersection of A and B, defined by

A ∩B = {x | x ∈ A and x ∈ B }.

A ∪B: The union of A and B, defined by

A ∪B = {x | x ∈ A or x ∈ B }.

A \B: The complement of B in A, defined by

A \B = {x | x ∈ A and x 6∈ B }.

This set therefore consists of all those elements of A which do not belong to B.

A×B: The set of all ordered pairs (a, b) where a ∈ A and b ∈ B; that is,

A×B = { (a, b) | a ∈ A, b ∈ B }.

φ : A→ B: φ is a function (or mapping) with domain A and codomain B. This means
that we can apply φ to elements in A to produce as output elements of B. In this
course, we write maps on the right, so that if a is an element of A, then the output
when φ is applied to a is denoted by aφ (rather than φ(a) as would be common in
other branches of mathematics, such as analysis, etc.).
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Chapter 1

Definition and Examples of
Groups

The axioms of a group

Abstract algebra is the study of sets with operations defined upon them. These opera-
tions in some sense mimic addition or multiplication of numbers. The following definition
provides the operations we work with.

Definition 1.1 Let G be any (non-empty) set. A binary operation on G is a function

G×G→ G.

We usually denote the image of a pair (x, y) under a binary operation by a notation
such as x ∗ y, x ◦ y, x + y, xy, etc. This has the advantage of encouraging us to view
binary operations as generalisations of our familiar arithmetic operations. For most of this
course, we shall use multiplicative notation for our binary operations and so we write xy
for the image of (x, y) under the operation; that is, xy denotes the effect of combining two
elements x and y using the operation.

Definition 1.2 A group is a set G together with a binary operation such that

(i) the binary operation is associative, that is,

x(yz) = (xy)z for all x, y, z ∈ G;

(ii) there is an identity element 1 in G having the property

x1 = 1x = x for all x ∈ G;

(iii) every element x in G possesses an inverse x−1 also belonging to G having the prop-
erty

xx−1 = x−1x = 1.

Remarks:

(i) Some authors specify “closure” as an axiom for a group; that is, for all x, y ∈ G, the
product xy belongs to G. Note, however, that this is built into the definition of a
binary operation as a function G×G→ G that takes values back in G.
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Nevertheless, when verifying that a particular example is a group, we should not
ignore that establishing we have a binary operation is part of the steps. So, to
be explicit, when checking the axioms of a group, we need to check for (1) closure
(that we do indeed have a binary operation defined on our set), (2) associativity,
(3) existence of identity, and (4) existence of inverses.

(ii) As we are using multiplication notation, we often refer to the binary operation as
the group multiplication. There are, however, some groups where it is more natural
to use addition as the binary operation (see, for example, Example 1.5 below) and
we adjust our terminology appropriately.

(iii) Some authors use e to denote the identity element in a group. These lectures follow
the more common (and perhaps slightly more sophisticated) approach of using 1.
We shall rely on the experience of the student to be able to distinguish from the
context between the identity element of a group and the integer 1.

It follows by repeated use of the associativity axiom that any bracketing of a product
x1x2 . . . xn of elements x1, x2, . . . , xn in a groupG can be converted to any other bracketing
without changing the value of the product. In view of this, we can safely omit the brackets
in any such product and still know that we have specified a unique element in our group
by the product.

For example, (
x1(x2x3)

)
x4 =

(
(x1x2)x3

)
x4 = (x1x2)(x3x4).

What should be noticed is that the order of the elements in a product does matter.
The axioms of a group do not tell us any clear link between the products

x1x2x3, x1x3x2, x2x1x3, etc.

and there are examples of groups where such products are all different. We give a special
name for groups where we can reorder the elements without changing the value of a
product.

Definition 1.3 An abelian group is a group G where the binary operation is commutative,
that is,

xy = yx for all x, y ∈ G.

We shall often make statements such as “G is a group” to mean that G is a set with a
binary operation defined upon it satisfying the axioms of Definition 1.2. This illustrates
how we often do not distinguish between a group and the underlying set upon which
the binary operation is defined. We take this into account when making the following
definition.

Definition 1.4 Let G be a group. The order of G, denoted by |G|, is the number of
elements in the underlying set on which our group is defined.

A finite group is a group whose order is a finite number, while an infinite group is a
group G for which |G| =∞.

Examples of groups

We now illustrate how groups arise in multiple settings across mathematics by providing
a range of examples.
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Example 1.5 (Groups of numbers) Consider the set Z of all integers. This forms a
group under addition +, as we shall now show. The sum of two integers is an integer, so
addition is a binary operation on Z. Our familiarity with addition of numbers tells us

x+ (y + z) = (x+ y) + z for all x, y, z ∈ Z.

The identity element is 0, since

x+ 0 = 0 + x = x for all x ∈ Z.

The inverse of x is −x, since

x+ (−x) = (−x) + x = 0 for all x ∈ Z.

Moreover, Z is an abelian group under addition, since

x+ y = y + x for all x, y ∈ Z.

In the same way, the rational numbers Q forms an abelian group under addition, the
real numbers R forms an abelian group under addition, and the complex numbers C forms
an abelian group under addition.

However, none of Z, Q, R and C form groups under multiplication. [Exercise: Show
that 0 has no inverse in any of these sets with respect to multiplication. Indeed, in Z
only ±1 have multiplicative inverses.]

Removing 0 from some of these sets does yield a multiplicative group. The set of
non-zero rationals Q \ {0} is a group with respect to multiplication. For we know that
the product of two non-zero rational numbers is a rational number, so multiplication is a
binary operation on Q \ {0}. Multiplication is associative:

x(yz) = (xy)z for all x, y, z ∈ Q \ {0}.

The identity element is 1:

x1 = 1x = x for all x ∈ Q \ {0}.

The inverse of x = m/n is 1/x = n/m for x 6= 0:

x · 1x = 1
x · x = 1.

Moreover, Q \ {0} forms an abelian group under multiplication since xy = yx for all
x, y ∈ Q, x, y 6= 0.

In the same way, the non-zero real numbers R \ {0} and the non-zero complex num-
bers C \ {0} form abelian groups under multiplication.

Example 1.6 (Symmetric groups) A common way to produce groups is as sets of
bijective functions (often those satisfying nice properties) under composition. In algebra,
it is most common to write functions on the right so that when composing them we can
read from left to right. Thus if X is a set, the composite of two functions α : X → X and
β : X → X is the function αβ : X → X given by

x(αβ) = (xα)β for each x ∈ X.

Lemma 1.7 Composition of functions is associative.
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Proof: Let α, β, γ : X → X be functions defined on X. We calculate the effect of
α(βγ) and (αβ)γ on an element of X:

x
(
α(βγ)

)
= (xα)(βγ) =

(
(xα)β

)
γ

and
x
(
(αβ)γ

)
=
(
x(αβ)

)
γ =

(
(xα)β

)
γ.

Hence α(βγ) = (αβ)γ. �

A permutation of the set X is a function σ : X → X that is bijective; that is, it is

injective: if x, y ∈ X and xσ = yσ, then x = y; and

surjective: if y ∈ X, then there is some x ∈ X such that xσ = y.

This guarantees we can find an inverse σ−1 of σ that has the effect of “undoing” the
application of σ. Thus

σσ−1 = ε = σ−1σ (1.1)

where ε = εX is the identity map on X (ε : x 7→ x for all x ∈ X).
The set of all permutation on X forms a group under the composition of permuta-

tions. This is called the symmetric group and is denoted SX or Sym(X). Associativity of
composition is provided by Lemma 1.7; the identity element is the identity map ε = εX :

εσ = σε = σ for all σ ∈ SX ;

and the inverse of a permutation σ as a function is the inverse in the group (see Equa-
tion (1.1) above).

Although we have been careful to use ε to denote our identity element in SX to em-
phasise that it is a mapping, we will frequently follow the usual convention of writing 1
for the identity element in our group. (Sometimes even when 1 happens also to denote an
element of X. Though in this case, context will always make the difference clear!)

We are particularly interested in the symmetric group SX in the case when X =
{1, 2, . . . , n}. We then write Sn for the symmetric group of degree n consisting of all
permutations of X = {1, 2, . . . , n}. A permutation of this X can be written in two-row
notation where the elements of X are listed in the top row and below i we write the
image iσ. For example,

σ =

(
1 2 3 4
3 1 2 4

)
and τ =

(
1 2 3 4
4 1 2 3

)
are two permutations from S4. Their product στ is calculated by first applying σ to an
element of X = {1, 2, 3, 4} and then applying τ . (Remember that we are writing maps on
the right!) Thus

στ =

(
1 2 3 4
2 4 1 3

)
.

The inverse of σ is calculated by undoing the effect of applying σ; i.e., interchanging the
rows of σ and reordering the columns to get the result in the correct form:

σ−1 =

(
3 1 2 4
1 2 3 4

)
=

(
1 2 3 4
2 3 1 4

)
.
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Let us also calculate

τσ =

(
1 2 3 4
4 3 1 2

)
,

so στ 6= τσ and we conclude that S4 is a non-abelian group. Similar examples show that
Sn is non-abelian for n > 3, while it is easy to check that S1 and S2 are abelian.

An alternative — and more compact — way of denoting a permutation is to write it
as a product of disjoint cycles. The cycle

(i1 i2 . . . ir)

is the permutation that maps i1 to i2, i2 to i3, . . . , ir−1 to ir, ir to i1, and fixes all
other points of X (that is, all those not listed in the cycle). The above cycle is said to be
of length r (or is called an r-cycle) and two cycles are called disjoint if no point of X is
moved by both of them (essentially when there is no point in common listed in the two
cycles).

If

σ =

(
1 2 3 4 5 6
4 1 6 2 5 3

)
,

then

σ = (1 4 2)(3 6)(5)

= (1 4 2)(3 6)

expresses σ as a product of disjoint cycles. (Note that a 1-cycle is the identity element.)
We record as a reminder:

Theorem 1.8 Every permutation of X = {1, 2, . . . , n} can be written (in an essentially
unique way) as a product of disjoint cycles.

Here “essentially unique” refers to the obvious rearrangements that do not change a
product of disjoint cycles. Firstly, a cycle can be begun at any point within it, so cycling
around the entries in a cycle do not change the product. Secondly, disjoint cycles commute,
so we can reorder them in a product without changing the result.

A 2-cycle is also called a transposition. Since

(i1 i2 . . . ir) = (i1 i2)(i1 i3) . . . (i1 ir),

we conclude that every cycle can be written as a product of transpositions. We then
deduce:

Proposition 1.9 Every permutation in Sn is a product of transpositions.

There is no claim here that such a decomposition is in any way unique.

This completes our first stage in the reminder on permutations. More facts about them
will arrive in due course. We continue this section by introducing some further examples
of groups.

Example 1.10 (General linear groups) Let F be a field and consider the set of n ×
n matrices with entries from F . Matrix multiplication is associative:

A(BC) = (AB)C for all n× n matrices A, B and C.
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The identity matrix I (with 1 in every diagonal entry and 0 elsewhere) has the property
that

IA = AI = A for all n× n matrices A.

If detA 6= 0, then A has an inverse A−1 such that

AA−1 = A−1A = I.

The general linear group GLn(F ) (or GL(n, F ) in some books) consists of all n×n matrices
with entries from F having non-zero determinant. The above observations ensure this
forms a group under matrix multiplication. This is a non-abelian group provided n > 2.

Cayley tables

One way to present a group is to specify completely its multiplication via a Cayley table
(or multiplication table). In this, the group elements are listed along the side and along the
top of the table and the product xy is written in the entry with row label x and column
label y.

Example 1.11 (Klein 4-group) The Klein 4-group, denoted by V4 (for viergruppe) in
some books and K4 in others, is the group with elements {1, a, b, c} and multiplication as
follows:

1 a b c

1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

From this table, we can see that 1 is the identity element and that

12 = a2 = b2 = c2 = 1,

so every element equals its own inverse:

1−1 = 1, a−1 = a, b−1 = b, c−1 = c.

Verifying associativity is not so easy. In this case, it is reasonably straightforward to check

x(yz) = (xy)z

for each of the 43 = 64 choices of x, y and z, by reducing the number of choices (e.g., if
one of x, y or z is the identity then the equation becomes easier to verify).

Advantages of Cayley tables

• Easy to understand.

• Identity and inverses relatively easy to spot.

• Whether or not the group is abelian is relatively easy to spot (look for symmetry
across the diagonal).
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Disadvantages of Cayley tables

• Only really available for finite groups and only those which are small enough to fit
on the piece of paper.

• Associativity hard to recognise.

• Very difficult to extract useful information about the group.

One of the things we shall discover in this course is how to determine useful information
about a group to replace the cumbersome Cayley table.

Example 1.12 (Quaternion group) The quaternion group Q8 has elements

1,−1, i,−i, j,−j, k,−k,

where the first four elements are the usual complex numbers, while j and k behave similarly
to the imaginary square root i of −1. The multiplication is given by

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

The Cayley table is:

1 −1 i −i j −j k −k
1 1 −1 i −i j −j k −k
−1 −1 1 −i i −j j −k k
i i −i −1 1 k −k −j j
−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i
−j −j j k −k 1 −1 −i i
k k −k j −j −i i −1 1
−k −k k −j j i −i 1 −1

What we try to do in group theory

The lofty aim, though perhaps also naive, deluded or even impossible, is to classify all
groups; that is, answer the question:

Given a set of properties, can we list all groups satisfying those properties?

This is a ridiculously impossible question to answer in any form of generality. For example,
it is now (from 1997) known that there are 10 494 213 essentially different groups with
512 elements and we are unlikely to write down or work with a list of 10 million groups.
Nevertheless, the above aim is behind the general study of groups. We hope to provide
some sort of analysis on the structure of or restrictions on groups satisfying particular
properties.

In this context, we need to give some thought about what “essentially the same” means
for a group. A natural way to produce groups that are in reality identical but superficially
different is to write down a Cayley table for a group, but then replace each element by a
different symbol. For example,

1 a b c

1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

e x y z

e e x y z
x x e z y
y y z e x
z z y x e

12



are surely describing essentially the same group. In view of this we make the following
definition:

Definition 1.13 Let G and H be two groups (both with multiplicatively written binary
operation). An isomorphism φ : G→ H is a bijective map such that

(xy)φ = (xφ)(yφ) for all x, y ∈ G.

We say that G and H are isomorphic, written G ∼= H, if there is an isomorphism from G
to H.

Two groups that are isomorphic are essentially the same and really only differ in the
labelling of the elements. If φ : G → H is an isomorphism, then it first gives a one-one
correspondence between the elements of G and of H. Second if two elements x, y ∈ G
multiply to an element z = xy, then the corresponding elements xφ and yφ multiply in H
to zφ = (xy)φ = (xφ)(yφ). Consequently, the multiplication in G and in H are essentially
the same, if we were to write out the Cayley tables, they would look the same, and so the
groups should be viewed as the same.

For the future, when attempting to classify groups, we only ever classify up to isomor-
phism and only list one group of each isomorphism-type. It is unnecessary to list a group
that is isomorphic to one we already know. We will also want to ensure that any definitions
we may make are group theoretical properties, that is, if G and H are isomorphic groups
then any definition applies in the same way to both groups. So if G has a particularly
property, then so should H. If G does not have a property, then H should not.

Basic properties of group elements

So far we have introduced the definition of a group, presented some examples and said
that we wish to classify groups up to isomorphism. To make a start on this task, we first
establish some basic properties of the elements of a group before we move on in future
sections to consider what we mean by the structure of a group.

Lemma 1.14 Let G be a group.

(i) The identity element 1 of G is unique.

(ii) Each element x in G has a unique inverse x−1.

(iii) 1−1 = 1.

(iv) If x ∈ G, then (x−1)−1 = x.

(v) If x, y ∈ G, then (xy)−1 = y−1x−1.

Proof: (i) Suppose e is also an identity element in G. Then

xe = ex = x for all x ∈ G,

while
x1 = 1x = x for all x ∈ G.

Taking x = 1 in the first and x = e in the second gives

1 = 1e = e.
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(ii) Suppose x−1 and y are both inverses for x. So

xx−1 = x−1x = 1 = xy = yx.

Then
(x−1x)y = 1y = y

and
(x−1x)y = x−1(xy) = x−11 = x−1.

Therefore
x−1 = y.

(iii) Since 1 is the identity element, 11 = 1. Hence 1 is the unique element y satisfying
1y = y1 = 1; that is, 1−1 = 1.

(iv) Exercise on Problem Sheet I.
(v)

(xy)(y−1x−1) = x(yy−1)x−1 = x1x−1 = xx−1 = 1

and
(y−1x−1)(xy) = y−1(x−1x)y = y−11y = y−1y = 1.

Hence (xy)−1 = y−1x−1. �

Since we can multiply elements in a group, we can take a single element x of a group
and multiply it by itself a number of times to form powers of x.

Definition 1.15 Let G be a group and x ∈ G. If n is a positive integer, we define

xn = xx . . . x︸ ︷︷ ︸
n times

x−n = (x−1)n = x−1 x−1 . . . x−1︸ ︷︷ ︸
n times

and

x0 = 1.

As the binary operation in our group is associative, we do not have to specify the
bracketing in the product xx . . . x. Hence xn (and so also x−n) is a uniquely specified
element of the group.

Proposition 1.16 (Power Laws) Let G be a group, x ∈ G and m,n ∈ Z. Then

(i) xm xn = xm+n;

(ii) (xm)n = xmn.

Proof: Exercise, based on analysis of the signs of m, n, etc. �
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The order of an element

We can use the powers of x to make a useful definition. Let G be a group, x be an element
of G and consider the set of all powers of x:

. . . , x−2, x−1, 1, x, x2, x3, . . . (1.2)

If the elements in this list have repeats (as must be the case if G is a finite group), then
there exist i, j ∈ Z with i < j and

xi = xj .

Multiply by the inverse of xi, that is x−i, to find

xj−i = xjx−i = xix−i = xi−i = x0 = 1.

Hence there exists a positive integer m such that xm = 1.
We therefore make the following definition:

Definition 1.17 Let G be a group and x be an element of G. We say that x has finite
order if there exists a positive integer m such that xm = 1. If not, we say x has infinite
order.

In the case that x has finite order, the least positive integer m satisfying xm = 1 is
called the order of x and is denoted by o(x) (or by |x| in some books).

In summary,

• the list (1.2) has repeats if and only if o(x) <∞;

• the elements in the list (1.2) are distinct if and only if o(x) =∞;

• in a finite group, every element has finite order.

What we shall discover is that if G is finite, then o(x) divides |G| for all x ∈ G. This
will depend upon the theory of subgroups, developed in the next section.

Example 1.18 Consider the case of G = S3. For σ = (1 2 3), we calculate

(1 2 3)2 = (1 3 2), (1 2 3)3 = 1,

so
o
(
(1 2 3)

)
= 3.

For τ = (1 2), we calculate
(1 2)2 = 1,

so
o
(
(1 2)

)
= 2.

