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School of Mathematics and Statistics

MT3503 Complex Analysis

Problem Sheet I: Complex numbers and the topology of the complex
plane

1. Let z = a+ bi be a complex number with real part a and imaginary part b. Determine the
real and imaginary parts of

w =
z + 2

z + 1

(expressed in terms of a and b).

2. Express each of the following complex numbers in modulus-argument form:

(i) 2 + 2i
√

3, (ii) −5 + 5i, (iii)
√

3− i.

3. Express the complex number z = 1− i in modulus-argument form and show that

(1− i)16 = 256.

4. Let n be a positive integer.

(a) Find all solutions (for complex numbers z) of the equation zn = 1.

(b) Find all solutions (for complex numbers z) of the equation zn = i.

5. Find all solutions (for complex numbers z) of the equation z4 + z2 + 1 = 0.

[Hint: Multiply by z2 − 1.]

6. Show that if z is any complex number then

|z| 6 |Re z|+ |Im z| 6
√

2|z|.

Give examples of complex numbers z illustrating that either inequality can be a strict
inequality or equality.

7. Sketch the following subsets of the complex plane. Describe them (as clearly as possible)
geometrically.

(a) A = { z ∈ C | |z − 1− i| = 1 }
(b) B = { z ∈ C | |z − 1 + i| > |z − 1− i| }
(c) C = { z ∈ C | |z + i| 6= |z − i| }
(d) D = { z ∈ C | 1

4π < Arg z 6 3
4π }

(e) E = { z ∈ C | Re z < 1 or Im z 6= 0 }
(f) F = { z ∈ C | |z − 1| < 1 and |z| = |z − 2| }

[Hint: Recall that |z − w| is the distance between the complex numbers z and w. The
purpose of this question is to help enhance your geometric intuition when working with
subsets of the complex plane. The method is to interpret what the condition defining the
set is saying about the location of the complex number z.]
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School of Mathematics and Statistics

MT3503 Complex Analysis

Problem Sheet II: Limits, holomorphic functions, the Cauchy–Riemann
equations, and power series

1. Define a function f : C→ C by

f(x+ iy) = 2x+ iy

for x, y ∈ R. Show that f is not differentiable at any point of C.

2. Let a, b, c and d be complex numbers such that ad− bc 6= 0. Define a function f by

f(z) =
az + b

cz + d
.

A function of this form is called a Möbius transformation.

(a) Show that f is holomorphic on the set C \ {−d/c} (or on the whole complex plane C
if c = 0) and calculate its derivative.

(b) By solving the equation f(z) = w, or otherwise, show that f is invertible on C\{−d/c}
and calculate the inverse.

(c) Show that the composite of two Möbius transformations is again a Möbius transfor-
mation (that is, if f and g are two Möbius transformations, show that f ◦ g is also
Möbius transformation).

What is the link to matrix multiplication?

(d) Calculate the matrix product(
0 1
1 0

)(
1 b
0 1

)(
0 1
1 0

)
.

Let A be a 2 × 2 invertible matrix with complex number entries. Show that A can

be expressed as a product involving the matrix

(
0 1
1 0

)
and matrices of the form

(
1 k
0 1

)
and

(
λ 0
0 µ

)
where k, λ, µ ∈ C with λ, µ 6= 0. [Hint: Consider elementary row operations.]

(e) Show that every Möbius transformation can be expressed as the composite of trans-
lation maps (those of the form z 7→ z+k for some k ∈ C), inversion maps (z 7→ 1/z),
scaling maps (those of the form z 7→ hz for some real number h > 0), a rotation maps
(those of the form z 7→ eiθz for some θ).

[Hint: Use (c) and (d).]
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(f) Show that a Möbius transformation maps any circle or a line to another circle or a
line.

[Hint: Use (e). It may help to describe a circle using an equation of the form |z−c| = r
and a line using an equation of the form |z − a| = |z − b|.]

3. Find the radius of convergence of the following power series:

(i)

∞∑
n=1

(−1)n

n
zn, (ii)

∑∞
n=0 z

n, (iii)
∑∞

n=0 z
5n,

(iv)
∞∑
n=1

1

nn
zn, (v)

∑∞
n=0 n

nzn.

4. Provide a function f(z) that is holomorphic on the set C \ {1} and that coincides with the
power series

∑∞
n=0 z

n inside its radius of convergence.

5. Let z be any complex number. Show that

(a) eze−z = 1,

(b) ez 6= 0,

(c) ez = ez̄,

(d) |ez| = eRe z.

[If possible, avoid using the formula for eiθ, for real θ, in the last part. You should be able
to use part (c) to establish (d).]

