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Introduction

Complex analysis is viewed by many as one of the most spectacular branches of mathematics
that we teach to undergraduates. It sits as a piece of interesting mathematics that is used in
many other areas, both in pure mathematics and applied mathematics. The starting premise
will be readily appreciated by all students who have completed either of the prerequisites for this
module. They will have met the definition of the derivative of a real-valued function f : R→ R
as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

(and this definition appears in both MT2502 and MT2503 ). One begins complex analysis by
basically using the same definition to differentiate a function f : C → C of a complex variable.
What is surprising is that as one examines such functions is that the behaviour of differentiable
functions of a complex variable (that are termed holomorphic functions) is somewhat different
to that of differentiable functions of a real variable.

Examples of surprising properties of differentiable functions of a complex variable are:

1. If a function f of a complex variable is differentiable on an open set U , then it can be
differentiated as many times are you would like (that is, f ′, f ′′, f ′′′, . . . all exist).

2. If f : C → C is differentiable and bounded (that is, |f(z)| 6 M for all z ∈ C) then it is
constant.

3. If f : B(c, r) → C is differentiable at every point of distance at most r from c (that is,
z satisfying |z − a| < r), then f is given by a Taylor series

f(z) =

∞∑
n=0

f (n)(c)

n!
(z − c)n

for all z with |z − a| < r.

These facts will all be established and made precise during the lecture course. (In particular, we
shall specify what the term “open set” means in Chapter 1 and why it is significant for what we
do here.) The above facts contrast quite considerably with real-valued functions as the following
three examples show. (The details are omitted in these examples.)

Example 0.1 The function f : R→ R given by

f(x) =

{
1
2x

2 if x > 0

−1
2x

2 if x < 0

is differentiable, but f ′ is not differentiable at x = 0 in contrast to Property 1 above. Indeed,
one can show that

f ′(x) =

{
x if x > 0

−x if x < 0.
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x

y

0

y = f ′(x) = |x|

Figure 1: The graph of the derivative of f(x) in Example 0.1.

To verify this, one needs to treat x = 0 separately, as those who have covered MT2502 Analysis
will probably remember. Then f ′(x) = |x| is not differentiable at 0 as was covered in the MT2502
lecture notes and as can be anticipated by looking at the graph of f ′ (see Figure 1).

Example 0.2 The function f(x) = sinx is differentiable on R and satisfies |sinx| 6 1 for all
x ∈ R. This non-constant function stands in contrast to Property 2 above.

Example 0.3 It requires somewhat more work to construct an example illustrating that Prop-
erty 3 fails with real-valued functions. Consider the function f : R→ R given by

f(x) =

{
e−1/x2 if x 6= 0

0 if x = 0.

With considerable care, one can show that f may be differentiated as many times as one wants
at all points in R. Indeed, one can use an induction argument to show that there exist polyno-
mials pn of degree 3n such that the nth derivative of f satisfies

f (n)(x) =

{
pn(1/x) e−1/x2 if x 6= 0

0 if x = 0.

(To verify all this, one needs to understand the behaviour of pn(1/x) e−1/x2 as x→ 0, but I will
omit this since it is a considerable detour away from the core of the module.) In particular, the
coefficients of the Taylor series of f about 0 are all equal to 0, but

f(x) 6=
∞∑
n=0

f (n)(0)

n!
xn ≡ 0

for all x 6= 0.

Returning to the topic of complex analysis, once we have established many properties of
differentiable functions of a complex variable, there are a large suite of applications. The primary
applications that we shall cover in the module are:

• evaluation of certain real integrals, e.g.,
∫∞

0
cosx
1+x2

dx;

• evaluation of certain real series, e.g.,
∑∞

n=1 1/n4.

There are many other examples of applications of complex analysis, for example, in number
theory (e.g., the Prime Number Theorem states that the number of primes at most n is asymp-
totically n/ log n and was proved by employing complex analysis) and in fluid dynamics. These
applications are beyond the course, but methods covered within it could be used, for example,
to show that the Riemann zeta function is differentiable on a suitable subset of C.
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Structure of the lecture course

The following topics will be covered in the lectures:

• Review of complex numbers: We begin by reviewing the basic properties of complex
numbers extracted from the content of MT1002 Mathematics.

• Holomorphic functions: We present the basic definitions of limits, continuity and dif-
ferentiability in the complex setting. In particular, we establish the Cauchy–Riemann
Equations. We also discuss (though omit most proofs) how power series define differen-
tiable functions within their radius of convergence.

• Contour integrals: We define how to integrate a function of a complex variable along
a path in the complex plane. The most significant theorem in complex analysis will be
discussed: Cauchy’s Theorem says that under sufficient conditions the integral around a
closed path of a holomorphic function equals 0.