For a general r-cycle
σ = (i1 i2 . . . ir)

in an arbitrary symmetric group Sn of degree n, we can calculate the effect of successive
powers of σ on the points of X = {1, 2, . . . , n}:

ijσ = ij+1, ijσ
2 = ij+2, . . . , ijσ

r−1 = ij−1, ijσ
r = ij

Hence σr fixes all points in X (since σ fixes all points of X other than i1, i2, . . . , ir). Thus
σr = 1 and all lower powers of σ are non-identity. Thus

o(σ) = o
(
(i1 i2 . . . ir)

)
= r.
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Our final result for this section is:

Lemma 1.19 Let G be a group and let x be an element in G of finite order. Then

xn = 1 if and only if o(x) divides n.

Proof: If o(x) divides n, say n = o(x) ·m, then

xn = (xo(x))m = 1m = 1.

Conversely, suppose xn = 1. Divide n by o(x) to obtain a quotient and a remainder:

n = q · o(x) + r where 0 6 r < o(x).

Then
1 = xn = xq·o(x)+r = (xo(x))qxr = 1qxr = xr.

Hence xr = 1. However, by definition, o(x) is the smallest positive integer such that
xo(x) = 1 and here we have 0 6 r < o(x). This forces r = 0 and so n = q · o(x); that is,
o(x) divides n. �

This brings us to the end of our introductory section. If we are to make progress in our
goal of studying and classifying groups, then we have to move beyond the consideration
of elements alone in a group. It is in view of this that we move to more “structural”
considerations. The first example of this is subgroups in the next section. We shall see
that the presence of smaller groups appearing inside a large group places considerable
rigidity upon it.
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Chapter 2

Subgroups

As we observed in the previous section, the use of the Cayley table is somewhat limited and
we need to find aspects of “structure” in groups to enable us to actually make progress
in their study. The first example of something providing structure is the concept of a
subgroup (a copy of a smaller group found within another group).

Definition 2.1 Let G be a group. A subgroup of G is a subset H of G which is itself a
group under the multiplication of G. We write H 6 G to denote that H is a subgroup
of G.

It is more useful to have a precise characterisation of this condition.

Theorem 2.2 The following are equivalent for a subset H of a group G:

(i) H is a subgroup of G;

(ii) H is a non-empty subset of G such that xy ∈ H and x−1 ∈ H whenever x, y ∈ H;

(iii) H is a non-empty subset of G such that xy−1 ∈ H whenever x, y ∈ H.

Proof: We show that (i) and (ii) are equivalent and leave the equivalence of (iii) to
Problem Sheet II.

(i) ⇒ (ii): The binary operation on G must induce a binary operation on the sub-
group H, so xy ∈ H whenever x, y ∈ H. Note that H and G must share the same identity
element, since the identity element e of H satisfies e2 = e and multiplying by its inverse
(as an element of G) gives e = 1. Therefore the inverse of an element x in H must also
be an inverse for it as an element of G. Since the inverse in G is unique, we conclude
x−1 ∈ H for all x ∈ H.

(ii)⇒ (i): Since xy ∈ H for all x, y ∈ H, we obtain a binary operation defined on H.
It is associative since x(yz) = (xy)z for all x, y, z ∈ G and therefore certainly for all
x, y, z ∈ H.

By assumption, H is non-empty, so contains some element a. Then a−1 ∈ H by
hypothesis. Then aa−1 ∈ H by assumption; that is, 1 ∈ H. Since 1x = x1 = x for all
x ∈ H (as this holds for x ∈ G), we conclude that 1 is also the identity element for H.

Finally by hypothesis, each x ∈ H has an inverse in H, namely the element x−1, which
lies in H. Thus H forms a group under the multiplication in G, so H 6 G. �
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Example 2.3 If G is any group, the sets {1} and G are subgroups of G. The former is
called the trivial subgroup of G and is also denoted 1.

Verification: 1 · 1 = 1 and 1−1 = 1, so {1} satisfies the condition to be a subgroup. It
is immediate that G satisfies the condition. �

Example 2.4 It follows straight from Definition 2.1 that as additive groups, Z 6 Q 6
R 6 C.

Recall from Proposition 1.9 that every permutation in Sn can be written as a product
of transpositions. It is a theorem (proved in MT2505 but omitted here) that a permutation
can either be written as a product of an even number of transpositions or an odd number
of transpositions, but never both. We may therefore make the following definition:

Definition 2.5 A permutation σ ∈ Sn is called even (respectively, odd) if it can be
written as a product of an even number (resp., odd number) of transpositions. The set
of all even permutations in Sn is called the alternating group of degree n and is denoted
by An.

Our comment above ensures that a permutation is either even or odd, but never both.

Theorem 2.6 The alternating group An is a subgroup of the symmetric group Sn of
degree n.

Proof: There certainly are permutations that are even (for example, just multiply any
two transpositions), so An is non-empty. If α, β ∈ An, say α = σ1σ2 . . . σ2k and β =
τ1τ2 . . . τ2` as products of even numbers of transpositions, then

αβ = σ1σ2 . . . σ2kτ1τ2 . . . τ2`

is a product of 2(k + `) transpositions, so is even. Equally

α−1 = (σ1σ2 . . . σ2k)
−1

= σ−12k σ
−1
2k−1 . . . σ

−1
2 σ−11

= σ2kσ2k−1 . . . σ2σ1

is a product of 2k transpositions, so is even. Hence

αβ, α−1 ∈ An for all α, β ∈ An,

so An 6 Sn. �

Generating sets

We shall now present a way of defining subgroups of a group. This is analogous to the
concept of a spanning set in a vector space. We first start with an observation about
subgroups.

Theorem 2.7 Let G be a group and {Hi | i ∈ I } be a set of subgroups of G (indexed
by some set I). Then the intersection ⋂

i∈I
Hi

is also a subgroup of G.
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Proof: Let us write H =
⋂
i∈I Hi. Since each Hi is a subgroup, they all contain the

identity element 1 of G. Hence 1 ∈ H, so H is non-empty. Now let x, y ∈ H. Then
x, y ∈ Hi for each i, so by Theorem 2.2, we see that xy, x−1 ∈ Hi for each i. Therefore
xy, x−1 ∈ H, and Theorem 2.2 tells us that H is a subgroup of G. �

(As a side comment, it is very rare for the union of subgroups to be a subgroup.)

Definition 2.8 Let G be a group and X be a subset of G. The subgroup generated by X,
denoted by 〈X〉, is the intersection of all subgroups of G containing X.

Remarks:

(i) There is at least one subgroup of G containing X, namely G itself. So our definition
makes sense.

(ii) Theorem 2.7 guarantees that 〈X〉 is a subgroup of G. Moreover, every subgroup we
are intersecting contains X, so we conclude X ⊆ 〈X〉. That is, 〈X〉 is a subgroup
of G containing the set X.

In fact, we can do better than (ii) above. If H is any subgroup of G containing X, then
H is one of the subgroups we intersect and so by construction, 〈X〉 6 H. This establishes:

Lemma 2.9 The subgroup 〈X〉 generated by X is the smallest subgroup of G contain-
ing X.

This is “smallest” in the sense of containment: 〈X〉 is a subgroup of G and if X ⊆
H 6 G, then 〈X〉 6 H.

The problem with our Definition 2.8 is that, although it guarantees the existence of
this subgroup, it provides us with nothing concrete in terms of the description of 〈X〉
or its elements. The following is somewhat more useful and gives a better feel for what
“generating a subgroup” actually means.

Theorem 2.10 Let G be a group and X be a non-empty subset of G. The subgroup 〈X〉
generated by X is the set of all possible products of elements of X and their inverses:

〈X〉 = {xε11 x
ε2
2 . . . xεnn | n ∈ N, xi ∈ X, εi = ±1 for i = 1, 2, . . . , n }.

Proof: Let us write H for the set appearing on the right-hand side of the above equation.
First 〈X〉 is a subgroup of G, so is closed under products and inverses, and it contains X.
Therefore 〈X〉 must contain all the products that appear in H, so

H ⊆ 〈X〉.

On the other hand, H is non-empty (it contains X). If g, h ∈ H, say

g = xε11 x
ε2
2 . . . xεmm and h = yη11 y

η2
2 . . . yηnn ,

where m,n ∈ N, xi, yj ∈ X and εi, ηj = ±1 for all i and j, then

gh = xε11 x
ε2
2 . . . xεmm yη11 y

η2
2 . . . yηnn ∈ H

and
g−1 = x−εmm x

−εm−1

m−1 . . . x−ε22 x−ε11 ∈ H.
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Hence H is a subgroup of G. Since this subgroup contains X, we conclude (by Lemma 2.9)
that

〈X〉 6 H.
Hence

〈X〉 = H,

as required. �

Let us consider the special case of Definition 2.8 and Theorem 2.10 when the set X
contains a single element: X = {x}. Theorem 2.10 then says

〈x〉 = {xn | n ∈ Z },

so the subgroup generated by the element x consists of all powers of x. (As a consequence,
this guarantees that the set of all powers of the element x is a subgroup of whichever
group we are working within.) Note that we tend to drop extraneous brackets and simply
write 〈x〉 rather than 〈{x}〉.

We make the following definition:

Definition 2.11 Let G be a group. We say that G is cyclic if there exists some x ∈ G
such that G = 〈x〉 and then call this x a generator of G.

More generally, if x is an element of a group G, we call 〈x〉 the cyclic subgroup generated
by x.

Example 2.12 Consider the group Z of integers under addition. Since we are adding
elements in this group, powers become multiples. In particular

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n.

Hence
Z = 〈1〉.

There is a tight link between the subgroup generated by an element x of a group G
and the order of the element x. Recall first that if x has infinite order, then the powers xn,
for n ∈ Z, of x are all distinct. As a consequence

if x has infinite order, then 〈x〉 contains infinitely many elements,

namely the distinct powers of x.
On the other hand, suppose x has finite order. Recall that o(x) is the least positive

integer satisfying xo(x) = 1. If n is any integer, divide it by o(x) to obtain a quotient and
remainder:

n = q · o(x) + r where 0 6 r < o(x).

Then
xn = xq·o(x)+r = (xo(x))qxr = xr.

So every power of x equals xr for some r ∈ {0, 1, . . . , o(x)− 1} and so

〈x〉 = {1, x, x2, . . . , xo(x)−1}.

Moreover the powers listed in the set above are distinct. For if it were the case that xi = xj

for some i, j with 0 6 i < j 6 o(x)− 1, then

xj−i = 1

and here 0 < j − i < o(x). This would contradict the definition of o(x).
Putting the above together, we have established the following:
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Proposition 2.13 Let G be a group and x ∈ G. Then

|〈x〉| = o(x).

�

(For when o(x) = ∞, the subgroup generated by x is infinite. When o(x) < ∞, the
subgroup generated by x contains precisely o(x) distinct powers of x.)

Notice also that if o(x) = k is finite (as would happen for an element in a finite group),
then

xk = 1

so
x−1 = xk−1.

This means that we can replace x−1 by a product of copies of x. We can then immediately
deduce the following from Theorem 2.10.

Corollary 2.14 Let G be a finite group and X be a non-empty subset of G. Then

〈X〉 = {x1x2 . . . xn | n ∈ N, xi ∈ X for i = 1, 2, . . . , n }.

�

The generation algorithm

In view of Corollary 2.14, we can find all the elements in the subgroup 〈X〉 generated by a
subset X of a finite group by successively finding ever longer products of the elements in X
and stopping when multiplying the products we have found by the elements in X produces
no new elements. This is what is done by the following algorithm for computing all the
elements in the subgroup of a finite group G generated by the set X = {x1, x2, . . . , xm}.

Initialise: Take A = {1}.

For each a ∈ A:

Calculate ax1, ax2, . . . , axm

If any axi is not currently listed in A

Append this axi to A.

Repeat until no new products are generated.

This calculates 〈X〉 since it computes a set A of products of the x1, x2, . . . , xm such
that there are no such products not in the set A. Thus when we finish 〈X〉 = A.

Example 2.15 Calculate the elements in the subgroup H of S8 generated by the permu-
tations

σ = (1 2 3 4)(5 6 7 8) and τ = (1 5 3 7)(2 8 4 6).
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Solution: We apply the above algorithm:

a1 = 1

a2 = a1σ = (1 2 3 4)(5 6 7 8)

a3 = a1τ = (1 5 3 7)(2 8 4 6)

a4 = a2σ = (1 3)(2 4)(5 7)(6 8)

a5 = a2τ = (1 8 3 6)(2 7 4 5)

a6 = a3σ = (1 6 3 8)(2 5 4 7)

a3τ = (1 3)(2 4)(5 7)(6 8) = a4

a7 = a4σ = (1 4 3 2)(5 8 7 6)

a8 = a4τ = (1 7 3 5)(2 6 4 8)

a5σ = (1 5 3 7)(2 8 4 6) = a3

a5τ = (1 4 3 2)(5 8 7 6) = a7

a6σ = (1 7 3 5)(2 6 4 8) = a8

a6τ = (1 2 3 4)(5 6 7 8) = a2

a7σ = (1)(2)(3)(4)(5)(6)(7)(8) = 1 = a1

a7τ = (1 6 3 8)(2 5 4 7) = a6

a8σ = (1 8 3 6)(2 7 4 5) = a5

a8τ = (1)(2)(3)(4)(5)(6)(7)(8) = 1 = a1

So H = {a1, a2, a3, a4, a5, a6, a7, a8}, a group of order 8. (In fact, by constructing the
multiplication table — and putting the elements in the right order — we can see that this
group H is isomorphic to the quaternion group Q8.) �

Dihedral groups

Further to the example above, it is a theorem (that we shall meet in due course) that every
finite group occurs as the subgroup of some symmetric group Sn (or, more precisely, every
finite group is isomorphic to a subgroup of some Sn). One important collection of groups
is most easily described by providing generators for them as subgroups of various Sn.

Definition 2.16 Let n > 3. The dihedral group of order 2n, denoted by D2n (or by Dn

in roughly half the textbooks), is the subgroup of Sn generated by

α = (1 2 3 · · · n) and

β =

(
1 2 3 · · · n
1 n n−1 · · · 2

)
= (2 n)(3 n−1) · · · (i n+2−i) · · · .

The basic properties of the dihedral groups are as follows:

Theorem 2.17 Let n > 3. The following statements are true for the dihedral group D2n

of order 2n:

(i) o(α) = n, o(β) = 2.

(ii) βα = α−1β.

(iii) D2n = {αiβj | 0 6 i 6 n− 1, 0 6 j 6 1 } and |D2n| = 2n.
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(iv) D2n is non-abelian.

Proof: (i) is obvious and (ii) is simply a matter of direct calculation. If 3 6 i 6 n, we
calculate

iβα = (n+ 2− i)α = n+ 3− i
iα−1β = (i− 1)β = (n+ 2)− (i− 1) = n+ 3− i.

The values for i = 1 and 2 are calculated separately and we conclude

βα =

(
1 2 3 4 · · · n−1 n
2 1 n n−1 · · · 4 3

)
= α−1β.

(iii) D2n = 〈α, β〉, so by Corollary 2.14 every element in D2n is a product of these two
permutations. Consider such a product. Whenever we see βα occurring, we can replace
it by α−1β = αn−1β. By repeating this procedure, we can move all the occurrences of α
to the left of all the occurrences of β. Thus, every element in D2n can be written in
the form αiβj . Since o(α) = n and o(β) = 2, we can always take i and j in the ranges
0 6 i 6 n− 1, 0 6 j 6 1. Hence

D2n = {αiβj | 0 6 i 6 n− 1, 0 6 j 6 1 }

and
|D2n| 6 2n.

To complete this part, we must establish the above 2n elements are distinct. First,
since o(α) = n, the powers 1, α, α2, . . . , αn−1 are distinct (as was observed earlier). If
αiβ = αjβ, then multiplying by β−1 gives αi = αj , so i = j. Finally suppose αiβ = αj , so
β = αj−i. But β fixes 1, while αj−i moves 1 to 1 + j − i, so this forces j = i and so β = 1,
which is false. Hence the 2n products listed above are distinct and

|D2n| = 2n.

(iv) Follows from (ii) and (iii):

βα = α−1β = αn−1β 6= αβ.

�

It can be shown that each element of D2n corresponds to a rotation or a reflection of
a regular n-sided polygon and that the dihedral group D2n is isomorphic to the group of
symmetries of this polygon.

Cosets and Lagrange’s Theorem

We have now met the definition of a subgroup and discovered how to generate a subgroup
using a set of elements from a group. However, the claim was that subgroups were useful
because they provide some sort of structure and constraint upon the group within which
they are found. We shall now establish this by showing how a group is partioned into the
union of cosets of any subgroup.

23



Definition 2.18 Let G be a group and suppose that H is a subgroup of G. Let x ∈ G.
The right coset of H with representative x is the following subset of G:

Hx = {hx | h ∈ H }.

Similarly the left coset of H with representative x is

xH = {xh | h ∈ H }.

Most of the time one only needs to work with one type of coset. In this course, we
shall place almost all our attention on right cosets and there will be only one or two places
where we need to consider both right and left cosets. For this reason, we shall often simply
speak of cosets and we shall mean right cosets when we do so.

Theorem 2.19 Let G be a group and H be a subgroup of G.

(i) If x, y ∈ G, then Hx = Hy if and only if xy−1 ∈ H.

(ii) Two right cosets of H in G are either equal or disjoint.

(iii) G is the disjoint union of the right cosets of H.

(iv) Every right coset contains the same number of elements as the subgroup H: if x ∈ G,
then |Hx| = |H|.

Although not proved here, we comment that analogous statements hold for left cosets.
The only significant change is an appropriate alteration to the condition for two left cosets
to be equal.

Proof: (i) Suppose first Hx = Hy. Now x = 1x ∈ Hx, so x ∈ Hy. Therefore x = hy for
some h ∈ H and then

xy−1 = h ∈ H.

Conversely, suppose xy−1 ∈ H. Then if h ∈ H,

hx = h(xy−1)y ∈ Hy,

as h(xy−1) ∈ H, and we deduce Hx ⊆ Hy. Similarly, if h ∈ H,

hy = hyx−1x = h(xy−1)−1x ∈ Hx,

as h(xy−1)−1 ∈ H. We deduce Hy ⊆ Hx, and hence conclude

Hx = Hy.

(ii) Consider the two cosets Hx and Hy. These cosets are disjoint when Hx ∩Hy = ∅.
Let us suppose that Hx ∩ Hy 6= ∅, so there exists some element g ∈ Hx ∩ Hy. Since
g ∈ Hx, g = hx for some h ∈ H. Equally, as g ∈ Hy, g = ky for some k ∈ H. Then

hx = ky,

so
xy−1 = h−1k ∈ H.

Then part (i) tells us Hx = Hy.
So the cosets Hx and Hy are either disjoint, or if not disjoint then they are equal.
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(iii) If x ∈ G, then x = 1x ∈ Hx. Hence every element of G lies in some coset of H,
and therefore G is the union of the cosets of H. Part (ii) tells us this is a disjoint union.

(iv) Define a mapping α : H → Hx by

hα = hx.