6. Use the formulae for sin z in terms of eiz and e−iz to determine the real and imaginary
parts u(x, y) and v(x, y) of sin(x+ iy) for real x and y.

Show that the solutions of sin z = 0 are all real.

7. If z is any complex number, show that

cosh z = cos iz and sinh z = −i sin iz.
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MT3503 Complex Analysis

Problem Sheet III: Contour integration & Cauchy’s Theorem

1. Evaluate the integral ∫
γ
(z2 + 3z) dz

where (i) γ is the line segment from 0 and 1+ i, and (ii) γ is the curve γ(t) = t+ it2 from 0
to 1 + i.

2. Evaluate the integral ∫
γ

1

z
dz

where γ is the semi-circular arc given by γ(t) = 4eit for −π/2 6 t 6 π/2.

3. Let γ be the square contour with vertices at 0, π, π+ iπ and iπ. By integrating along each
side in turn, verify that ∫

γ
sin z dz = 0.

[This is to verify a special case of the general result, so do not use Cauchy’s Theorem!]

4. Evaluate each of

(a)

∫
γ
|z|4 dz, (b)

∫
γ
(Re z)2 dz,

(c)

∫
γ

z4 − 1

z2
dz, (d)

∫
γ

sin z dz

where (i) γ is the line segment from −1 + i to 1 + i, and (ii) γ is the circular contour of
radius 1 about 0.

[You may use the Fundamental Theorem of Calculus for Integrals along a Curve if it
applies.]
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5. Using the theory developed so far, explain why each of the following integrals is zero
without performing the full calculation:

(a)

∫
γ

1

z − 2
dz, where γ is a contour contained inside the open disc of radius 1 about 0.

(b)

∫
γ

sin z

z
dz, where γ is a circular contour of radius 2 about 1.

[Hint: How have we defined sin z in this course?]

(c)

∫
γ
z|z|4 dz, where γ is a circular contour of radius 1 about 0.

(d)

∫
γ

1

1 + ez
dz, where γ is a circular contour of radius 1 about 1.

[You may, and indeed should, use Cauchy’s Theorem.]

2



2020

School of Mathematics and Statistics

MT3503 Complex Analysis

Problem Sheet IV: Consequences of Cauchy’s Theorem: use of Cauchy’s
Integral Formula, Liouville’s Theorem, Cauchy’s Formula for Derivatives

and Taylor’s Theorem

1. Evaluate the following contour integrals:

(a)

∫
γ

1

(z2 − 1)(z2 − z − 6)
dz, where γ is the positively oriented circular contour centred

at 3 with radius 1.

(b)

∫
γ

1

1 + z2
dz, where γ is the positively oriented circular contour centred at i with

radius r < 2.

(c)

∫
γ

sin 3z

z + 1
2π

dz, where γ is the positively oriented circular contour centred at 0 with

radius 5.

2. Let γ be a contour that does not pass through 0 or 1. Carefully determine all possible
values of the integral

1

2πi

∫
γ

ez

z(z − 1)
dz.

3. (a) Evaluate the contour integral ∫
γ

1

z2 − 3z + 1
dz

where γ is the positively oriented circular contour of radius 1 about 0.

(b) If z = eiθ, show that

3− 2 cos θ = −z
2 − 3z + 1

z
.

(c) Hence show that ∫ 2π

0

1

3− 2 cos θ
dθ =

2π√
5
.

4. Suppose f is holomorphic on C and satisfies

f(z + 2π) = f(z + 2πi) = f(z) for all z ∈ C.

Show that f is constant.

5. Show that ∫
γ

e3z

(z + 2)4
dz =

9πi

e6

where γ is the positively oriented circular contour of radius 4 about 0.
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6. Let f be a function that is holomorphic on an open disc B(a, r).

(a) Suppose that |f | is constant on B(a, r). Show that f is also constant.

[Hint: Express |f | in terms of the real and imaginary parts of f . Make use of the
Cauchy–Riemann Equations.]

(b) Now suppose that |f(z)| 6 |f(a)| for all z ∈ B(a, r). Show that f(z) is constant
on B(a, r).

[Hint: Apply Cauchy’s Integral Formula to express f(a) in terms of a contour integral
and then bound this integral. The purpose of this part is to establish a special case
of what is known as the Maximum-Modulus Theorem.]

7. Consider the function f(z) = z/(2− z).
What is the largest value r > 0 such that f is holomorphic on the open disc B(0, r) of
radius r about 0?

Determine a power series expansion for f that is valid on the disc B(0, r) for this value
of r.

8. Suppose that f is holomorphic in C, that M is a positive constant, and that m is a positive
integer such that |f(z)| 6 M |z|m for all z ∈ C. Using the formula for the coefficients in
the Taylor series for f , or otherwise, show that f(z) is a polynomial function of degree at
most m.