• Theoretical consequences of Cauchy’s Theorem: A large number of theorems, in-
cluding the Properties 1–3 listed above, follow from Cauchy’s Theorem.

• Singularities and poles: Roughly halfway through the course, we shall discuss the
situation of a function that is differentiable in many places but has some points where it
cannot be differentiated. These are called singularities and we shall discuss them in detail.

• Laurent’s Theorem and Cauchy’s Residue Theorem: Information about the be-
haviour of functions with isolated singularities and what happens when we integrate such
functions around closed paths. The latter theorem is the principal tool for our applications.

• Applications of contour integration: We shall give lots of examples showing how the
tools developed to calculate real integrals and sum real series.

• Complex logarithm and multifunctions: Discussion of the behaviour of certain func-
tions that can take many values at a single point; these arise essentially out of the fact
that the argument of a complex number is not uniquely specified.

• Counting zeros: We demonstrate how the behaviour of a function around a contour can
be used to determine the number of zeros inside it.

Prerequisites

The prerequisite modules to take this lecture course are MT2502 Analysis or MT2503 Multivari-
ate Calculus. If one thinks about this for a moment, one realises that the only prior mathematics
that could be assumed would be something that appears in both or material from courses upon
which these both depend (i.e., MT1002 and school mathematics). In reality, to do complex
analysis one does want to pull in material from both modules, but what we shall actually do is
state these facts whenever needed, explain how they should be interpreted (particularly in the
context we require) but not bother with proofs (specifically, for example, in the case of material
about limits, differentiation or convergence from MT2502 ).

Examples of some of the topics that we shall use are:

• basic properties of complex numbers (from MT1002 or school maths);

• the definition of the derivatives (from both MT2502 and MT2503 );

• basic properties of differentiation (from MT1002, MT2502 or school maths);

5



• partial differentiation (from MT2503 );

• power series (introduced in both MT2502 and MT2503, though detailed proofs are delayed
to MT3502 ).

Recommended texts

The following two textbooks each cover the material in the course and in much the same spirit as
these lecture notes. They are precise about the mathematics covered, but not overly technical.
There are many other textbooks on complex analysis available and indeed most introductory
texts on the subject would be suitable for this module.

• John M. Howie, Complex Analysis, Springer Undergraduate Mathematics Series, Springer,
2003.

• H. A. Priestley, Introduction to Complex Analysis, Second Edition, OUP, 2003.
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Chapter 1

Complex numbers and the topology
of the complex plane

We start our journey by reviewing the basic properties of complex numbers. This review material
is all found in MT1002 Mathematics, though many students will have covered this during their
school education (in particular, those who took second-year entry into their programme). The
end part of the chapter will discuss the geometry of the complex plane and introduce a topological
property that will be required to precisely phrase some of the concepts and results of this module.

Complex numbers

A complex number is a number of the form

a+ bi

where a and b are real numbers and the number i satisfies

i2 = −1.

The following are consequently examples of complex numbers: any real number (take b = 0 in
the definition), 3 + 4i,

√
2− (1/π)i, etc. The set of all complex numbers is denoted by C. The

real part of z = a + bi is the real number a and the imaginary part is the real number b. We
write Re z and Im z for the real part and imaginary part of the complex number z.

Arithmetic in C is defined as follows. Addition and subtraction is straightforward:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i;

that is, we simply add (or subtract, when subtracting complex numbers) the real and imaginary
parts. Multiplication involves exploiting the fact that i2 = −1:

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

To perform division requires the use of the complex conjugate. If z = a+ bi (with a, b ∈ R), we
write z̄ = a− bi. Note then that

zz̄ = (a+ bi)(a− bi) = a2 + b2.

We then calculate

a+ bi

c+ di
=
a+ bi

c+ di
· c− di
c− di

=

(
ac+ bd

c2 + d2

)
+

(
bc− ad
c2 + d2

)
i.
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z = a+ ib

|z|

a

b

θ

Figure 1.1: A complex number z plotted in the complex plane.

The general formula for the quotient of one complex number by another does not look all that
pleasant, but in specific cases it is straightforward to calculate.

The modulus of a complex number z = a + bi (with real part a and imaginary part b) is
given by

|z| =
√
a2 + b2.

Thus
zz̄ = |z|2 .