By definition of the coset, this is a surjective map. Let h, k ∈ H and suppose that hα = kα;
that is,

hx = kx.

Multiply by x−1 to deduce

h = (hx)x−1 = (kx)x−1 = k.

Hence α is injective. We conclude that α is a bijection and so

|H| = |Hx|.

�

Remarks:

(i) If H is a subgroup of G, we can define a relation ∼ on the group G by

x ∼ y if and only if xy−1 ∈ H.

Similar arguments and effort to that in the proof of Theorem 2.19 shows that ∼ is
an equivalence relation on G and the equivalence classes are the right cosets of G.
This is an alternative way to see that G is the disjoint union of the right cosets of H.

(ii) Note that the coset H1 with representative 1 (the identity) is equal, as a set, to the
original subgroup H.

We have shown that the group G is the disjoint union of the right cosets of the sub-
group H and each coset contains |H| elements. We can represent this by the following
diagram: r1 rx

H1 = H Hx
(x 6∈ H)

p p p p p

This means that the order of G must equal the number of cosets of H multiplied by the
order of H.

Definition 2.20 Let G be a group and H be a subgroup of G. The index of H in G is
the number of cosets of H occurring in G. It is denoted by |G : H| (or by [G : H] in some
books).

We have proved:
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Theorem 2.21 (Lagrange’s Theorem) Let G be a group and H be a subgroup of G.
Then

|G| = |G : H| · |H|.

In particular, if G is a finite group, then |H| divides |G|.

Corollary 2.22 Let G be a finite group and x ∈ G. Then the order o(x) of x divides |G|.

Proof: Proposition 2.13 says o(x) = |〈x〉|, which divides |G| by Lagrange’s Theorem. �

We can now prove our first classification theorem:

Corollary 2.23 Let p be a prime number. Any group of order p is cyclic.

Proof: Let G be a group of order p. Let x ∈ G \ {1}. Then |〈x〉| divides p, so |〈x〉| =
p = |G| (since x 6= 1). Hence G = 〈x〉. �

We shall describe the structure of cyclic groups in full detail later. In particular, we
shall show that there is, up to isomorphism, exactly one cyclic group of each order.

Example 2.24 Let G = S3 and H = 〈(1 2)〉 = {1, (1 2)}. Let us calculate the cosets
of H: we know that there will be 3 right cosets.

H = H1 = {1, (1 2)} = H(1 2)

H(2 3) = {(2 3), (1 3 2)} = H(1 3 2)

H(1 3) = {(1 3), (1 2 3)} = H(1 2 3)

Let us also calculate the left cosets:

H = 1H = {1, (1 2)} = (1 2)H

(2 3)H = {(2 3), (1 2 3)} = (1 2 3)H

(1 3)H = {(1 3), (1 3 2)} = (1 3 2)H

Note that the right cosets and left cosets do not coincide.

We finish this section by recording a variation on Lagrange’s Theorem that is frequently
useful.

Theorem 2.25 Let G be a group and H and K be subgroups of G with K 6 H 6 G.
Then

|G : K| = |G : H| · |H : K|.

Proof: For G infinite this requires a lot of care. This proof is omitted. (It can be found
in books and on Problem Sheet I of my version of MT5824.)

For G finite, the proof is easy using Lagrange’s Theorem:

|G : K| = |G|
|K|

=
|G|
|H|
· |H|
|K|

= |G : H| · |H : K|.

�
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Chapter 3

Normal Subgroups, Quotient
Groups and Homomorphisms

In this section we introduce the second and third basic aspects of structure within groups,
though, as we shall see, these are heavily linked. The most important definition here
will be that of a homomorphism, which is a map between groups that preserve the group
multiplications. We begin by defining the concept of a normal subgroup.

Normal subgroups and quotient groups

Definition 3.1 Let G be a group and N be a subgroup of G. We call N a normal subgroup
of G if

g−1xg ∈ N for all x ∈ N and g ∈ G.

We write N P G to denote that N is a normal subgroup of G.

The element g−1xg is called the conjugate of x by g. It is frequently denoted by xg.
Conjugation will be discussed at greater length later.

Example 3.2 If G is any group, it is straightforward that

G P G.

Furthermore, g−11g = g−1g = 1, so we deduce

1 P G.

The above two subgroups provide the only normal subgroups that are guaranteed to
exist within any group. Any other normal subgroups exist for some reason to do with
the actual nature of the group we are working with. A particularly interesting case will
be groups where the trivial subgroup and the whole group itself are the only normal
subgroups. We shall examine this in more detail later. The following lies at the other
extreme:

Example 3.3 In an abelian group, every subgroup is normal.

Proof: Let G be an abelian group and H 6 G. Let g ∈ G and x ∈ H. Then

g−1xg = g−1gx = 1x = x ∈ H.

So H P G. �
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Example 3.4 Consider the quaternion group Q8 = {±1,±i,±j,±k}. Show that the
subgroup Z = 〈−1〉 is a normal subgroup of Q8 of order 2.

Solution: (−1)2 = 1, so −1 is an element of Q8 of order 2. Therefore

|Z| = |〈−1〉| = o(−1) = 2.

If a = ±i, ±j or ±k, then a2 = −1 and a4 = 1. This tells us that the order of a divides 4
and o(a) 6= 2, so

o(a) = 4 if a ∈ {±i,±j,±k}.

Now let x ∈ Z. If x = 1, then

g−1xg = g−11g = g−1g = 1 ∈ Z for all g ∈ Q8.

If x = −1, then since Question 13 on Problem Sheet I tells us

o(g−1xg) = o(x) = 2

and we have just observed that x = −1 is the unique element of order 2 in Q8, we conclude

g−1xg = x ∈ Z for all g ∈ Q8.

Hence
g−1xg ∈ Z for all x ∈ Z and all g ∈ Q8;

that is,
Z P Q8.

�

What a normal subgroup enables us to do is to create a group from the set of (right)
cosets of the normal subgroup. We shall now do this:

Definition 3.5 Let G be a group and let N be a normal subgroup of G. Let

G/N = {Nx | x ∈ G },

the set of all right cosets of N in G. Define a multiplication on G/N by

Nx ·Ny = Nxy

for x, y ∈ G (i.e., we multiply the representatives of the cosets).
We call G/N with this multiplication the quotient group of G by N .

We only use the notation G/N when N P G. The set of right cosets of an arbitrary
subgroup H of a group G only has a group multiplication defined upon it when H is a
normal subgroup.

Theorem 3.6 Let G be a group and N be a normal subgroup of G. Then G/N is a group
with respect to the multiplication defined above.

Establishing this theorem justifies our terminology: we are allowed to call G/N the
“quotient group”, since it is indeed a group.
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Proof: The most challenging step in the proof is the first one, verifying that we do
have a binary operation on G/N , whereas checking the axioms of a group turns out
to be straightforward. The problem is that the multiplication defined in Definition 3.5
depends upon the representatives x and y and we know that cosets can have many different
representatives. We need to ensure our multiplication is well-defined : it depends only upon
the cosets concerned and not on the choice of representatives for the cosets.

Consider two cosets of N and suppose that we have written them with different rep-
resentatives: Nx = Nx′ and Ny = Ny′. This means that

x(x′)−1 ∈ N and y(y′)−1 ∈ N,

by Theorem 2.19(i). Let’s give names to these elements of N , say

a = x(x′)−1 and b = y(y′)−1,

so
x = ax′ and y = by′.

Then

xy = ax′by′ = ax′b(x′)−1x′y′

= ab(x
′)−1

x′y′.

Since N P G, b(x
′)−1 ∈ N and so ab(x

′)−1 ∈ N . Therefore

xy(x′y′)−1 = ab(x
′)−1 ∈ N

and, using Theorem 2.19(i) again,

Nxy = Nx′y′.

This tells us that we get the same answer for the product Nx ·Ny whether we calculate
it using the representatives x and y or using the representatives x′ and y′. Hence we have
a well-defined multiplication on G/N .

The remaining sets of the proof are straightforward. We check the axioms of a group:

Associativity: Let Nx,Ny,Nz ∈ G/N . Then

(Nx ·Ny) ·Nz = Nxy ·Nz = N(xy)z

and
Nx · (Ny ·Nz) = Nx ·Nyz = Nx(yz).

But the multiplication in G is associative, so (xy)z = x(yz) and hence

(Nx ·Ny) ·Nz = Nx · (Ny ·Nz),

as required.

Identity: Nx ·N1 = Nx1 = Nx and N1 ·Nx = N1x = Nx for all x ∈ G, so N1 is the
identity element of G/N .

Inverses: Nx · Nx−1 = Nxx−1 = N1 and Nx−1 · Nx = Nx−1x = N1, so Nx−1 is the
inverse of Nx in G/N .
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Hence G/N is a group. �

What one could do now is to take a known group G with a known normal subgroup N
and then construct the multiplication table of G/N . This can be done, but the process
is reasonably complicated. Moreover, it really misses the point. Multiplication tables
tend to obscure information about groups and what we really want to understand are the
subgroups and, now, the normal subgroups. In a short while we shall meet the Correspon-
dence Theorem which tells us how the structure (i.e., subgroups and normal subgroups)
of the quotient group G/N corresponds to just a part of this structure within G. In this
sense, the quotient group has a more simplified structure than that of the original G.

As a further illustration, if we are working with a group G of order 44 (for example)
and we manage to show that it has a normal subgroup N of order 11, then Lagrange’s
Theorem tells us |G/N | = 4. We now want to understand two groups N and G/N of
considerably smaller order and then put them together to understand G. Future sections
will explain more clearly how these steps are done.

Homomorphisms

The second part of this section concerns the final aspect of what might be described as
basic group structure. This describes how two groups relate to each other via mappings
that respect the group multiplication.

Definition 3.7 Let G and H be groups (both with multiplicatively written binary oper-
ation). A homomorphism φ : G→ H is a map such that

(xy)φ = (xφ)(yφ) for all x, y ∈ G.

Note once again that we are writing our maps on the right. On the left-hand side
we multiply the elements of G and then apply the map φ. On the right-hand side we
apply φ to produce two elements of H and then multiply them in H. We often describe
the above condition as saying that a homomorphism “preserves” the group multiplication.
Homomorphisms in group theory are the analogues of linear maps in linear algebra, which
preserve addition and scalar multiplication of vectors.

Example 3.8 (i) Let G and H be any groups. Define a map ζ : G→ H by

xζ = 1 (the identity element of H)

for all x ∈ G. Then ζ is a homomorphism, often called the trivial homomorphism
(or “zero homomorphism”).

Verification: (xy)ζ = 1 while (xζ)(yζ) = 1 · 1 = 1. �

(ii) If G is any group, the identity map ι : G → G is a homomorphism, since (xy)ι =
xy = (xι)(yι) for all x, y ∈ G.

(iii) The set {±1} forms a group under multiplication, indeed it is cyclic of order 2
generated by −1.

Now consider Sn, the symmetric group of degree n. Define a map Φ: Sn → {±1} by

σΦ =

{
+1 if σ is even

−1 if σ is odd.
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Remember that a permutation is even/odd if it is a product of an even/odd number
of transpositions. When we multiply two permutations, we will add the number of
transpositions involved, so we observe:

even perm× even perm = even perm

even perm× odd perm = odd perm

odd perm× even perm = odd perm

odd perm× odd perm = even perm

From this it follows that Φ is a homomorphism.

(iv) Let F be a field. The set of non-zero elements of F form a group under multiplication,
called the multiplicative group of F and denoted F ∗. If n is a positive integer, define

δ : GLn(F )→ F ∗

by
Aδ = detA.

Since det(AB) = detA · detB, we conclude δ is a homomorphism.

The first basic properties of homomorphisms are the following:

Lemma 3.9 Let φ : G→ H be a homomorphism from a group G to a group H. Then

(i) 1Gφ = 1H , where 1G and 1H denote the identity elements of G and H, respectively.

(ii) (x−1)φ = (xφ)−1 for all x ∈ G.

We normally write 1φ = 1 for part (i) since, as φ is a map G→ H, it is clear that the
identity element on the left-hand side must lie in G, as that is the domain of φ, and that
the right-hand side must be in the codomain H of φ. Similarly, in (ii), the inverse on the
left-hand side is in G, while that on the right-hand side is calculated in H.

Proof: (i) Let e = 1φ = 1Gφ. Then as 1 · 1 = 1 in G, when we apply φ we deduce

e = 1φ = (1 · 1)φ = (1φ)(1φ) = e2.

We now multiply by e−1:

e = e2e−1 = ee−1 = 1 (= 1H).

(ii) Let x ∈ G and consider xφ and (x−1)φ. Since φ is a homomorphism

xφ · (x−1)φ = (xx−1)φ = 1φ = 1

and

(x−1)φ · xφ = (x−1x)φ = 1φ = 1,

using part part (i) both times. This shows that (x−1)φ is the inverse of xφ in the group H.
Since inverses are unique, we have established

(x−1)φ = (xφ)−1.

�
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Kernels and images

To make progress working with homomorphisms, we need to make the following definitions
which are fundamental to the study of these maps. They are, of course, very similar to
those made in linear algebra.

Definition 3.10 Let φ : G→ H be a homomorphism from a group G to a group H.

(i) The kernel of φ is
kerφ = {x ∈ G | xφ = 1 }.

(ii) The image of φ is
imφ = Gφ = {xφ | x ∈ G }.

Note that, in this definition, kerφ is a subset of G while imφ is a subset of H. In fact,
we can say much more:

Lemma 3.11 Let φ : G→ H be a homomorphism from a group G to a group H. Then

(i) the kernel of φ is a normal subgroup of G;

(ii) the image of φ is a subgroup of H.

Proof: (i) We must first show that kerφ is a subgroup of G. To do this, we use
Lemma 3.9(i) to tell us 1φ = 1, so 1 ∈ kerφ (that is, the kernel of φ contains the identity
element of G). In particular, the kernel is a non-empty subset of G. Now let x, y ∈ kerφ,
so xφ = yφ = 1. Then

(xy)φ = (xφ)(yφ) = 1 · 1 = 1

and
(x−1)φ = (xφ)−1 = 1−1 = 1.

Hence xy, x−1 ∈ kerφ. This tells us kerφ is a subgroup of G.
Now let x ∈ kerφ and g ∈ G. Then

(g−1xg)φ = (gφ)−1(xφ)(gφ) = (gφ)−11(gφ) = (gφ)−1(gφ) = 1.

Hence g−1xg ∈ kerφ for all x ∈ kerφ and g ∈ G.
We conclude that kerφ is a normal subgroup of G.
(ii) Since 1φ = 1, we conclude imφ is non-empty as it contains the identity element

of H. Now let g, h ∈ imφ. By definition, g = xφ and h = yφ for some x, y ∈ G. Then

gh = (xφ)(yφ) = (xy)φ ∈ imφ

and

g−1 = (xφ)−1 = (x−1)φ ∈ imφ.

Hence, imφ is a subgroup of H. �

The kernel and the image tell us a lot about our homomorphism φ. For a start, they
inform us whether or not it is injective or surjective:

Lemma 3.12 Let φ : G→ H be a homomorphism from a group G to a group H.
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(i) φ is injective if and only if kerφ = 1.

(ii) φ is surjective if and only if imφ = H.

Proof: (ii) is an immediate consequence of the definitions.
(i) Suppose φ is injective. Let x ∈ kerφ. Then xφ = 1 = 1φ and, as φ is injective, we

conclude x = 1. Thus kerφ = 1.
Conversely, suppose kerφ = 1. Let x, y ∈ G and suppose xφ = yφ. Then

(xy−1)φ = (xφ)(yφ)−1 = (xφ)(xφ)−1 = 1.

So xy−1 ∈ kerφ = 1 and xy−1 = 1. Multiplying by y gives

x = xy−1y = 1y = y,

and we conclude φ is injective. �

The Isomorphism Theorems

We have introduced the concepts of a homomorphism, its kernel and its image. The kernel
is always a normal subgroup and, in view of our work earlier in the section, the natural
question is what is the quotient group and what does it tell us about the homomorphism φ?
Before we do that, we present an example that tells us that it is not just the case that
kernels are normal subgroups, but the converse also holds, so kernels of homomorphisms
and normal subgroups are precisely the same thing.

Example 3.13 Let G be any group and N be a normal subgroup of G. Recall that we
can then form the quotient group

G/N = {Nx | x ∈ G }

with multiplication
Nx ·Ny = Nxy.

Let us define a map π : G→ G/N by

xπ = Nx for each x ∈ G.

(So we map each element ofG to the unique coset ofN that contains it.) The multiplication
in G/N ensures that π is a homomorphism:

(xy)π = Nxy = Nx ·Ny = (xπ)(yπ) for all x, y ∈ G.

We call π the natural homomorphism or canonical homomorphism associated to N .
The definition ensures that π is surjective; that is, imπ = G/N . We now determine

the kernel:

kerπ = {x ∈ G | xπ = N1 }
= {x ∈ G | Nx = N1 }
= {x ∈ G | x ∈ N } = N.

In particular, this tells us that every normal subgroup occurs as the kernel of a homo-
morphism. The First Isomorphism Theorem strengthens what we have done to show that
the image of a homomorphism always looks like the quotient by the kernel, which is what
we have just observed happens with the natural homomorphism.
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Theorem 3.14 (First Isomorphism Theorem) Let G and H be groups and φ : G→
H be a homomorphism from G to H. Then kerφ is a normal subgroup of G, imφ is a
subgroup of H and

G/kerφ ∼= imφ.

Proof: The first two assertions are found in Lemma 3.11. We need to construct an
isomorphism (a bijective homomorphism) between G/kerφ and imφ. So write K = kerφ
and define

θ : G/K → imφ

by
(Kx)θ = xφ.

The definition of θ appears to depend on the choice of representative x for the coset Kx,
so we must first check that θ is well-defined.

Suppose Kx = Ky. Then xy−1 ∈ K = kerφ, so

1 = (xy−1)φ = (xφ)(yφ)−1

and multiplying by yφ gives xφ = yφ. Hence θ is well-defined.
Next

(Kx ·Ky)θ = (Kxy)θ = (xy)φ = (xφ)(yφ) = (Kx)θ · (Ky)θ

and we deduce θ is a homomorphism.
If g ∈ imφ, then g = xφ for some x ∈ G. Then

(Kx)θ = xφ = g

and we see that θ is surjective.
Finally if Kx ∈ ker θ, then 1 = (Kx)θ = xφ, so x ∈ kerφ = K and therefore Kx = K1,

the identity element in G/K. This shows that ker θ = {K1} = 1 and Lemma 3.12 now
tells us θ is injective.

Hence θ is a bijective homomorphism and (comparing Definitions 1.13 and 3.7) this is
exactly what an isomorphism is. Hence

G/ker θ = G/K ∼= imφ.

�

Example 3.15 (i) Recall the homomorphism Φ: Sn → {±1} given by

σΦ =

{
+1 if σ is even

−1 if σ is odd.

Provided n > 2, Sn contains both odd and even permutations (e.g., (1 2) and 1,
respectively). So

im Φ = {±1}
and as An consists of all even permutations,

ker Φ = An.