9. Suppose that f is holomorphic on an open disc B(a, r) and that f(a) = 0. Show that
either f is identically zero on B(a, r) or there exists some ε with 0 < ε < r such that f is
non-zero on the set B′(a, δ) = { z ∈ C | 0 < |z − a| < δ }.
[Hint: Let f(z) =

∑∞
n=0 cn(z− a)n be the Taylor series valid in B(a, r). If f(z) 6≡ 0, there

exists some smallest m with cm 6= 0. Now consider the function g(z) =
∑∞

n=0 cm+n(z−a)n.

The purpose of this question is to establish a special case of what is known as the Identity
Theorem. What is asked above is actually the main step in proving that theorem.]

10. (a) Suppose that f : B(a, r) → C is continuous on the open disc B(a, r) for some a ∈ C
with r > 0. Assume that ∫

γ
f(z) dz = 0

for any triangular contour γ contained in B(a, r). Define a function F : B(a, r)→ C
by

F (z) =

∫
[a,z]

f(w) dw

where [a, z] denotes the line segment from a to z. Show that F is holomorphic
on B(a, r) with derivative f .

(b) Deduce that if f is holomorphic on the open disc B(a, r) then there exists some
holomorphic function on B(a, r) with derivative equal to f .

(c) Deduce Morera’s Theorem: If f is a continuous function on an open set U such
that

∫
γ f(z) dz = 0 for all triangular contours contained in U , then f is holomorphic

on U .
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Problem Sheet V: Harmonic Functions

1. Define a function u : R2 → R by

u(x, y) = 2x(1− y).

Show that u is harmonic on R2, find the harmonic conjugate of u and find a holomorphic
function f(z) on C such that u(x, y) = Re f(x+ iy) for all (x, y) ∈ R2.

2. Define a function u : R2 → R by

u(x, y) = xex cos y − yex sin y.

Show that u is harmonic on R2, find the harmonic conjugate of u and find a holomorphic
function f(z) on C such that u(x, y) = Re f(x+ iy) for all (x, y) ∈ R2.

3. Consider the function u : R2 \ {(0, 0)} → R given by

u(x, y) = x− y

x2 + y2
.

Show that u is harmonic on R2 \ {(0, 0)}, find the harmonic conjugate of u and find a
holomorphic function f(z) on C \ {0} such that u(x, y) = Re f(x + iy) for all (x, y) ∈
R2 \ {(0, 0)}.

4. Consider the function u : R2 → R given by

u(x, y) = sin(x2 − y2) e−2xy.

Show that u is harmonic on R2, find the harmonic conjugate of u and find a holomorphic
function f(z) on C such that u(x, y) = Re f(x+ iy) for all (x, y) ∈ R2.
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MT3503 Complex Analysis

Problem Sheet VI: Singularities, Poles & Residues

1. Determine the coefficients of the terms zn, for −2 6 n 6 2, in the Laurent series expansion
of

f(z) =
5

z2 − 3z − 4

valid in the following three open subsets of C:

(a) A = { z ∈ C | |z| < 1 };
(b) B = { z ∈ C | 1 < |z| < 4 };
(c) C = { z ∈ C | |z| > 4 }.

[Hint: First express f(z) using partial fractions and then exploit the formula for the sum
of a geometric series.]

2. Determine the Laurent series about z = 1 of

f(z) =
1

z(z − 1)

valid in the open annulus A = { z ∈ C | 0 < |z − 1| < 1 }.

3. Locate and classify the isolated singularities of the following functions:

(i)
ez − 1

z
, (ii)

1

sin z
, (iii) z sin(1/z).

4. Locate the poles in C of each of the following functions and determine the residue at each
pole:

(i)
1

z3(z2 + 1)
, (ii)

ez

1− z
, (iii)

ez

z(z2 − 1)
,

(iv)
1

sin z
, (v)

1

1− ez
.

5. Suppose that the function f has an isolated singularity at a. If f is holomorphic and
bounded on the punctured open disc B′(a, r), for some r > 0, show that f has a removable
singularity at a.

[Hint: Use the formula for the coefficients in the Laurent series given in Laurent’s Theo-
rem.]
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6. Let f be a holomorphic function on an open set U containing a point c. Suppose that
f ′(c) 6= 0 and that there exists r > 0 such that f(z) 6= f(c) for 0 < |z − c| < r. Use
Cauchy’s Residue Theorem to show∫

γ

1

f(z)− f(c)
dz =

2πi

f ′(c)

whenever γ is a positively oriented circular contour about c of radius less than r.