The First Isomorphism Theorem tells us An P Sn and

Sn/An ∼= {±1} ∼= C2,

a cyclic group of order 2. In particular, this tells us An is a subgroup of index 2
in Sn, so |An| = 1

2 |Sn| =
1
2 n!.
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(ii) Recall the homomorphism δ : GLn(F )→ F ∗ given by

Aδ = detA for each A ∈ GLn(F ).

Since

det


α 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1

 = α for each α ∈ F ∗,

we see that δ is surjective. The special linear group SLn(F ) is the set of all matrices
with entries from F and determinant 1. So

ker δ = SLn(F )

and it follows from the First Isomorphism Theorem that

SLn(F ) P GLn(F ) and
GLn(F )

SLn(F )
∼= F ∗.

The conclusion of what we have just done is that images of homomorphisms and
quotients by normal subgroups are the same thing. What we really need to understand is
how quotient groups behave and the remainder of this section contains three more major
theorems which enable us to do this.

Theorem 3.16 (Correspondence Theorem) Let G be a group and N be a normal
subgroup of G. Let

A = {H | N 6 H 6 G },
the set of all subgroups of G that contain N , and B be the set of subgroups of G/N . The
map f : A → B defined by

Hf = H/N = {Nh | h ∈ H }

is a bijection and preserves inclusions. Moreover, under this bijection, normal subgroups
(of G containing N) correspond to normal subgroups (of G/N).

To interpret this theorem, let us accept that the multiplication table does not provide
us with good information about a group and instead that finding the subgroups of a
group G, how these relate to each other and their properties (including which are normal)
would be far more useful. We could represent them by a diagram where each subgroup
is represented by a node, inclusions by upward sloping arrows and normal subgroups are
marked (e.g., by colouring them a different colour). What the Correspondence Theorem
tells us that, when we have found a normal subgroup N , then that part of the structural
diagram lying between N and G is precisely the structural diagram of G/N . (In the sketch
below, the dashed lines indicate that there is some part of the subgroup diagram that is
not illustrated and we are mainly concentrating on that part lying between N and G, as
is referred to in the statement of the Correspondence Theorem.)
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Proof of Theorem 3.16: If H is a subgroup of G with N 6 H 6 G, then N is also a
normal subgroup of H and we can certainly form H/N . This quotient is a subset of G/N
which forms a group under the binary operation on G/N . Thus f is a map from the set A
of all subgroups of G containing N to the set B of subgroups of G/N . We first establish
that f is a bijection.

Let H1, H2 ∈ A and suppose H1f = H2f ; i.e., H1/N = H2/N . If x ∈ H1, then
Nx ∈ H1/N = H2/N , so Nx = Nh for some h ∈ H2. Thus xh−1 ∈ N 6 H2, so xh−1 = k
where k ∈ H2 and then x = kh ∈ H2. This shows H1 6 H2 and the same argument
repeated with H1 and H2 interchanged then shows H1 = H2. Thus f is injective.

Let S ∈ B. Let H = {x ∈ G | Nx ∈ S }. Since S contains the identity element N1
of G/N , we see that Nx = N1 ∈ S for all x ∈ N and so N 6 H. In particular, H is
non-empty. Let x, y ∈ H. Then Nx,Ny ∈ S, so

Nxy = Nx ·Ny ∈ S and Nx−1 = (Nx)−1 ∈ S

and therefore xy, x−1 ∈ H. Hence H is a subgroup of G containing N , that is, H ∈ A. By
definition, Hf consists of some cosets belonging to S; that is, Hf ⊆ S. However, every
element of S is a coset Nx and this x belongs to H. Thus Hf = S and we deduce that
f is surjective.

If H1, H2 ∈ A and H1 6 H2, then

H1f = {Nx | x ∈ H1 } 6 {Nx | x ∈ H2 } = H2f.

On the other hand, suppose H1f 6 H2f . If x ∈ H1, then Nx ∈ H1f 6 H2f , so x ∈ H2

(using the earlier observation that f is a bijection). Thus

H1 6 H2 if and only if H1f 6 H2f ;

that is, f is a bijection A → B which preserves inclusions.
If K ∈ A and K P G, then for Nx ∈ K/N and Ng ∈ G/N ,

(Ng)−1(Nx)(Ng) = Ng−1xg ∈ K/N,

since g−1xg ∈ K. Thus if K P G, then Kf = K/N P G/N .
If S ∈ B and S P G/N , let H ∈ A be the unique subgroup of G containing N

corresponding to S; that is,

H = Sf−1 = {x ∈ G | Nx ∈ S } and S = Hf = H/N.

Let x ∈ H and g ∈ G. Then

Ng−1xg = (Ng)−1(Nx)(Ng) ∈ S,

as S P G/N . We conclude g−1xg ∈ H for all x ∈ H and g ∈ G. Thus Sf−1 = H P G.
This establishes the final part of the theorem: subgroups in A which are normal in G

correspond to normal subgroups of G/N under f and vice versa. �

Theorem 3.17 (Second Isomorphism Theorem) Let G be a group, H be a subgroup
of G and N be a normal subgroup of G. Then H ∩N is a normal subgroup of H, NH is
a subgroup of G and

H/(H ∩N) ∼= NH/N.
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Here NH = {nh | n ∈ N,h ∈ H }. What the Second Isomorphism Theorem does is tell
us how normal subgroups of a group G interact with other subgroups. Note in particular,
that NH/N is a subgroup of the quotient G/N and corresponds to the subgroup NH of G
under the Correspondence Theorem. In terms of subgroup diagrams, we have:
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quotients

Proof: Since N P G, we can construct the quotient group G/N and the associated
natural homomorphism π : G → G/N . Let φ = π|H be the restriction of π to H; that is,
φ : H → G/N is the map given by

xφ = xπ = Nx for all x ∈ H.

Since π is a homomorphism, it is immediate that φ is also a homomorphism. We seek now
to apply the First Isomorphism Theorem to φ. The relevant subgroups are

kerφ = {x ∈ H | xφ = N1 }
= {x ∈ H | Nx = N1 }
= {x ∈ H | x ∈ N } = H ∩N

and

imφ = {Nx | x ∈ H }.

Now the First Isomorphism Theorem tells us kerφ = H ∩N is a normal subgroup of H.
Also imφ is a subgroup of G/N and by the Correspondence Theorem it has the form
imφ = K/N for some subgroup K with N 6 K 6 G. The proof of the Correspondence
Theorem tells us what K is:

K = { g ∈ G | Ng ∈ imφ }
= { g ∈ G | Ng = Nh for some h ∈ H }
= { g ∈ G | gh−1 ∈ N for some h ∈ H }
= { g ∈ G | gh−1 = n for some h ∈ H, n ∈ N }
= { g ∈ G | g = nh for some h ∈ H, n ∈ N }
= NH.

Thus NH is a subgroup of G. Finally

H/(H ∩N) = H/kerφ ∼= imφ = K/N = NH/N.

�
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Theorem 3.18 (Third Isomorphism Theorem) Let G be a group and let H and K
be normal subgroups of G with K 6 H 6 G. Then H/K is a normal subgroup of G/K
and

G/K

H/K
∼= G/H.

If K P G, the Correspondence Theorem tells us that normal subgroups of G/K have
the form H/K where K 6 H 6 G and H P G. What the Third Isomorphism Theorem
does for us is identify the quotient of G/K by such a normal subgroup. It tells us, in
particular, that the resulting quotient group is the same as the one found by taking the
quotient of G by H. It can be represented pictorially as:

u
u
u
u

1

K

H

G }
isomorphic
quotients

{

u
u
u

1 = {K1}

H/K

G/K

Proof: It follows (as discussed above) straight from the Correspondence Theorem that
H/K P G/K, but we shall deduce it from the First Isomorphism Theorem.

Define φ : G/K → G/H by
(Kx)φ = Hx.

Since the definition of φ appears to depend on the choice of representative x, we must first
verify that it really is a function of the cosets.

Suppose Kx = Ky. Then xy−1 ∈ K 6 H, so Hx = Hy and we do indeed have
(Kx)φ = (Ky)φ. Hence φ is well-defined.

Next, φ is a homomorphism, since

(Kx ·Ky)φ = (Kxy)φ = Hxy = Hx ·Hy = (Kx)φ · (Ky)φ.

Then
kerφ = {Kx | Hx = H1 } = {Kx | x ∈ H } = H/K

and
imφ = {Hx | x ∈ G } = G/H.

Now the First Isomorphism Theorem tells us that H/K P G/K and

G/K

H/K
=
G/K

kerφ
∼= imφ = G/H,

as required. �

The content of this section provides us with crucial tools that will be used throughout
this course and beyond whenever studying group theory.
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Chapter 4

Cyclic Groups

In this short chapter, we shall perform a detailed analysis of cyclic groups. We shall be
able to completely classify them up to isomorphism and provide a full description of the
subgroup structure. The fact that we can so easily perform this indicates that cyclic
groups are the most straightforward to understand. It is, however, necessary that we do
fully understand them before moving on to more complicated groups.

Recall that a group G is cyclic if G = 〈x〉 for some x ∈ G. This means that the
elements of G are the powers of the element x.

Proposition 4.1 A cyclic group is abelian.

Proof: Let G = 〈x〉. If g, h ∈ G, then g = xm and h = xn for some m,n ∈ Z. Then

gh = xmxn = xm+n = xnxm = hg.

Hence G is abelian. �

We already know that every subgroup of an abelian group is normal, so this also applies
to cyclic groups. However, the most significant observation to make based on the above
proof is that in a cyclic group the multiplication is essentially determined by the addition
of the exponents. This will be a feature of our analysis in this chapter (and will stand in
sharp contrast to most other work conducted within groups).

We recall some standard examples of cyclic groups.

Example 4.2 (i) The integers under addition is an example of an infinite cyclic group:
Z = 〈1〉.

(ii) The set of complex nth roots of 1 is a multiplicative cyclic group of order n:

Cn = { e2kπi/n | k = 0, 1, 2, . . . , n− 1 } = 〈e2πi/n〉.

(iii) The set of integers modulo n, Zn = {0, 1, 2, . . . , n − 1}, is a group under addition
performed modulo n. It is cyclic generated by 1: Zn = 〈1〉, since

k = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
k times

∈ 〈1〉,

for each k.
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Theorem 4.3 (i) An infinite cyclic group is isomorphic to the additive group Z.

(ii) A cyclic group of order n is isomorphic to the additive group Zn of integers modulo n.

This theorem provides us with a complete classification of cyclic groups. It tells us,
in particular, that the multiplicative group Cn is isomorphic to the additive group Zn.
In view of this theorem, we often write C∞ and Cn, respectively, to denote an arbitrary
infinite cyclic group and an arbitrary cyclic group of order n. We now know these are
essentially unique as groups.

We immediately deduce:

Corollary 4.4 Let p be a prime. Up to isomorphism, there is exactly one group of order p.

Proof: If G is a group of order p, then G is cyclic by Corollary 2.23, so G ∼= Zp by
Theorem 4.3(ii). �

Proof of Theorem 4.3: (i) Let G be an infinite cyclic group, say G = 〈x〉. Then
o(x) =∞ and the powers of x are distinct. We may define a map φ : Z→ G by

nφ = xn

and this is now a bijection. Then

(m+ n)φ = xm+n = xmxn = (mφ)(nφ) for all m,n ∈ Z.

Hence φ is an isomorphism and so G ∼= Z.
(ii) Let G be cyclic of order n, say G = 〈x〉 = {1, x, x2, . . . , xn−1}. Now define φ : Zn →

G by iφ = xi and again φ is a bijection. As o(x) = n, if i+ j ≡ r (mod n), then

(i+ j)φ = rφ = xr = xi+j = xixj = (iφ)(jφ)

and again φ is an isomorphism and G ∼= Zn. �

Subgroups of cyclic groups

Let us now attempt to describe the subgroups of a group G that is cyclic of (finite) order n.
Suppose G = 〈x〉. Any subgroup of G has order dividing n by Lagrange’s Theorem, so let
us choose a divisor d of n. Write

n = dk

for some k ∈ Z. Consider y = xk. The powers of this element are

xk, x2k, x3k, . . . , xdk = xn = 1,

since o(x) = n. Therefore
o(y) = o(xk) = d.

So G possesses a subgroup of order d, namely 〈xk〉 = 〈xn/d〉.
Conversely, let H be any subgroup of G. We shall show that H has the form just

described. For a start H consists of some powers of x and we note xn = 1 ∈ H. It
therefore makes sense to define m to be the smallest positive integer such that xm ∈ H.
Certainly 〈xm〉 6 H. Let i ∈ Z with xi ∈ H. Divide i by m to obtain a quotient and
remainder:

i = qm+ r where 0 6 r < m.
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Then r = i− qm and
xr = xi(xm)−q ∈ H.

The minimality of m forces r = 0, so xi = xqm = (xm)q ∈ 〈xm〉. Thus

H = 〈xm〉

and in particular applying the above argument to i = n (since xn = 1 ∈ H) tells us that

m divides n.

The powers of xm are therefore xm, x2m, . . . , (xm)n/m = xn = 1 and o(x) = n/m. This
shows that every subgroup has the form described above (namely our H is the subgroup
of order d = n/m).

We have established:

Theorem 4.5 Let G = 〈x〉 be a finite cyclic group of order n. Then

(i) every subgroup of G is cyclic;

(ii) the group G has a unique subgroup of order d for each divisor d of n, namely the
subgroup 〈xn/d〉. �

Example 4.6 Describe the subgroup structure of (i) a cyclic group of order 6, (ii) a
cyclic group of order 8.

Solution: (i) Let G = 〈x〉 = C6. Then G has a unique subgroup of each order 1, 2, 3
and 6, which are 1, 〈x3〉, 〈x2〉 and G itself, respectively. Since any containment of one
of these in another requires the corresponding orders to divide, we conclude the group
structure is as follows:

u

u
u

u
1

G = 〈x〉

〈x2〉

〈x3〉

�
�
�

A
A
A
A
A
A
�
�
�

A
A
A
A
A
A

(ii) Let G = 〈y〉 = C8. Then G has a unique subgroup of each order 1, 2, 4 and 8,
namely 1, 〈x4〉, 〈x2〉 and 〈x〉. Since x4 ∈ 〈x2〉, we deduce that there is an inclusion
〈x4〉 6 〈x2〉. We conclude the subgroup structure is:

u
u
u
u

1

〈x4〉 ∼= C2

〈x2〉 ∼= C4

G = 〈x〉 ∼= C8

�

The analogue of Theorem 4.5 for infinite cyclic groups is the following, which is proved
by similar arguments:
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Theorem 4.7 Let G = 〈x〉 be a cyclic group of infinite order. Then every non-trivial
subgroup of G has the form 〈xm〉 for some positive integer m and this is the unique
subgroup of G of index m.

Proof: Omitted. See Problem Sheet IV. �
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Chapter 5

Constructing Groups

Permutation Groups

In Chapter 2, we considered subgroups and, in particular, described an algorithm for
computing the elements in the subgroup of a finite group G generated by a set X. We
applied this algorithm in the case of a collection of permutations in a symmetric group
(see Example 2.15). One natural question is whether we can build all groups in this way.
In so doing we are asking which groups arise as “permutation groups”.

A permutation group is a subgroup of some symmetric group SX . What we shall
observe is that every group is isomorphic to a permutation group. As a consequence every
finite group can be built using our algorithm from a finite collection of permutations (at
least up to isomorphism).

Theorem 5.1 (Cayley’s Theorem) Every group G is isomorphic to a subgroup of some
symmetric group SX (for some set X).

Proof: Let G be any group. Take X = G and so consider the symmetric group SG
consisting of bijections G→ G. If g ∈ G, define a map

σg : G→ G

x 7→ xg.

Claim: σg is a bijection.

We establish this claim by providing an inverse for σg; specifically, we shall show σg−1 is
the inverse of σg:

xσgσg−1 = (xg)g−1 = x(gg−1) = x1 = x

and
xσg−1σg = (xg−1)g = x(g−1g) = x1 = x.

Hence σgσg−1 = σg−1σg = id (the identity map G→ G).
We conclude that σg ∈ SG for all g ∈ G.

We may now define a map φ : G→ SG by

gφ = σg for each g ∈ G.
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Note that
xσgσh = (xg)h = x(gh) = xσgh for x, g, h ∈ G,

so
σgσh = σgh for g, h ∈ G,

that is,
(gφ)(hφ) = (gh)φ for g, h ∈ G.

Thus φ is a homomorphism.
Now let g ∈ kerφ, so σg = id, the identity map G→ G. Hence

x = xσg = xg for all x ∈ G.

Taking x = 1 (the identity element of G), we see that g = 1. Hence

kerφ = 1.

Lemma 3.12(i) now tells us that φ is an injective homomorphism.
Let H = imφ, which is a subgroup of SG. Then φ is a bijective homomorphism G→ H,

so G ∼= H, as required. �

Remarks

(i) If we examine the proof, we see that it shows that if G is a finite group of order n,
then G is isomorphic to a subgroup of SG ∼= Sn. For example, this tells us that
A5 (a group of order 60) is isomorphic to a subgroup of S60 (which is a group of
order 60! ≈ 8.3 × 1081), whereas the very definition of the group concerned tells
us that A5 is actually a subgroup of S5. This illustrates that although Cayley’s
Theorem tells us that every group is a subgroup of a symmetric group, this fact
alone may not help us work well with the original group nor may the proof give us
the most useful embedding. It is frequently useful to consider other ways to produce
a homomorphism G → Sn to a symmetric group. The module MT5824 Topics in
Groups discusses this and provides examples of how such homomorphisms may be
constructed.

(ii) The theorem does justify the interest in permutations, subgroups of Sn, and our
Example 2.15 where we applied the algorithm for generating subgroups to produce
a subgroup of S8 of order 8 (which happened to be isomorphic to Q8). Actually the
subgroup is precisely the one produced from Q8 via Cayley’s Theorem.

(iii) There are similar types of results for embedding in other types of groups. For
example, we can produce a matrix corresponding to a permutation σ of {1, 2, . . . , n}
and hence embed Sn in GLn(F ) (for any field F ). Use of Cayley’s Theorem then
shows that every finite group is a subgroup of some general linear group GLn(F ).
(See Problem Sheet V for more details.)

Direct Products

The other thing we shall do in this section is to give a construction that takes a number
of groups and produces another group. There are many examples of such constructions
in group theory and the one we give is just the most straightforward. Another more
complicated construction is described in MT5824.
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Definition 5.2 Let G and H be groups (both with multiplicatively written binary oper-
ations). The direct product of G and H is

G×H = { (g, h) | g ∈ G, h ∈ H },

the set of ordered pairs of an element in G and an element in H, with multipication given
by

(g1, h1)(g2, h2) = (g1g2, h1h2).

Theorem 5.3 Let G and H be groups. Then the direct product G ×H is a group and
its order is given by

|G×H| = |G| · |H|.

Proof: The formula for the group order is obvious. We need to verify the group axioms.

Associativity: Let (g1, h1), (g2, h2), (g3, h3) ∈ G×H. Then(
(g1, h1)(g2, h2)

)
(g3, h3) = (g1g2, h1h2)(g3, h3)

=
(
(g1g2)g3, (h1h2)h3

)
=
(
g1(g2g3), h1(h2h3)

)
= (g1, h1)(g2g3, h2h3)

= (g1, h1)
(
(g2, h2)(g3, h3)

)
.

Hence the multiplication on G×H is associative.

Identity: If (g, h) ∈ G×H, then

(g, h)(1, 1) = (g1, h1) = (g, h)

and
(1, 1)(g, h) = (1g, 1h) = (g, h).

Hence (1, 1) (= (1G, 1H)) is the identity element in G×H.

Inverses: We shall show that the inverse of (g, h) is (g−1, h−1):

(g, h)(g−1, h−1) = (gg−1, hh−1) = (1, 1)

and
(g−1, h−1)(g, h) = (g−1g, h−1h) = (1, 1).

Hence (g−1, h−1) is indeed the inverse of (g, h).

This completes the proof that the direct product G ×H is indeed a group under the
specified multiplication. �

We have now defined the direct product of two groups G and H and established that
G ×H is a group. What we should do is establish how the properties of this new group
relate to the two groups G and H that we started with.

So let G and H be any groups and consider the direct product

G×H = { (g, h) | g ∈ G, h ∈ H }
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(where we multiply the elements of G×H componentwise, as described in Definition 5.2.)
Define

Ḡ = { (g, 1) | g ∈ G } and H̄ = { (1, h) | h ∈ H }.

Also define α : G→ G×H and β : H → G×H by

gα = (g, 1) and hβ = (1, h).

If g1, g2 ∈ G, then

(g1g2)α = (g1g2, 1) = (g1, 1)(g2, 1) = (g1α)(g2α).

Hence α is a homomorphism. By construction

imα = { (g, 1) | g ∈ G } = Ḡ,

so we conclude that Ḡ is a subgroup of G×H (by Lemma 3.11(ii)).
If g ∈ kerα, then (g, 1) = gα = (1, 1) and so we conclude that kerα = 1. Hence α is a

bijective homomorphism from G to Ḡ, so Ḡ is a subgroup of G×H isomorphic to G.

Theorem 5.4 Let G and H be two groups and let G×H be their direct product. Define

Ḡ = { (g, 1) | g ∈ G } = G× 1 and H̄ = { (1, h) | h ∈ H } = 1×H.

(i) Ḡ and H̄ are normal subgroup of G×H.

(ii) Ḡ ∼= G and H̄ ∼= H.

(iii) Ḡ ∩ H̄ = 1.

(iv) G×H = ḠH̄.

Proof: (i), (ii) We have already shown that Ḡ is a subgroup of G×H isomorphic to G.
The same argument applied to the map β above shows that H̄ is a subgroup of G × H
isomorphic to H. If

(x, 1) ∈ Ḡ and (g, h) ∈ G×H,

then

(g, h)−1(x, 1)(g, h) = (g−1xg, h−1h)

= (g−1xg, 1) ∈ Ḡ.

Hence Ḡ P G×H. Similarly H̄ P G×H.
(iii) The form of the elements in Ḡ and H̄ guarantees that Ḡ ∩ H̄ = {(1, 1)} = 1.
(iv) If (g, h) ∈ G×H, then

(g, h) = (g, 1)(1, h) ∈ ḠH̄.

Thus G × H ⊆ ḠH̄. However, the reverse inclusion ḠH̄ ⊆ G × H is obvious since
Ḡ and H̄ are contained in the group G × H and this is closed under products. This
establishes G×H = ḠH̄. �
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Since Ḡ, H̄ P G×H, it is natural to ask what the quotient groups are. Define

π : G×H → G ρ : G×H → H

(g, h) 7→ g (g, h) 7→ h.

Note (
(g1, h1)(g2, h2)

)
π = (g1g2, h1h2)π = g1g2 = (g1, h1)π · (g2, h2)π.

Hence π is a homomorphism. It is immediate that

kerπ = { (1, h) | h ∈ H } = H̄ and imπ = G.

The First Isomorphism Theorem (Theorem 3.14) now tells us that

G×H
H̄

=
G×H
kerπ

∼= imπ = G.

A similar argument using ρ shows

G×H
Ḡ

∼= H.

Thus:

Theorem 5.5 If G and H are any groups, then

G×H
G× 1

∼= H and
G×H
1×H

∼= G.

�

In fact, the properties given in Theorem 5.4 characterise direct products.

Theorem 5.6 Let G be a group and let M and N be normal subgroups of G such that
(i) M ∩N = 1 and (ii) G = MN . Then G ∼= M ×N .

Proof: Define φ : M ×N → G by

(x, y)φ = xy.

Hypothesis (ii) tells us that φ is surjective.
If x ∈M and y ∈ N , consider the element

x−1y−1xy.

(We shall meet such elements again later. It is called the commutator of x and y.) We
use the fact that M P G and N P G to see

x−1y−1xy = x−1(y−1xy) ∈M and x−1y−1xy = (x−1y−1x)y ∈ N.

Hence
x−1y−1xy ∈M ∩N = 1,

so x−1y−1xy = 1. Multiplying by x and then by y on the left gives:

xy = yx for all x ∈M and y ∈ N.
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Hence, for (x1, y1), (x2, y2) ∈M ×N , we calculate

(x1, y1)φ · (x2, y2)φ = x1y1x2y2 = x1x2y1y2 = (x1x2, y1y2)φ =
(
(x1, y1)(x2, y2)

)
φ.

Thus φ is a homomorphism.
If (x, y) ∈ kerφ, then 1 = (x, y)φ = xy, so

x = y−1 ∈M ∩N = 1

and we deduce (x, y) = (1, 1) and so kerφ = {(1, 1)} = 1.
It follows that φ is injective and we now conclude that it is an isomorphism. Thus

G ∼= M ×N . �

We can similarly construct a direct product of many groups. We briefly summarise
the analogous definition and results.

Definition 5.7 Let G1, G2, . . . , Gk be groups. The direct product of these groups is

G1 ×G2 × · · · ×Gk = { (x1, x2, . . . , xk) | xi ∈ Gi for each i }

with componentwise multiplication

(x1, x2, . . . , xk)(y1, y2, . . . , yk) = (x1y1, x2y2, . . . , xkyk).

Similar arguments (though a little more care is needed in a few places) establishes the
following two results:

Theorem 5.8 Let G1, G2, . . . , Gk be groups.

(i) The direct product D = G1 ×G2 × · · · ×Gk is a group.

(ii) Ḡi = { (1, . . . , 1, g, 1, . . . , 1) | g ∈ Gi } is a normal subgroup of D isomorphic to Gi
for each i. (Here the element g occurs in the ith entry of the sequence.)

(iii) Ḡi ∩ (Ḡ1Ḡ2 · · · Ḡi−1Ḡi+1 · · · Ḡk) = 1.

(iv) D = Ḡ1Ḡ2 · · · Ḡk.

Theorem 5.9 If G is a group and N1, N2, . . . , Nk are normal subgroups of G such
that G = N1N2 · · ·Nk and Ni ∩ (N1N2 · · ·Ni−1Ni+1 · · ·Nk) = 1 for each i, then G ∼=
N1 ×N2 × · · · ×Nk.

Finally we provide another (more general) way to find normal subgroups of direct
products.

Proposition 5.10 Let G1, G2, . . . , Gk be groups and Ni P Gi for each i. Then N1 ×
N2 × · · · ×Nk P G1 ×G2 × · · · ×Gk and

G1 ×G2 × · · · ×Gk
N1 ×N2 × · · · ×Nk

∼= (G1/N1)× (G2/N2)× · · · × (Gk/Nk).

Proof: Define φ : G1 ×G2 × · · · ×Gk → (G1/N1)× (G2/N2)× · · · × (Gk/Nk) by

(x1, x2, . . . , xk)φ = (N1x1, N2x2, . . . , Nkxk).

It is straightforward to verify that φ is a homomorphism, that it is surjective and

kerφ = { (x1, x2, . . . , xk) | Nixi = Ni1 for each i }
= N1 ×N2 × · · · ×Nk.

The result now follows by the First Isomorphism Theorem. �

We shall use direct products in the next chapter to classify finite abelian groups.

48



Chapter 6

Finite Abelian Groups

In this chapter, we shall give a complete classification of finite abelian groups. In so doing,
we shall observe how the assumption that our binary operation is commutative brings
considerable restriction and so makes abelian groups very tractible to study. We shall also
observe how useful direct products are in our classification.

Before we describe the structure of finite abelian groups, we make a number of com-
ments. The first is that when studying abelian groups it is common to use additive
notation for the binary operation rather than multiplicative. The reason for this is that
the cyclic groups Z of all integers and Zn of integers modulo n are very important. Many
textbooks make this change in notation and some previous exam papers have followed
this convention. The author of these lecture notes has chosen, however, to continue to use
multiplicative notation so as to maintain consistency with other chapters in the lecture
course and not to introduce a whole new set of notation for everything we have covered
so far.

We recall some facts that we need:

(i) In an abelian group, every subgroup is normal (Example 3.3).

(ii) As a consequence, if H and K are subgroups of an abelian group, then HK = {hk |
h ∈ H, k ∈ K } is also a subgroup (Problem Sheet III, Question 3).

(iii) If x and y are elements of a finite abelian group, then x and y commute, so

o(xy) divides lcm
(
o(x), o(y)

)
(Problem Sheet II, Question 5).

In our classification of finite abelian groups, the constituents will turn out to be direct
products and cyclic groups. We start by proving:

Lemma 6.1 Let m and n be coprime positive integers. Then

Cmn ∼= Cm × Cn.

(Recall that m and n are coprime if the only positive common divisor is 1. Also
Cm continues to denote a multiplicatively written cyclic group of order m.)

Proof: Let Cm = 〈x〉 and Cn = 〈y〉. We know that the direct product Cm × Cn is a
group of order mn. Consider g = (x, y) ∈ Cm × Cn. The kth power is given by

gk = (xk, yk)
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and this equals the identity if and only if xk = 1 and yk = 1; that is, when m = o(x) and
n = o(y) both divide k. Since m and n are coprime, we conclude that gk = (1, 1) if and
only if mn divides k. Thus

o(g) = mn.

Hence 〈g〉 is a subgroup of order mn. Therefore

Cm × Cn = 〈g〉 ∼= Cmn

(using Theorem 4.3 to tell us that there is a unique cyclic group of any given order up to
isomorphism). �

Repeated use of Lemma 6.1 tells us:

Corollary 6.2 Let n be a positive integer and write n = pk11 p
k2
2 . . . pkrr as a product of

prime powers (where the prime numbers p1, p2, . . . , pr are distinct). Then

Cn ∼= C
p
k1
1

× C
p
k2
2

× · · · × C
pkrr
.

�

This corollary gives some clue as to how our classification theorem works. It essentially
says that all finite abelian groups are built from cyclic groups of prime-power order using
direct products.

Theorem 6.3 (Fundamental Theorem of Finite Abelian Groups)
Any finite abelian group G is isomorphic to a direct product of cyclic groups of prime-
power order. Moreover, this decomposition is essentially unique in that any two such
decompositions for G have the same number of non-trivial factors of each order.

We already know that rearranging terms in a direct product gives an isomorphic group
(see Problem Sheet V, Question 4(a)). The uniqueness of the decomposition says precisely
that rearranging the terms in the direct decomposition is the only change that can be made.
Before proving Theorem 6.3, we give some examples of its use.

Example 6.4 (i) List the abelian group of order 16 and of order 27, up to isomorphism.

(ii) How many abelian groups of order 432 are there up to isomorphism?

Solution: (i) 16 = 24, so we need to put together cyclic groups of 2-power order. Thus
the abelian groups of order 16 are:

C16, C2 × C8, C4 × C4, C2 × C2 × C4, C2 × C2 × C2 × C2.

The abelian groups of order 27 = 33 are:

C27, C3 × C9, C3 × C3 × C3.

(ii) 432 = 2433 = 16 × 27, so we build an abelian group of order 432 by putting
together an abelian group of order 16 and an abelian group of order 27 (both written as
direct products of cyclic groups). Hence there are

5× 3 = 15 abelian groups of order 432.

(These are C16 × C27, C2 × C8 × C27, . . . , C2 × C2 × C2 × C2 × C3 × C3 × C3.) �
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The next goal is to prove the Fundamental Theorem of Finite Abelian Groups. The
proof is reasonably complicated and the first tool we shall need is the following lemma.

Lemma 6.5 Let G = 〈x1, x2, . . . , xd〉 be an abelian group with specified generators. If

y = xk11 x
k2
2 . . . xkdd

with gcd(k1, k2, . . . , kd) = 1, then there exists y2, . . . , yd ∈ G such that

G = 〈y, y2, . . . , yd〉.

Proof: We proceed by induction on d. If d = 1, then k1 = ±1 and 〈y〉 = 〈x1〉 = G.
If d = 2, then as gcd(k1, k2) = 1, there exist u, v ∈ Z such that

uk1 + vk2 = 1.

Set y2 = xv1x
−u
2 . Then

x1 = xuk1+vk21 = xuk11 xuk22 xvk21 x−uk22

= (xk11 x
k2
2 )u(xv1x

−u
2 )k2

= yuyk22 ∈ 〈y, y2〉

and

x2 = xuk1+vk22 = xvk11 xvk22 x−vk11 xuk12

= (xk11 x
k2
2 )v(xv1x

−u
2 )−k1

= yvy−k12 ∈ 〈y, y2〉.

Since x1, x2 generate G, we conclude G = 〈y, y2〉.
Now suppose d > 3. Let

t = gcd(k1, k2, . . . , kd−1)

and mi = ki/t for i = 1, 2, . . . , d− 1. Set

z = xm1
1 xm2

2 . . . x
md−1

d−1 .

By induction, since gcd(m1,m2, . . . ,md−1) = 1 by construction, there exist y2, . . . , yd−1
such that

〈x1, x2, . . . , xd−1〉 = 〈z, y2, . . . , yd−1〉.

Notice
y = xk11 x

k2
2 . . . xkdd = ztxkdd

and
gcd(t, kd) = gcd(k1, k2, . . . , kd) = 1.

Hence by the Case d = 2, there exists yd such that

〈z, xd〉 = 〈y, yd〉.
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Now

G = 〈x1, x2, . . . , xd−1, xd〉
= 〈x1, x2, . . . , xd−1〉 〈xd〉
= 〈z, y2, . . . , yd−1〉 〈xd〉
= 〈z, y2, . . . , yd−1, xd〉
= 〈z, xd〉 〈y2, . . . , yd−1〉
= 〈y, yd〉 〈y2, . . . , yd−1〉
= 〈y, y2, . . . , yd〉.

This completes the induction step and hence the proof. �

We now prove the Fundamental Theorem of Finite Abelian Groups.

Proof of Theorem 6.3: Let G be a finite abelian group. We start by establishing
that G has the claimed direct product decomposition.

Claim 1: G is isomorphic to a direct product of cyclic groups of prime-power order.

Let G = 〈x1, x2, . . . , xd〉. We proceed by induction on d. If d = 1, then G = 〈x1〉 is
cyclic and Corollary 6.2 tells us that G is a direct product of cyclic groups of prime-power
order.

So suppose d > 1. We shall also suppose that d is as small as possible amongst all
generating sets for G and, having fixed this d, that o(x1) is as small as possible amongst
all generating sets for G of size d.

Let
H = 〈x1〉 and K = 〈x2, x3, . . . , xd〉.

Since G is abelian, H,K P G and

HK = 〈x1〉 〈x2, x3, . . . , xd〉 = 〈x1, x2, . . . , xd〉 = G.

Subclaim: G ∼= H ×K

Suppose H ∩K 6= 1, so there exists some non-identity element

g = xm1
1 = xm2

2 xm3
3 . . . xmd

d

in H ∩ K with 1 6 m1 < o(x1). Let t = gcd(m1,m2, . . . ,md) and set ki = mi/t for
i = 1, 2, . . . , d. Define

y = x−k11 xk22 x
k3
3 . . . xkdd .

Note by construction, gcd(−k1, k2, k3, . . . , kd) = 1 and Lemma 6.5 produces y2, . . . , yd such
that G = 〈y, y2, . . . , yd〉. Also

yt = x−m1
1 xm2

2 xm3
3 . . . xmd

d = 1,

so o(y) 6 t 6 m1 < o(x1). This contradicts our original choice of the generating set
{x1, x2, . . . , xd}.

Hence H ∩K = 1. By Theorem 5.6, this is all that remains to show G ∼= H ×K.
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Now H is cyclic, so is a direct product of cyclic groups of prime-power order by
Corollary 6.2. By induction, K is a direct product of cyclic groups of prime-power order.
Hence, putting these together, G ∼= H ×K is a product of cyclic groups of prime-power
order. This completes the proof of Claim 1, the existence of our claimed direct product
decomposition.

Claim 2: The decomposition of G into a direct product of cyclic groups of prime-power
order is essentially unique.

Let p be any prime dividing the order of G. Suppose that the largest cyclic group of
p-power order occurring in the direct product decomposition of G is Cpt and, for i = 1, 2,
. . . , t, let αi be the number of factors occurring isomorphic to Cpi .

Subclaim: α1, α2, . . . , αt are uniquely determined by G.

If the decomposition of G is

G ∼= G1 ×G2 × · · · ×Gk,

where each Gi is a cyclic group of prime-power order, then an element

x = (x1, x2, . . . , xk) ∈ G1 ×G2 × · · · ×Gk

has order dividing p (our fixed prime), that is xp = 1, if and only if each xi has order
dividing p. For such an x, if Gi has order that is not a power of p, we must select xi = 1.
If Gi ∼= Cpm for some m, then xi must be selected from the unique subgroup of Gi of
order p (see Theorem 4.5). Hence

the number of elements of order dividing p inG is pα1pα2 . . . pαt = pα1+α2+···+αt

(and one of these is the identity element).
If we count the number of elements of order dividing p2 in G, we can take our xi to be

any element when Gi ∼= Cp, but when G ∼= Cpm for m > 2, we can take xi to be from the
unique subgroup of Gi of order p2. Hence

the number of elements of order p2 in G is

pα1(p2)α2(p2)α3 . . . (p2)αt = pα1+2α2+2α3+···+2αt .

In general, if 1 6 j 6 t, the number of elements of order dividing pj in G is

pα1(p2)α2(p3)α3 . . . (pj)αj (pj)αj+1 . . . (pj)αt = pα1+2α2+3α3+···+jαj+jαj+1+···+jαt .

These numbers are therefore completely determined by G and so we conclude that

α1 + α2 + α3 + · · ·+ αt
α1 + 2α2 + 2α3 + · · ·+ 2αt
α1 + 2α2 + 3α3 + · · ·+ 3αt

...
α1 + 2α2 + 3α3 + · · ·+ tαt
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and hence, upon subtracting each sum from the subsequent sum,

α1 + α2 + α3 + · · ·+ αt
α2 + α3 + · · ·+ αt

α3 + · · ·+ αt
...
αt

are uniquely determined by G. Therefore αt, αt−1, . . . , α1 are uniquely determined by G.
This establishes the subclaim for each prime p dividing |G|, and this is enough to prove
Claim 2 and hence complete the proof of the theorem. �

To finish the section, two final comments can be made. The first is to draw attention to
the argument used in the uniqueness part of the proof. It is used in the following example.