[The hypothesis that such an r exists is actually unnecessary. It follows from the Identity
Theorem (found in Priestley’s book, but not covered, due to time constraints, in this
module) that such an r always exists if f ′(c) 6= 0.]
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Problem Sheet VII: Applications of contour integration

1. Show that

(a) ∫ ∞
0

1

(x2 + 4)(x2 + 1)2
dx =

π

18

(b) ∫ ∞
−∞

1

(x2 + x+ 1)2
dx =

4π

3
√

3
.

(c) ∫ ∞
0

x3 sinx

(x2 + 1)2
dx =

π

4e
.

(d) ∫ ∞
0

cos ax− cos bx

x2
dx =

(b− a)π

2
(for a, b > 0).

2. Evaluate the following integrals:

(a) ∫ ∞
0

x2

x4 + 1
dx.

(b) ∫ ∞
0

x sinx

x2 + 4
dx.

(c) ∫ ∞
0

cos(ax)

(x2 + b2)2
dx (for a, b > 0).

3. Evaluate the following integrals:

(i)

∫ 2π

0

1

10 + 6 cos θ
dθ (ii)

∫ 2π

0

1

1 + 8 cos2 θ
dθ

(iii)

∫ 2π

0

1

(4 cos θ − 5)2
dθ, (iv)

∫ 2π

0

sin2 θ

5 + 4 cos θ
dθ.
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4. Using the function

f(z) =
e−z+iz

z

and the contour γ shown below (where 0 < ε < R),

ε R

iR

εi

γ

show that ∫ ∞
0

e−x sinx

x
dx =

π

4
.

5. If z lies on the square contour that has vertices at the points ±(N + 1
2)π ± (N + 1

2)πi,
show that

|sin z| > 1.

6. By integrating the function

f(z) =
1

z2 sin z

around the square contour that has vertices at the points ±(N + 1
2)π ± (N + 1

2)πi, show
that

∞∑
n=1

(−1)n

n2
= −π

2

12
.

7. By integrating the function

f(z) =
cotπz

4z2 + 1

around a suitable square contour, show that

∞∑
n=0

1

4n2 + 1
=

1

2
+
π

4
coth

(π
2

)
.
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Problem Sheet VIII: Logarithms and related multifunctions

1. Show that ∫ ∞
0

log x

x4 + 1
dx = − π2

8
√

2
.

2. With use of a suitable branch cut, define a holomorphic function f(z) that is a suitable
branch of the complex logarithm log(1 + z) and such that f is holomorphic on the open
disc B(0, 1) of radius 1 about 0.

Using Taylor’s Theorem, or otherwise, find a power series for f(z) valid on the open
disc B(0, 1).

3. Using contour integration, evaluate the integral∫ ∞
0

x2 log x

(1 + x2)2
dx.
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Problem Sheet IX: Locating and counting zeros and poles: Rouché’s
Theorem and the Argument Principle

1. Consider the equation
z3 + 3z2 + 2 = 0.

(a) Show that this equation has two roots in the open disc B = { z ∈ C | |z| < 1 +
√

3 }.
(b) Show that the third root of this equation lies in the annulus A = { z ∈ C | 1 +

√
3 6

|z| <
√

11 }.

2. Consider the equation
z7 + 10z4 + 8

9z
3 + 8 = 0.

(a) Determine the number of roots in the unit disc B = { z ∈ C | |z| < 1 }.
(b) Determine the number of roots in the annulus A = { z ∈ C | 1 6 |z| 6 2 }.
(c) Determine the number of roots in the annulus C = { z ∈ C | 2 < |z| <

√
5 }.

3. Consider the quadratic equation

z2 − 2z + 4 = 0.

(a) Use elementary methods to determine the roots of this equation.

(b) Now use the Argument Principle to determine the number of roots of this equation
in the first quadrant, by using the contour γ shown below (for some large value of R)
and (i) showing the change of φ = arg f(z) on the line segment [0, R] is 0, (ii) the
change of φ on the quarter circle is approximately π, and (iii) the change of φ as
z travels from iR to 0 on the imaginary axis is approximately π.

(c) Check that your answer to (b) agrees with your answer to (a).

R

iR

0

γ
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4. Consider the equation
z4 + iz2 + 1 = 0.

(a) Show that this equation has no real roots and no purely imaginary roots (i.e., no
roots on the imaginary axis).

(b) Using the Argument Principle, show that there is exactly one root in the first quadrant
of the complex plane.

5. Consider the equation
8z4 − 6z + 5 = 0.

(a) Show that the equation has no real roots.

(b) Show that the equation has no purely imaginary roots.

(c) Show that there is one root in the first quadrant of the complex plane.

(d) Show that there is one root in each quadrant of the complex plane.

[Hint for (d): Consider complex conjugates.]
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