Example 6.6 Let G = C5 × C25 × C625 = C5 × C52 × C54. Determine the number of
elements of each order in G.

Solution: The identity element is the unique element of order 1. An element of order
dividing 5 has the form (x1, x2, x3) where xi is selected from the unique subgroup of order 5
in the ith factor. Hence there are

53 elements of order diving 5

and so

53 − 1 = 124 elements of order 5.

An element of order dividing 52 has the form (x1, x2, x3) where x1, x2 are arbitrary
but x3 is selected from the unique subgroup of order 52 in C54 . Hence there are

5× 52 × 52 = 55 elements of order dividing 52,

and so

55 − 53 = 3000 elements of order precisely 52.

There are 5× 52 × 53 = 56 elements of order dividing 53, so

56 − 55 = 12 500 elements of order precisely 53.

This leaves

57 − 56 = 62 500 elements of order precisely 54.

�

The second comment is that given a decomposition for an abelian group as a direct
product of cyclic groups of prime-power order, we can apply Corollary 6.2 to put the
largest factors for each prime together, and then the next largest factors, and so on. In
doing this, we can deduce the following alternative statement of the classification theorem:

Theorem 6.7 (Fundamental Theorem of Finite Abelian Group, II) Let G be a
finite abelian group. Then G can be uniquely expressed as a direct product

G ∼= Cm1 × Cm2 × · · · × Cmt

where m1, m2, . . . , mt are positive integers such that mi divides mi+1 for i = 1, 2, . . . , t−1.
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Example 6.8 Consider G = C2 × C4 × C3 × C9 × C9 × C5. Putting together the largest
factors for each prime in turn, we see:

C4 × C9 × C5
∼= C180

C2 × C9
∼= C18

C3
∼= C3,

so
G ∼= C3 × C18 × C180,

which is the unique form for G as described in Theorem 6.7.
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Chapter 7

Simple Groups

The process of forming a quotient group of G by a normal subgroup N can be thought
of as analogous to factorisation of integers. By using this quotient process, we move
from considering a group G to considering two smaller groups N and G/N . Provided
N 6= 1 and G, these are genuinely smaller than the original group G (at least in the case
when G is a finite group, where the concept of “smaller” makes some sense). There is a
class of groups therefore where quotient groups do not help us: the “simple” groups where
only trivial quotients can be formed.

Definition 7.1 A group G is called simple if it is non-trivial and its only normal sub-
groups are 1 and G.

In this section, we shall establish two classes of finite simple group.

Proposition 7.2 A cyclic group of prime order is simple.

This result is simply another variant of Corollary 2.23.

Proof: Let G be a cyclic group of order p where p is prime. If H is any subgroup of G,
then |H| divides |G| = p, by Lagrange’s Theorem (2.21). Hence |H| = 1 or p, so H = 1
or G. So the only subgroups, and certainly then the only normal subgroups, of G are
1 and G. �

In fact it is quite easy to see that any abelian simple group has to be cyclic of prime
order. We leave the proof to Problem Sheet VII, but state here:

Theorem 7.3 An abelian group is simple if and only if it is cyclic of prime order.

Simplicity of the alternating groups

The main result of this section which provides us with a family of non-abelian simple
groups.

Theorem 7.4 The alternating group An is simple for n > 5.

The structure of the proof is pretty much the standard one for proofs of simplicity:

Step 1: Find a set A of generators for the group G (see Lemma 7.5).

Step 2: Show any two elements of A are conjugate in G (see Lemma 7.6).
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Step 3: Show any non-trivial normal N of G contains an element of A (see Lemma 7.7).

We then put these together to see that any non-trivial normal subgroup N of G contains
one (by Step 3) and hence all (by Step 2) elements from A and therefore N = G (by
Step 1).

Lemma 7.5 Let n > 3. The alternating group An is generated by its set of 3-cycles.

(We assume that n > 3 simply to ensure An is non-trivial. When n 6 2, An is the
trivial group.)

Proof: First note that a 3-cycle is even, since (i j k) = (i j)(i k), a product of two
transpositions.

Let σ be any element of An, that is, any even permutation of X = {1, 2, . . . , n}. Then
σ is a product of an even number of transpositions. We shall show that every product of
two transpositions is a product of 3-cycles, for it will then follow that σ is also a product
of 3-cycles.

Suppose i, j, k and ` are distinct points in X. Then

(i j)(i j) = 1

(i j)(i k) = (i j k)

(i j)(k `) = (i j)(i k)(i k)(k `)

= (i j k)(i ` k).

Thus every product of two transpositions, and hence every even permutation, is a product
of 3-cycles. Therefore the alternating group is generated by its 3-cycles. �

Lemma 7.6 Let n > 5. Then any two 3-cycles are conjugate in An.

Proof: Let σ = (i1 i2 i3) and τ = (j1 j2 j3) be arbitrary 3-cycles in An. Define a
permutation α by

i1α = j1, i2α = j2, i3α = j3

and completing α to a permutation of X = {1, 2, . . . , n} by any appropriate selection of
images for the remaining points in X. Then

α−1σα = (i1α i2α i3α) = τ

(see Problem Sheet III, Question 4). This shows that σ and τ are conjugate in the
symmetric group Sn. If it happens that α is an element of An, then in fact our 3-cycles
σ and τ are conjugate in An.

Suppose that α is an odd permutation. Since n > 5, there exist at least two points
k, ` ∈ X \ {i1, i2, i3}. Let β = (k `)α ∈ An. We calculate

β−1σβ = α−1(k `)(i1 i2 i3)(k `)α

= α−1(i1 i2 i3)α

= τ,

since (k `) commutes with (i1 i2 i3). Hence σ and τ are conjugate in An. �

Lemma 7.7 Let n > 5 and N be a non-trivial normal subgroup of the alternating
group An. Then N contains some 3-cycle.
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Proof: Let σ be a non-identity element in N and let us choose σ to be a permutation of
X = {1, 2, . . . , n} that moves the fewest possible points amongst all non-identity elements
in N . Let r be the number of points moved by σ. Since σ cannot be a transposition
(which would be an odd permutation), we know r > 3.

Let i ∈ X be a point that is moves by σ. Choose j ∈ X \ {i, iσ, iσ2} (which is possible
since n > 3). Let

α = (i iσ j) ∈ An.

Then
τ = α−1σ−1ασ = (α−1σ−1α)σ ∈ N,

since N P An. But

τ = α−1 · σ−1ασ
= (i j iσ)(iσ iσ2 jσ)

and this is a non-identity element in N since jτ = iσ2 6= j. The points moved by τ are
amongst

i, iσ, iσ2, j, jσ

which tells us that an element of N which moves the fewest points in X can move at most
five points. Thus

3 6 r 6 5.

We consider each possibility in order:

Case 1: r = 5.
Then σ must be a 5-cycle (as it cannot be a product of a 3-cycle and a 2-cycle), so

σ = (i iσ iσ2 iσ3 iσ4).

Take j = iσ4 in the above argument, so our element τ is

τ = (i iσ4 iσ)(iσ iσ2 i) = (i iσ4 iσ2),

which moves three points. This contradicts r = 5 being the fewest number of points moved
by a non-identity element of N .

Case 2: r = 4.
Then σ must be a product of two transpositions (as it cannot be a 4-cycle, which is

odd), so
σ = (i iσ)(k kσ)

for some i and k. Take j ∈ X \{i, iσ, k, kσ} in the above argument (which is possible since
n > 5). Then jσ = j and iσ2 = i, so

τ = (i j iσ)(iσ i j) = (i iσ j),

which moves three points. This contradicts r = 4 being the fewest number of points moved
by a non-identity element of N .
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Case 3: r = 3.
It now follows that σ is 3-cycle and we have established the lemma. �

Proof of Theorem 7.4: Let n > 5 and suppose that N is a normal subgroup of An.
We wish to prove N = 1 or An. If N 6= 1, then by Lemma 7.7, N contains some 3-cycle σ.
Since N P G, it contains all conjugates α−1σα for α ∈ An and hence it contains all 3-cycles
by Lemma 7.6. We then apply Lemma 7.5 to conclude N = An.

Hence An is simple if n > 5. �

We finish this section by briefly mentioning that one of the crowning achievements
of 20th century group theory was the completion of the Classification of Finite Simple
Groups. This very long and difficult theorem, proved between the 1950s and the 1980s
and featuring the efforts of many mathematicians, specifies a complete list of all the
finite simple groups. It states that a finite simple group is either cyclic of prime order,
an alternating group of degree n > 5, a group of Lie type (essentially constructed via
matrices in a specific manner), or one of 26 so-called sporadic simple groups. The largest
of the sporadic simple groups is called the Monster and it has order

808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000.
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Chapter 8

Further Tools: The centre,
commutators and conjugation

In this chapter, we develop a number of tools which are useful when making further
progress in group theory. We shall use them in the remaining chapters of the course.
They all relate in some way to the extent to which elements of a group do or do not
commute.

The centre

Definition 8.1 Let G be any group. The centre of G is denoted by Z(G) and is defined
by

Z(G) = {x ∈ G | xg = gx for all g ∈ G }.

Thus the centre of G consists of all those elements of G which commute with every
element of G.

Theorem 8.2 Let G be any group.

(i) The centre Z(G) is a normal subgroup of G.

(ii) G is abelian if and only if Z(G) = G.

Proof: (i) We first show that Z(G) is a subgroup of G. First

1g = g = g1 for all g ∈ G,

so 1 ∈ Z(G). If x, y ∈ Z(G), then

xyg = xgy = gxy for all g ∈ G,

so xy ∈ Z(G). Multiplying the equation xg = gx on the left and on the right by x−1 gives

gx−1 = x−1g for all g ∈ G,

so x−1 ∈ Z(G). Hence Z(G) is a subgroup of G.
Finally if x ∈ Z(G) and g ∈ G, then

g−1xg = g−1gx = 1x = x ∈ Z(G).

Thus Z(G) P G.
(ii) is immediate from the definition. �
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Example 8.3 Consider the quaternion group Q8 = {±1,±i,±j,±k}. We calculate

(−1)i = −i = i(−1),

etc., and so deduce −1 ∈ Z(Q8). Certainly 1 ∈ Z(Q8). However

ij = k and ji = −k 6= ij,

so i, j 6∈ Z(Q8). Similar calculations apply to the other elements of order 4 in Q8, so we
conclude

Z(Q8) = {±1} = 〈−1〉.

Commutators and the derived subgroup

Definition 8.4 Let G be any group. If x and y are elements of G, the commutator of
x and y is

[x, y] = x−1y−1xy.

The derived subgroup of G is denoted by G′ and is defined to be the subgroup generated
by all the commutators in G:

G′ = 〈 [x, y] | x, y ∈ G 〉.

Remark: Observe

[x, y]−1 = (x−1y−1xy)−1 = y−1x−1yx = [y, x],

so the inverse of a commutator is again a commutator. However, the product of two
commutators need not be a commutator, though finding an example of a group where this
happens is rather tricky. The smallest finite group where the derived subgroup and the
set of commutators are different has order 96. However, note that as a consequence, in
general, the elements of the derived subgroup are products of commutators.

By definition
xy = yx [x, y],

so [x, y] = 1 if and only if xy = yx. In this sense commutators measure “by how much”
two elements fail to commute. Hence:

Lemma 8.5 Let G be a group. If x, y ∈ G, then [x, y] = 1 if and only if x and y commute.
In particular, G′ = 1 if and only if G is abelian. �

The process of determining the derived subgroup can appear at first sight to be some-
what cumbersome. Calculating all commutators and then calculating the subgroup they
generated appears to be a rather time-consuming process. Fortunately the following char-
acterisation is very useful in enabling us to find the derived subgroup.

Theorem 8.6 Let G be a group. The derived subgroup of G is the smallest normal
subgroup N of G such that the quotient group G/N is abelian.

This is “smallest” in the sense that if N is any normal subgroup such that the quo-
tient G/N is abelian, then G′ 6 N .
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Proof: We must first verify that G′ satisfies the stated property. First, by definition,
G′ is a subgroup of G. Let us show that G′ is a normal subgroup of G. If x, y, g ∈ G, then

g−1[x, y]g = g−1x−1y−1xyg

= (g−1x−1g)(g−1y−1g)(g−1xg)(g−1yg)

= (g−1xg)−1(g−1yg)−1)(g−1xg)(g−1yg)

= [g−1xg, g−1yg].

So any conjugate of a commutator is also a commutator. Now if x ∈ G′, write x =
c1c2 . . . ck as a product of commutators. Then

g−1xg = (g−1c1g)(g−1c2g) . . . (g−1ckg)

is also a product of commutators (from what we have just observed), so we conclude
g−1xg ∈ G′ whenever x ∈ G′ and g ∈ G. Thus G′ P G.

We now show that G/G′ is abelian. Consider the product of two cosets G′x and G′y
in this quotient group:

(G′x)(G′y) = G′xy and (G′y)(G′x) = G′yx.

Now
(xy)(yx)−1 = xyx−1y−1 = [x−1, y−1] ∈ G′,

so G′xy = G′yx. Hence

(G′x)(G′y) = (G′y)(G′x) for all x, y ∈ G

and we conclude G/G′ is abelian.
Now suppose N is any normal subgroup of G such that G/N is abelian. If x, y ∈ G,

then
N [x, y] = Nx−1y−1xy = (Nx)−1(Ny)−1(Nx)(Ny) = N1,

since we can rearrange the terms in the above product as G/N is abelian. Hence [x, y] ∈ N
for all x, y ∈ G. It follows that G′, the subgroup generated by all such commutators, is
contained in N . �

Example 8.7 Consider the quaternion group Q8. In Question 8 on Problem Sheet III we
showed that N = 〈−1〉 P Q8 and

Q8/〈−1〉 ∼= V4,

which is an abelian group. Hence by Theorem 8.6,

Q′8 6 〈−1〉.

But |〈−1〉| = 2, so there remain only two possibilities Q′8 = 1 or 〈−1〉. However, Q8 is
non-abelian, so Q′8 6= 1. Therefore

Q′8 = 〈−1〉.
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Soluble groups

If G is any group, we can repeatedly take derived subgroups:

G(1) = G′, G(2) = (G′)′, G(3) = (G(2))′, . . .

A group G is called soluble if G(n) = 1 for some n. The idea here is that the group G has
a chain of subgroups

G > G(1) > G(2) > · · · > G(n) = 1

and, by Theorem 8.6, each quotient G(i)/G(i+1) is abelian. Thus G is built, in some sense,
from abelian groups and it turns out that these soluble groups have a more tractible
structure than arbitrary groups. They are considered in more detail in MT5824 Topics in
Groups.

Conjugacy classes

We now wish to study the conjugation property that has already arisen in the context of
normal subgroups.

Definition 8.8 Let G be a group. Two elements x and y are said to be conjugate in G
if there exists g ∈ G such that y = g−1xg.

Theorem 8.9 Let G be a group. Define a relation ∼ on G by

x ∼ y if and only if y = g−1xg for some g ∈ G.

Then ∼ is an equivalence relation on G.

Proof: We check the conditions for an equivalence relation:

Reflexivity: If x ∈ G, then x = 1−1x1, so x ∼ x. Hence ∼ is reflexive.

Symmetry: Let x, y ∈ G and suppose x ∼ y. Then y = g−1xg for some g ∈ G. Then
x = gyg−1 = (g−1)−1yg−1, so y ∼ x. Hence ∼ is symmetric.

Transitivity: Let x, y, z ∈ G and suppose x ∼ y and y ∼ z. Then y = g−1xg and
z = h−1yh for some g, h ∈ G. Then

z = h−1yh = h−1g−1xgh = (gh)−1x(gh)

and so x ∼ z. Hence ∼ is transitive.

This establishes that the relation of being conjugate is an equivalence relation on G.
�

The standard facts about equivalence relations can be applied to conjugacy: specif-
ically, that the group G is the disjoint union of the equivalence classes. We give the
following name to the equivalence classes:
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Definition 8.10 Let G be a group and x be an element of G. The conjugacy class of x
in G is the ∼-equivalence class of x, that is,

{ y ∈ G | y ∼ x } = { g−1xg | g ∈ G },

the set of all conjugates of x in G.

Example 8.11 (i) In an abelian groupG, g−1xg = g−1gx = x, so two elements x and y
in G are conjugate if and only if x = y. So the conjugacy classes in an abelian group
are singletons {x} as x ranges over G.

(ii) In Question 4 on Problem Sheet III, we observed that two permutations σ and τ
in Sn are conjugate if and only if they have the same structure when factorised into
products of disjoint cycles. So this cycle structure determines the conjugacy classes
in Sn.

In particular, the conjugacy classes in S4 are:

• the identity element,

• the transpositions,

• the 3-cycles,

• the 4-cycles,

• the permutations of the form (i j)(k `).

(iii) In any group, g−11g = 1, so the identity element always forms a conjugacy class on
its own.

Proposition 8.12 A subgroup N of a group G is normal if and only if it is a union of
conjugacy classes.

Proof: As N is a subgroup by assumption, it is normal if and only if it contains every
conjugate of its elements, that is, if and only if it contains the whole conjugacy classes of
every element. �

Centralisers

To describe the size of a conjugacy class, we make use of the following:

Definition 8.13 Let G be a group and x ∈ G. The centraliser of x in G is

CG(x) = { g ∈ G | xg = gx },

the set of all elements in G that commute with x.

Lemma 8.14 Let G be a group and x ∈ G. The centraliser CG(x) of x is a subgroup
of G. It always contains the element x.

Proof: From x1 = x = 1x, we conclude 1 ∈ CG(x). We can also use the equation
xx = xx to conclude x ∈ CG(x), which is the last assertion. Both facts ensure that
CG(x) is non-empty.

If g, h ∈ CG(x), then
xgh = gxh = ghx

64



so gh ∈ CG(x). Also multiplying xg = gx on both sides by g−1 gives g−1x = xg−1, so
g−1 ∈ CG(x).

Hence CG(x) is a subgroup of G. �

The following theorem then contains all the basic information we require concerning
conjugacy classes:

Theorem 8.15 Let G be a group.

(i) G is the disjoint union of its conjugacy classes.

(ii) If x ∈ G, there is a bijection between the conjugacy class of x and the cosets of the
centraliser CG(x). Thus the number of conjugates of x equals the index |G : CG(x)|.

Proof: (i) We have already established this is true (it follows from Theorem 8.9).
(ii) Define a map φ from the set of cosets of CG(x) to the conjugacy class of x by

φ : CG(x)g 7→ g−1xg.

First note that if CG(x)g = CG(x)h, then gh−1 ∈ CG(x), so

xgh−1 = gh−1x

and multiplying on the left by g−1 and on the right by h gives

g−1xg = h−1xh.

Hence φ is well-defined.
Clearly φ is surjective: the conjugate g−1xg is the image of the coset CG(x)g under φ.
Finally suppose (CG(x)g)φ = (CG(x)h)φ; that is,

g−1xg = h−1xh.

Hence xgh−1 = gh−1x, so gh−1 ∈ CG(x) and therefore CG(x)g = CG(x)h. This shows
that φ is injective.

We have shown that φ is indeed a bijection from the set of cosets of CG(x) to the set of
conjugates of x (that is, the conjugacy class of x). In particular, the number of conjugates
of x equals the index |G : CG(x)|. �

Lemma 8.16 An element x lies in a conjugacy class of size 1 if and only if x ∈ Z(G).

Proof: An element x has one conjugate if and only if g−1xg = x for all g ∈ G; that is,
xg = gx for all g ∈ G; that is, x ∈ Z(G). �

Now consider an arbitrary finite group G. Suppose that C1, C2, . . . , Cm are the
conjugacy classes of G. Let us suppose that Ck+1, . . . , Cm are the conjugacy classes of
size 1, so

Ck+1 ∪ · · · ∪ Cm = Z(G)

by Lemma 8.16. For i = 1, 2, . . . , k, pick an element xi in Ci. Theorem 8.15(ii) tells us

|Ci| = |G : CG(xi)|.

Moreover, Theorem 8.15(i) says that G is the disjoint union of its conjugacy classes, so

|G| = |C1|+ |C2|+ · · ·+ |Ck|+ |Ck+1|+ · · ·+ |Cm|

=

k∑
i=1

|G : CG(xi)|+ |Z(G)|.

Thus we have established:
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Theorem 8.17 (Class Equation) Let G be a finite group. Suppose that C1, C2, . . . , Ck
are the conjugacy classes of size > 2 and that xi is an element of Ci for i = 1, 2, . . . , k.
Then

|G| = |Z(G)|+
k∑
i=1

|G : CG(xi)|.

�

Conjugation of subgroups

We finish this chapter by considering how conjugation affects subgroups of a group.
First fix a group G and an element g ∈ G. Let τg : G→ G denote the map

τg : x 7→ g−1xg

(that is, τg is the effect of conjugating by g).

Lemma 8.18 If G is a group and g ∈ G, the map τg : G → G, given by τg : x 7→ g−1xg,
is a bijective homomorphism (that is, τg is an isomorphism G→ G).

We give a special name to this sort of isomorphism.

Definition 8.19 Let G be a group. A map φ : G → G that is an isomorphism is called
an automorphism of G.

If g ∈ G, the automorphism τg given by τg : x 7→ g−1xg is called an inner automorphism
of G.

Proof of Lemma 8.18: We first show that τg is a homomorphism:

(xy)τg = g−1xyg = (g−1xg)(g−1yg) = (xτg)(yτg) for all x, y ∈ G.

Then we show that τg is bijective by showing it is invertible:

xτgτg−1 = g(g−1xg)g−1 = gg−1xgg−1 = x

and
xτg−1τg = g−1(gxg−1)g = x

for all x ∈ G. Hence τgτg−1 = τg−1τg = id, the identity map G→ G. Hence τg is invertible;
that is, it is a bijection. �

The crucial point about automorphisms is not that they tell us that G is isomorphic
to G (which is, after all, obvious). Instead, applying an automorphism preserves all the
structure present in the original group. In particular, an automorphism φ of G maps a
subgroup H to a subgroup Hφ (see Lemma 3.11(ii)) and φ induces a bijective homomor-
phism from H to Hφ. Hence Hφ is a subgroup of G that is isomorphic to the original
subgroup H.

Specialising to our inner automorphism τg, we conclude:

Corollary 8.20 Let G be a group, g ∈ G and H be a subgroup of G. Then the conjugate

g−1Hg = { g−1hg | h ∈ H }

is a subgroup of G that is isomorphic to H. �
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Normalisers

We finish by describing how many conjugates a subgroup has, using a tool very similar to
the centraliser (which was defined in Definition 8.13).

Definition 8.21 Let G be a group and H be a subgroup of G. The normaliser of H in G
is

NG(H) = { g ∈ G | g−1Hg = H }.

Theorem 8.22 Let G be a group and H be a subgroup of G.

(i) The normaliser NG(H) is a subgroup of G.

(ii) H is contained in NG(H).

(iii) H P G if and only if NG(H) = G.

(iv) The number of conjugates of H in G equals the index |G : NG(H)| of the normaliser
of H.

Proof: (i) First note that

1−1H1 = { 1−1h1 | h ∈ H } = H,

so 1 ∈ NG(H). Now let g, h ∈ NG(H). Then

(gh)−1H(gh) = h−1(g−1Hg)h = h−1Hh = H,

since g−1Hg = h−1Hh = H, and therefore gh ∈ NG(H). Also conjugating the equation
H = g−1Hg by g−1 gives

gHg−1 = g(g−1Hg)g−1 = H,

so g−1 ∈ NG(H). Thus NG(H) is a subgroup of G.
(ii) If h ∈ H, then h−1Hh 6 H, since H is a subgroup so closed under products and

inverses. Equally hHh−1 6 H and conjugating by h now yields H 6 h−1Hh. Hence
h−1Hh = H for all h ∈ H and therefore h ∈ NG(H) for all h ∈ H.

(iii) This follows almost immediately from the definitions; note that H P G if and only
if g−1Hg = H for all g ∈ G, as observed in Question 1 on Problem Sheet III.

(iv) Define a map φ from the set of cosets of NG(H) to the set of conjugates of H by

φ : NG(H)g 7→ g−1Hg.

Now

NG(H)g = NG(H)h if and only if gh−1 ∈ NG(H)

if and only if (gh−1)−1H(gh−1) = H

if and only if hg−1Hgh−1 = H

and applying the bijection τh (conjugating by h) to the last equation, we conclude

NG(H)g = NG(H)h if and only if g−1Hg = h−1Hh.

Thus φ is both well-defined and injective. It is obvious that φ is surjective.
Hence φ is a bijection and we conclude that the number of conjugates of H equals the

number of cosets of NG(H), that is, the index |G : NG(H)|. �
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Example 8.23 (i) Consider the dihedral group of order 8, D8 = 〈α, β〉, where α =
(1 2 3 4) and β = (2 4), with α4 = 1, β2 = 1 and βα = α−1β (as described in
Theorem 2.17). We know that a subgroup of order 1, 4 or 8 is normal in D8 (since
a subgroup of index 2 is always normal), so we shall concentrate on some of the
subgroups of order 2. These are cyclic generated by one of the (five) elements of
order 2 in D8.

Consider first K = 〈α2〉 = {1, α2}. We calculate

α−1Kα = {α−11α, α−1α2α} = {1, α2} = K

and, since β−1α2β = (2 4)(1 3)(2 4)(2 4) = (1 3)(2 4) = α2,

β−1Kβ = {1, α2} = K.

Hence α, β ∈ ND8(K). Since α and β generate D8 and the normaliser is a subgroup,
we conclude that

ND8(K) = D8

and hence K P D8.

Now consider H = 〈β〉 = {1, β}. We know that H 6 ND8(H) and as β−1α2β = α2,
we see α2 and β commute, so

(α2)−1Hα2 = {1, β} = H.

On the other hand,
α−1βα = α−2β = α2β 6∈ H.

This tells us 〈β, α2〉 6 ND8(H) < D8. As subgroups of D8 have order dividing 8, we
conclude

ND8(H) = 〈β, α2〉 = {1, β, α2, α2β}.

It follows that H = 〈β〉 has two conjugates in D8 (as |D8 : ND8(H)| = 2), and these
are H and α−1Hα = {1, α2β} = 〈α2β〉.

(ii) D8 = 〈α, β〉 is a subgroup of S4, by its construction. The elements of D8 are

D8 = {1, (1 2 3 4), (1 3)(2 4), (1 4 3 2),

(2 4), (1 4)(2 3), (1 3), (1 2)(3 4)}.

Now (1 2)−1(1 3)(1 2) = (2 3) 6∈ D8, so (1 2) 6∈ NS4(D8). We therefore deduce

D8 6 NS4(D8) < S4,

so NS4(D8) is a proper subgroup whose order is divisible by 8. Therefore

NS4(D8) = D8

and D8 has |S4 : D8| = 3 conjugates in S4.
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Chapter 9

Sylow’s Theorem

One tool that has been applied throughout the course is Lagrange’s Theorem (2.21).
However, the information it tells us (that the orders of subgroups, and hence also of
elements, divides the order of a finite group) mostly tells us about the non-existence of
subgroups or at best restrictions upon their existence. It does not provide us with the
existence of any subgroups. Indeed we know that the alternating group A4 of degree 4
(of order 12) does not have a subgroup of order 6 (see Question 8 on Problem Sheet III),
so there is no direct converse to Lagrange’s Theorem. The purpose of this chapter is to
provide a partial converse, but this is still a very strong result that has had profound
impact on the study of group theory.

Definition 9.1 Let p be a prime number. A finite group is called a p-group if its order
is a power of p.

A subgroup of a finite group is a p-subgroup if its order is a power of p.

So a p-subgroup of G is a subgroup that happens to be a p-group.
We are interested in a very special type of p-subgroup:

Definition 9.2 Let p be a prime number. Let G be a finite group and suppose |G| = pnm
where p does not divide m. A Sylow p-subgroup of G is a subgroup of order pn.

So a Sylow p-subgroup of G is a p-subgroup whose order is the largest power of p
that divides |G|. Of course, Lagrange’s Theorem tells us that there cannot be any larger
p-subgroup of G.

Example 9.3 (i) |S4| = 24 = 23 · 3. A Sylow 2-subgroup of S4 would be a subgroup of
order 23 = 8, so the dihedral group D8 of order 8 is an example of a Sylow 2-subgroup
of S4.

A Sylow 3-subgroup of S4, would be a subgroup of order 3, so 〈(1 2 3)〉 is an example
of a Sylow 3-subgroup of S4.

(ii) |A5| = 60 = 22 · 3 · 5. The subgroup

H = {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ∼= V4

is a Sylow 2-subgroup ofA5, 〈(1 2 3)〉 is a Sylow 3-subgroups ofA5, and 〈(1 2 3 4 5)〉 is
a Sylow 5-subgroup of A5.
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(iii) |A6| = 360 = 23 · 32 · 5. The subgroup

〈(1 2 3), (4 5 6)〉 ∼= C3 × C3

is a Sylow 3-subgroup of A6.

Theorem 9.4 (Sylow’s Theorem) Let p be a prime number and G be a finite group
of order pnm where p does not divide m. Then

(i) G has a Sylow p-subgroup;

(ii) any two Sylow p-subgroups of G are conjugate;

(iii) the number of Sylow p-subgroups of G is congruent to 1 (mod p) and divides m;

(iv) any p-subgroup of G is contained in a Sylow p-subgroup.

Remarks If P is a Sylow p-subgroup of G and g ∈ G, then the conjugate g−1Pg is
also a subgroup of G and, since the conjugation map x 7→ g−1xg is a bijection, we know
|g−1Pg| = |P |. Thus g−1Pg is also a Sylow p-subgroup. Part (ii) of Sylow’s Theorem tells
us that every Sylow p-subgroup of G arises in this manner.

The first half of part (iii) of the theorem says that the total number of Sylow p-subgroups
in G has the form 1 + kp for some k > 0.

We shall now embark on the lengthy process of proving the theorem. We shall then
see many ways in which Sylow’s Theorem can be used.

Proof: (i) We proceed by induction on |G|.
If pn = 1, then the trivial subgroup is the required Sylow p-subgroup. In particular,

this deals with the case when |G| = 1, for then n = 0, pn = 1 and m = 1.
Now suppose that |G| > 1 and that all finite groups of smaller order possess Sylow

p-subgroups. We can moreover assume that pn > 1. We apply the Class Equation (The-
orem 8.17). Let C1, C2, . . . , Ck be the conjugacy classes of size greater than 1 and let
xi ∈ Ci for each i. Then

|Ci| = |G : CG(xi)| > 1

(by Theorem 8.15(ii)), so |CG(xi)| < |G| and

|G| = |Z(G)|+
k∑
i=1

|G : CG(xi)|. (9.1)

If pn divides one of |CG(xi)|, then by induction CG(xi) contains a subgroup of order pn

and this is then a Sylow p-subgroup of G.
Otherwise pn does not divide any of the |CG(xi)| and hence (using the fact that pn > 1)

p divides the index |G : CG(xi)| for 1 6 i 6 k. It then follows from Equation (9.1) that
p divides |Z(G)|. Now the centre Z(G) consists of those elements of G which commute with
all elements of G, so in particular Z(G) is an abelian group. The Fundamental Theorem
of Finite Abelian Groups (6.3) tells us that Z(G) is a direct product of cyclic groups and
so, as p divides |Z(G)|, there is at least one cyclic group of p-power order and hence,
upon taking a generator for the unique subgroup of order p, we see that Z(G) contains an
element g of order p.
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Let N = 〈g〉. Since N 6 Z(G), then N P G (see Question 1 on Problem Sheet VIII).
As |N | = o(g) = p, the quotient group G/N has order pn−1m. By induction, G/N has a
Sylow p-subgroup and this has order pn−1. By the Correspondence Theorem, this Sylow
p-subgroup has the form H/N where H is a subgroup of G with N 6 H 6 G. As

|H/N | = pn−1 and |N | = p,

we conclude |H| = pn and so H is a Sylow p-subgroup of G.
This completes the induction step and hence part (i) of Sylow’s Theorem is established.

To establish parts (ii)–(iv) of Sylow’s Theorem, we shall need a number of intermediate
results.

Lemma 9.5 Let p be a prime number, P be a Sylow p-subgroup of a finite group G and
Q be any p-subgroup of G. Then

Q 6 NG(P ) if and only if Q 6 P.

Recall that the normaliser NG(P ) is the set of all x ∈ G such that x−1Px = P .

Proof: Since P 6 NG(P ), if Q 6 P then certainly Q 6 NG(P ).
Conversely, suppose Q 6 NG(P ). Since x−1Px = P for all x ∈ NG(P ), by definition,

this means P P NG(P ). We may now apply the Second Isomorphism Theorem to the
normal subgroup P and the subgroup Q of NG(P ): it tells us that P ∩Q P Q, PQ 6 G
and

PQ/P ∼= Q/(P ∩Q).

Since Q is a p-group, we conclude |PQ/P | is a power of p. As |P | is a power of p, it
follows that |PQ| is a power of p; that is, PQ is a p-subgroup of G. But as P 6 PQ and
P is a Sylow p-subgroup (a p-subgroup of largest possible order), we conclude PQ = P .
Therefore

Q 6 PQ = P.

�

Lemma 9.6 Let G be a group and H and K be subgroups of G. Then the number of
conjugates of H of the form x−1Hx where x ∈ K equals |K : K ∩NG(H)|.

This lemma is simply a variant of Theorem 8.22(iv). Indeed that result can be retrieved
from this lemma by taking K = G. We merely give a sketch proof since it is basically the
same as that part of the theorem.

Proof: If x, y ∈ K, then

x−1Hx = y−1Hy ⇐⇒ yx−1Hxy−1 = H

⇐⇒ (xy−1)−1H(xy−1) = H

⇐⇒ xy−1 ∈ NG(H)

⇐⇒ xy−1 ∈ K ∩NG(H)

⇐⇒ (K ∩NG(H))x = (K ∩NG(H))y,

and it follows
(K ∩NG(H))x 7→ x−1Hx

is a bijection from the cosets of K ∩ NG(H) in K to the set of conjugates x−1Hx with
x ∈ K. �
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We have established that our finite group G (of order pnm where p does not divide m)
has at least one Sylow p-subgroup P (of order pn). Let

Σ = { g−1Pg | g ∈ G },

the set of all conjugates of P in G. This consists of some of the Sylow p-subgroups of G.
In establishing part (ii) of Sylow’s Theorem, we shall show that it is, in fact, the set of all
the Sylow p-subgroups of G. Most of parts (ii)–(iv) are established by the same method,
which we shall now describe.

Method: Let Q be any p-subgroup of G. If R ∈ Σ, let

ΓR = {x−1Rx | x ∈ Q } ⊆ Σ,

the set of conjugates of R by elements of Q. Then Lemma 9.6 says

|ΓR| = |Q : Q ∩NG(R)|. (9.2)

Note that |ΓR| = 1 if and only if Q∩NG(R) = Q; that is, Q 6 NG(R). Since R is a Sylow
p-subgroup of G, Lemma 9.5 tells us that |ΓR| = 1 if and only if Q 6 R. Since |Q| is a
power of p, we may therefore record the following:

Observation 1: For any p-subgroup Q of G, |ΓR| is a power of p and it equals 1 if and
only if Q 6 R.

Claim: If R,S ∈ Σ, then either ΓR = ΓS or ΓR ∩ ΓS = ∅.

Suppose ΓR ∩ ΓS 6= ∅. This means x−1Rx = y−1Sy for some x, y ∈ Q. Then
R = xy−1Syx−1 and if z ∈ Q, then

z−1Rz = z−1xy−1Syx−1z = (yx−1z)−1S(yx−1z) ∈ ΓS .

It follows that ΓR ⊆ ΓS and therefore, by symmetry, the two sets of conjugates are equal:
ΓR = ΓS .

We can therefore partition Σ into the sets ΓR for various R ∈ Σ, so we record:

Observation 2: For each p-subgroup Q of G, there exist R1, R2, . . . , Rk ∈ Σ such that
Σ is the disjoint union

Σ = ΓR1 ∪ ΓR2 ∪ · · · ∪ ΓRk
.

We now apply these observations for various choices of Q.

Application 1: Take Q = P (our original Sylow p-subgroup). Since each member of Σ
has order pn, precisely one of them contains P , namely P itself. Hence, by Observation 1,
there is a single choice of R such that |ΓR| = 1 and for all other choices of R, |ΓR| is a
power of p. Therefore when we partition Σ as

Σ = ΓR1 ∪ ΓR2 ∪ · · · ∪ ΓRk
,

exactly one of the sets has size 1 and the others have order divisible by p, so

|Σ| = |ΓR1 |+ |ΓR2 |+ · · ·+ |ΓRk
| = 1 +mp

for some m. Thus |Σ| ≡ 1 (mod p).
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Application 2: Take Q to be any Sylow p-subgroup of G. There exist R1, R2, . . . , Rk
(depending on Q) such that

Σ = ΓR1 ∪ ΓR2 ∪ · · · ∪ ΓRk
,

a disjoint union, and hence

|ΓR1 |+ |ΓR2 |+ · · ·+ |ΓRk
| = |Σ| ≡ 1 (mod p).

Therefore some |ΓRi | is not divisible by p and so, by Observation 1, |ΓRi | = 1 and Q 6 Ri.
But Q and Ri are Sylow p-subgroups of G, that is, |Q| = pn = |Ri|, so we conclude

Q = Ri ∈ Σ.

Hence

every Sylow p-subgroup of G is a conjugate of P ;

that is, part (ii) of Sylow’s Theorem holds.
This tells us that Σ is the set of all Sylow p-subgroups of G. As we have shown |Σ| ≡ 1

(mod p) (in Application 1), we have shown that the number of Sylow p-subgroups of G is
congruent to 1 (mod p).

Also, by Theorem 8.22(iv),

|Σ| = |G : NG(P )| = |G|/|P |
|NG(P )|/|P |

=
|G : P |

|NG(P ) : P |
=

m

|NG(P ) : P |
.

Hence the number of Sylow p-subgroups of G divides m.
Thus part (iii) of Sylow’s Theorem holds.

Application 3: Now take Q to be any p-subgroup of G (not necessarily a Sylow sub-
group). There exist R1, R2, . . . , Rk such that we have a disjoint union

Σ = ΓR1 ∪ ΓR2 ∪ · · · ∪ ΓRk
.

Since |Σ| ≡ 1 (mod p), as least one |ΓRi | is not divisible by p. Therefore, by Observation 1,
Q 6 Ri for this value of i. Thus, Q is contained in the Sylow p-subgroup Ri, which
establishes part (iv) of Sylow’s Theorem.

This completes the proof of the theorem. �

We shall now illustrate some applications of Sylow’s Theorem. Note that if a group G
has a unique Sylow p-subgroup P , then

x−1Px = P for all x ∈ G

and therefore
P P G.

Thus one common application of Sylow’s Theorem is to find normal subgroups and hence
show that certain types of group are not simple.

Example 9.7 Show that there is no simple group of order 40.
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Solution: Let G be a group of order 40 = 23 · 5. The number of Sylow 5-subgroups of G
is congruent to 1 (mod 5) and divides 8. Hence there is one Sylow 5-subgroup in G and
this is therefore a normal subgroup of G of order 5. Hence G is not simple. �

Example 9.8 Show that there is no simple group of order 70.

Solution: Let G be a group of order 70 = 2 · 5 · 7. The number of Sylow 5-subgroups
of G is congruent to 1 (mod 5) and divides 14. Hence there is one Sylow 5-subgroup in G.

In the same way, the number of Sylow 7-subgroups of G is congruent to 1 (mod 7) and
divides 10. Hence there is one Sylow 7-subgroup in G.

Thus G has both a normal subgroup of order 5 and a normal subgroup of order 7. We
conclude that G is not simple. �

Example 9.9 Show that there is no simple group of order 56.

Solution: Let G be a group of order 56 = 23 · 7. Let n2 and n7 denote the number of
Sylow 2-subgroups and the number of Sylow 7-subgroups of G, respectively.

Sylow’s Theorem tells us that n7 ≡ 1 (mod 7) and that n7 divides 8. Hence there
are two possibilities: either n7 = 1 or n7 = 8. If n7 = 1, then there is a unique Sylow
7-subgroup and this is a normal subgroup of order 7. In this case, G is not simple.

Suppose then that n7 = 8. Let S1, S2, . . . , S8 denote the eight Sylow 7-subgroups.
Note that each Si contains the identity element and six elements of order 7 (since Si ∼= C7).
Now if i 6= j, the intersection Si∩Sj is a proper subgroup of both Si and Sj , and Lagrange’s
Theorem tells us that Si ∩ Sj = 1.

Hence each Si contains six elements of order 7 that lie in no other Sylow 7-subgroup
of G and we conclude that between them the eight Sylow 7-subgroups contain 8 × 6 =
48 elements of order 7.

There are only 8 remaining elements in G which do not have order 7 (including the
identity element in these eight) and any Sylow 2-subgroup must therefore consist of some
of these eight elements not of order 7. However, a Sylow 2-subgroup of G has order 23 = 8
and we therefore conclude that there is exactly one Sylow 2-subgroup of G consisting of
these eight elements. Hence, if n7 = 8, then n2 = 1 and G has a normal subgroup of
order 8.

Thus in either case, G is not simple. �

Example 9.10 For each prime p dividing 60, determine the number of Sylow p-subgroups
of the alternating group A5 of degree 5.

Solution: |A5| = 60 = 223 · 5. Let n2, n3 and n5 denote the number of Sylow 2-, 3- and
5-subgroups in A5. Then

n2 ≡ 1 (mod 2), n2 | 15

n3 ≡ 1 (mod 3), n3 | 20

n5 ≡ 1 (mod 5), n5 | 12.

Hence

n2 = 1, 3, 5 or 15

n3 = 1, 4 or 10

n5 = 1 or 6.

Since A5 is simple, none of the Sylow subgroups can be normal in A5 and so we conclude
np 6= 1 for p = 2, 3 and 5. Hence
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there are six Sylow 5-subgroups in A5.

For the others, recall that if P is a Sylow p-subgroup of a group G, then the set of all
Sylow p-subgroups is the set of conjugates of P and hence the number of them equals the
index of the normaliser NG(P ).

In Example 9.3(ii), we showed that

H = {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

is a Sylow 2-subgroup of A5. Now we know H P A4, so the normaliser NA5(H) contains A4.
Thus 1 < |A5 : NA5(H)| 6 5. But Question 3(c) on Problem Sheet VII tells us that A5

has no proper subgroup of index less than 5. Hence

n2 = |A5 : NA5(H)| = 5;

that is,

there are five Sylow 2-subgroups in A5.

Similarly, if T = 〈(1 2 3)〉, then |A5 : NA5(T )| 6= 4, and therefore

n3 = |A5 : NA5(T )| = 10;

that is,

there are ten Sylow 3-subgroups in A5.

�
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Chapter 10

Classification of Groups of Small
Order

We finish the course by applying the methods we have developed to provide a classification
or groups of small order. We intend to specify a list of groups of order n such that every
group of order n is isomorphic to one on the list. We do this for 1 6 n 6 15.

A group of order 1 is trivial.

Up to isomorphism there is one group of order 1.

Corollary 2.23 tells us:

If p is prime, then any group of order p is isomorphic to Cp, a cyclic group of
order p.

Up to isomorphism there is one group of order p.

This deals with groups of order 2, 3, 5, 7, 11, 13, . . . .

Groups of order p2

Lemma 10.1 Let G be a group such that G/Z(G) is cyclic. Then G is abelian.

Proof: Suppose G/Z(G) = 〈Z(G)x〉 for some x ∈ G. Then, as G is the union of the
cosets of Z(G),

G =
⋃
n∈Z

Z(G)xn,

so every element of G has the form zxn for some z ∈ Z(G) and n ∈ Z. Thus

G = 〈Z(G), x〉.

Consider the centraliser CG(x). Certainly x commutes with itself, while, by definition,
every element of Z(G) commutes with every element in G and so in particular with x.
Thus

Z(G) 6 CG(x) and x ∈ CG(x),

so
G = 〈Z(G), x〉 6 CG(x).
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Hence every element of G commutes with x, so x ∈ Z(G). Therefore

G = 〈Z(G), x〉 = Z(G)

and so G is abelian. �

Theorem 10.2 Let p be prime. Any group of order p2 is abelian and so is isomorphic to
Cp2 or Cp × Cp.

Proof: Let G be a group of order p2. It then follows from the Class Equation that, since
G is a p-group, then Z(G) 6= 1 (see Question 11 on Problem Sheet VIII). Hence either

|Z(G)| = p or p2.

But if |G/Z(G)| = p, then G/Z(G) is cyclic, so G = Z(G), contrary to assumption.
Therefore |Z(G)| = p2 and G = Z(G) is abelian. Therefore, by the Fundamental Theorem
of Finite Abelian Groups, either

G ∼= Cp2 or G ∼= Cp × Cp.

�

In conclusion,

Up to isomorphism there are two groups of order p2 (for p prime).

This deals with groups of order 4, 9, 25, . . . .

Groups of order 2p

Let p be an odd prime and consider groups of order 2p. By the Fundamental Theorem of
Finite Abelian Groups, an abelian group of order 2p is isomorphic to

C2 × Cp ∼= C2p.

Theorem 10.3 Let G be a group of order 2p where p is an odd prime. Then G ∼= C2p

or D2p, depending upon whether G is abelian or non-abelian.

Proof: The number of Sylow p-subgroups of G is congruent to 1 (mod p) and divides 2.
Therefore G has precisely one Sylow p-subgroup P . As |P | = p, we know P ∼= Cp.

If x ∈ G \ P , then o(x) 6= p, since an element of order p must generate the Sylow
p-subgroup P . If G contains an element of order 2p, then G ∼= C2p. So suppose that G is
non-abelian and therefore

o(x) = 2 for all x ∈ G \ P .

(Note the identity lies in P .)
Fix a generator a for P and an element b ∈ G \ P . So o(a) = p and o(b) = 2. The

elements of P are 1, a, . . . , ap−1 and the elements of the coset Pb are b, ab, . . . , ap−1b, so

G = {1, a, . . . , ap−1, b, ab, . . . , ap−1b} = 〈a, b〉.

Now (aib)2 = 1 for all i, so aibaib = 1. Therefore

bai = a−ib−1 = a−ib.
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We are now able to completely specify the multiplication in G:

(aibj)(akb`) =

{
ai+kb` if j = 0

ai−kbj+` if j = 1.

Hence, up to isomorphism, there is at most one non-abelian group of order 2p. (In theory,
at this stage in our calculations, we do not know that the above multiplication actually
does define a group.) However, the dihedral group D2p is a non-abelian group of order 2p
and therefore our G must be isomorphic to D2p. �

I f p is an odd prime, there are two groups of order 2p up to isomorphism.

This deals with groups of order 6, 10, 14, 22, . . . . Note D6 = S3.

Groups of order 8

By the Fundamental Theorem of Finite Abelian Groups, an abelian group of order 8 is
isomorphic to one of

C8, C2 × C4 or C2 × C2 × C2.

Let G be a non-abelian group of order 8. An element in G has order 1, 2, 4 or 8. If
G contains an element of order 8, then G ∼= C8 and it would be abelian. If x2 = 1 for all
x ∈ G, then G would be abelian (see Question 11 on Problem Sheet I). Hence G contains
at least one element a of order 4.

Let N = 〈a〉, a subgroup of order 4 in G, so N P G (as it has index 2. Choose
b ∈ G \N . Then either o(b) = 2 or o(b) = 4. Since G/N ∼= C2, we know Nb2 = N1 and
therefore b2 ∈ N in either case. As a2 is the unique element of order 2 in N , we conclude
either

b2 = 1 or b2 = a2.

The elements of N are 1, a, a2, a3 and the elements of the coset Nb are b, ab, a2b, a3b, so

G = {1, a, a2, a3, b, ab, a2b, a3b} = 〈a, b〉.

Now b−1ab ∈ N and o(b−1ab) = o(a) = 4, so

b−1ab = a or a3.

If b−1ab = a, then ab = ba and it would follow that G = 〈a, b〉 is abelian. Therefore

b−1ab = a3 = a−1,

so
b−1a−ib = (b−1ab)−i = (a−1)−i = ai

and we deduce
bai = a−ib = a3ib.

Hence

(aibj)(akb`) =


ai+kb` if j = 0

ai+3kb if j = 1, ` = 0

ai+3kb2 if j = ` = 1.
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So we would have completely determined the multiplication in G once we knew whether
b2 = 1 or a2. Therefore, there are, up to isomorphism, at most two non-abelian group of
order 8. We already know two such groups, namely D8 and Q8, so these two must be the
only two that exist.

This establishes:

Theorem 10.4 Any group of order 8 is isomorphic to one of

C8, C2 × C4, C2 × C2 × C2, D8 or Q8.

�

There are five groups of order 8 up to isomorphism.

Groups of order pq

We shall consider groups of order pq where p < q are distinct primes. We shall actually
only consider a special case, namely

p does not divide q − 1.

Let G be a group of order pq where p and q are distinct primes with p < q and such
that p does not divide q − 1. Let np and nq denote the number of Sylow p- and Sylow
q-subgroups in G, respectively. Then, by Sylow’s Theorem,

np ≡ 1 (mod p) and np divides q

and
nq ≡ 1 (mod q) and nq divides p.

The first of these tells us that np = 1, since np = q is impossible since q 6≡ 1 (mod p) by
assumption. The second tells us that nq = 1, since p < q, so certainly p 6≡ 1 (mod q).

Let P be the unique Sylow p-subgroup and Q be the unique Sylow q-subgroup of G.
Then P P G and Q P G. As they have coprime order, Lagrange’s Theorem tells us
P ∩Q = 1. Consider PQ. It is a subgroup of G, since both P and Q are normal, and it
contains both P and Q. Therefore both p and q divide |PQ|, so we conclude G = PQ.
This checks all conditions for a direct product in Theorem 5.6 and we have shown

G ∼= P ×Q ∼= Cp × Cq ∼= Cpq.

Theorem 10.5 Let G be a group of order pq where p and q are distinct primes with
1 < p < q. Suppose that p does not divide q − 1. Then G ∼= Cpq. �

Up to isomorphism, there is one group of order pq when 1 < p < q and p does
not divide q − 1.

This deals with groups of order 15, 33, 35, . . . .
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Groups of order 12

An abelian group of order 12 is isomorphic to either

C2 × C2 × C3
∼= C2 × C6 or C4 × C3

∼= C12.

We already know two non-abelian groups of order 12, namely the dihedral group D12 of
order 12 and the alternating group A4 of degree 4. There is actually one more.

Example 10.6 Let T be the subgroup of S12 generated by the permutations

α = (1 2 3 4 5 6)(7 8 9 10 11 12) and β = (1 7 4 10)(2 12 5 9)(3 11 6 8).

If we apply the generation algorithm (see Chapter 2) to T we find that its elements are:

T = {1, (1 2 3 4 5 6)(7 8 9 10 11 12),

(1 3 5)(2 4 6)(7 9 11)(8 10 12),

(1 4)(2 5)(3 6)(7 10)(8 11)(9 12),

(1 5 3)(2 6 4)(7 11 9)(8 12 10),

(1 6 5 4 3 2)(7 12 11 10 9 8),

(1 7 4 10)(2 12 5 9)(3 11 6 8),

(1 12 4 9)(2 11 5 8)(3 10 6 7) = αβ,

(1 11 4 8)(2 10 5 7)(3 9 6 12),

(1 10 4 7)(2 9 5 12)(3 8 6 11),

(1 9 4 12)(2 8 5 11)(3 7 6 10),

(1 8 4 11)(2 7 5 10)(3 12 6 9) = βα}.

Here αβ 6= βα, so T is non-abelian. From the cycle structure, we see that T has one
element of order 2. We know A4 has three elements of order 2 and D12 has seven elements
of order 2. Therefore

T 6∼= A4 and T 6∼= D12.

Theorem 10.7 If G is a group of order 12, then G is isomorphic to one of

C2 × C6, C12, A4, D12 or T.

Up to isomorphism, there are five groups of order 12.

Proof: Let G be a non-abelian group of order 12. Let n2 and n3 be the number of Sylow
2- and Sylow 3-subgroups respectively in G. Then, by Sylow’s Theorem,

n2 ≡ 1 (mod 2), n2 | 3 and n3 ≡ 1 (mod 3), n3 | 4.

Therefore
n2 = 1 or 3, n3 = 1 or 4.

Suppose n3 = 4. We then count elements in the Sylow 3-subgroups (any pair of which
must intersect trivially by Lagrange’s Theorem) to see that G contains 4× 2 = 8 elements
of order 3. This only leaves four elements of other orders, so we conclude there must be
a unique Sylow 2-subgroup (of order 4); that is, n2 = 1. Hence it is not possible that
n2 = 3 and n3 = 4 and we consider three cases.
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Case 1: n2 = n3 = 1.
There are unique Sylow 2- and 3-subgroups P and Q (respectively) in G which are

normal in G. Here P ∼= C4 or C2 × C2 (from the classification of groups of order p2) and
Q ∼= C3. As in the classification of groups of order pq, by Lagrange’s Theorem, P ∩Q = 1
and G = PQ. Hence, by Theorem 5.6

G ∼= P ×Q ∼= C4 × C3 or C2 × C2 × C3.

Hence in this case, G is isomorphic to one of C12 or C2 × C6.

Case 2: n2 = 1 and n3 = 4.
Let N be the unique Sylow 2-subgroups, so N P G and N ∼= C4 or N ∼= C2×C2

∼= V4.

Subcase 2a: N ∼= C4.
Let N = 〈a〉 and H = 〈b〉 be a Sylow 3-subgroup of G. Then b−1ab = ai for some i.

Then
a = b−3ab3 = b−2aib2 = b−1(b−1ab)ib = b−1ai

2
b = ai

3
,

so 4 | (i3 − 1). The only possibility is i = 1 (as i = 2 and i = 3 do not satisfy this
condition). This means that ab = ba, so G = 〈a, b〉 is abelian, which contradicts n3 = 4.

Subcase 2b: N ∼= C2 × C2
∼= V4.

If H = 〈d〉 is a Sylow 3-subgroup of G, then when we conjugate the elements of order 2
in N by d, we must permute them as a 3-cycle (since o(d) = 3). Hence we can assume
N = {1, a, b, c}, where

d−1ad = b, d−1bd = c, d−1cd = a.

Hence we determine that da = cd, db = ad and dc = bd. Hence any product (xdi)(ydj)
where x, y ∈ {1, a, b, c} is now uniquely specified. We conclude that there is at most one
group of order 12 with n2 = 1 and n3 = 4. But we already know that the alternating
group A4 is a non-abelian group of order 12 and it has a unique Sylow 2-subgroup and
four Sylow 3-subgroups, therefore G ∼= A4 in this cases.

Case 3: n2 = 3 and n3 = 1.
Let N be the unique Sylow 3-subgroup of G, so N = 〈a〉 for some a of order 3 and

N P G. Let H be a Sylow 2-subgroup. Every element of G can be expressed as aix where
0 6 i 6 2 and x ∈ H. As in the classification of groups of order 8 and in Subcase 2, to
determine the multiplication in G it is enough to establish that conjugation of elements
in N by elements in H are essentially uniquely determined.

If H ∼= C4, the generator b for H cannot commute with a (as G is non-abelian), so
b−1ab = a2 = a−1. From this we conclude b−1a−1b = a and ba = a−1b. Hence all products
(aibj)(akb`) are uniquely determined. This shows that there is at most one group of
order 12 with n2 = 3, n3 = 1 and cyclic Sylow 2-subgroup. However, T is one such group
and we deduce G ∼= T . (Indeed, it is this line of argument that enables us to go searching
for such a group of order 12 and hence determine that T exists.)

If H ∼= C2×C2, them at least one element x in H which satisfies x−1ax = a−1. Suppose
H = {1, x, y, z}. If y−1ay = a−1, then z = xy actually commutes with a:

z−1az = y−1x−1axy = y−1a−1y = (y−1ay)−1 = (a−1)−1 = a.
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Similarly if y commutes with a, then z−1az = a−1. Hence, without loss of generatity,
we can assume y−1ay = a−1 and z−1az = a. In this way, all products (aih)(ajk) with
h, k ∈ H are determined and we deduce that there is at most one such group. However,
D12 does satisfy the hypotheses, so we conclude G ∼= D12 in this case.

This completes the proof. �
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