The formula for division can then be expressed as

z

w
=
z

w
· w̄
w̄

=
zw̄

|w|2

for z, w ∈ C.
It will prove to be helpful, indeed essential, to represent complex numbers in a diagram, often

called the Argand diagram but we shall typically refer to as the complex plane. In Figure 1.1,
we have a right-angled triangle whose vertices are the complex numbers z = a + ib, a and 0.
As a consequence, if we write θ for the angle indicated (expressed in radians), then by basic
trigonometry

a = |z| cos θ and b = |z| sin θ (1.1)

and so
z = |z| (cos θ + i sin θ),

which expresses the complex number z in terms of its modulus and this angle θ.
Although we chose the particular θ appearing as the triangle, the choice is only determined

up to a particular integer multiple of 2π. We could add or subtract 2π to the value θ and the
equations appearing in (1.1) would still be satisfied. We shall refer to any θ that satisfies these
equations as the argument of z and denote it by arg z. Thus, it is determined from the real and
imaginary parts of z by the equation

arg z = θ = tan−1(b/a),

though as we have noted this is not uniquely determined but could, given one particular value θ,
be any member of the set

{. . . , θ − 4π, θ − 2π, θ, θ + 2π, θ + 4π, . . . }.

In many situations, we shall restrict the argument to come from a particular range of values to
ensure that we have a unique choice of argument within that range. Typical choices include

−π < arg z 6 π or 0 6 arg z < 2π.
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One often refers to the principal value of the argument which is when we take arg z from the
interval (−π, π] and one sometimes writes Arg z for the principal value of the argument.

When we write a complex number as z = |z| (cos θ + i sin θ) in terms of its modulus and
its argument, we call this the modulus-argument form for z. The formula cos θ + i sin θ is often
abbreviated in various textbooks to eiθ. Because the notation is familiar to students, we shall
it in these notes, but in the next chapter we shall make a definition of the complex exponential
function and be able to interpret the notation eiθ in terms of that definition.

The following summarises the basic properties of modulus and argument that we shall need.
They were either established in the MT1002 lecture notes or can be deduced quickly from the
others. Note that parts of (ii), (iii) and (iv) refer to argument are only true in the sense that
we can choose a value of the argument satisfying the equation; that is, the result depends upon
an appropriate choice of argument from the infinitely many values permitted.

Theorem 1.1 Let z and w be complex numbers.

(i) |Re z| 6 |z| and |Im z| 6 |z|.

(ii) |zw| = |z| |w| and arg(zw) = arg z + argw (up to some integer multiple of 2π).

(iii) |z̄| = |z| and arg z̄ = − arg z (up to some integer multiple of 2π).

(iv) |1/z| = 1/ |z| and arg(1/z) = − arg z (up to some integer multiple of 2π).

(v) zw = z̄w̄.

(vi) De Moivre’s Theorem: If |z| = r and arg z = θ, then

zn = rn (cosnθ + i sinnθ)

for all integers n.

The proof will be omitted in the lectures, but the details are included in these notes for
completeness.

Proof: In parts (i)–(iv), write r = |z|, s = |w|, θ = arg z and φ = argw. Then z =
r(cos θ + i sin θ) and w = s(cosφ+ i sinφ).

(i) Under the above assumption, Re z = r cos θ and Im z = r sin θ. Therefore

|Re z| = r |cos θ| 6 r = |z|

and
|Im z| = r |sin θ| 6 r = |z| ,

using the facts that |cos θ| 6 1 and |sin θ| 6 1.
(ii) Now observe

zw = rs(cos θ + i sin θ)(cosφ+ i sinφ)

= rs
(
(cos θ cosφ− sin θ sinφ) + i(sin θ cosφ+ cos θ sinφ)

)
= rs

(
cos(θ + φ) + i sin(θ + φ)

)
,

using the trigonometric addition formulae. Hence

|zw| = rs = |z| |w|

and
arg(zw) = θ + φ = arg z + argw.
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(iii) The conjugate is given by

z̄ = r(cos θ − i sin θ) = r
(
cos(−θ) + i sin(−θ)

)
,

since sine is an odd function and cosine is an even function. Hence

|z̄| = r = |z| and arg z̄ = −θ = − arg z.

(iv) This is most easily deduced from part (ii). Recall that the formula for division says
1/z = z̄/ |z|2. Hence

|1/z| = |z̄| / |z|2 = 1/ |z|

and
arg(1/z) = arg(z̄/ |z|2) = arg z̄ = − arg z

using parts (i) and (ii).
(v) For this part, write z = a+ bi and w = c+ di. Then zw = (ac− bd) + (ad+ bc)i and

z̄w̄ = (a− bi)(c− di) = (ac− bd)− (ad+ bc)i = zw.

(vi) We first deal with the case when n is a positive integer. We then proceed by induction
on n. The base case n = 1 states that z = r(cos θ + i sin θ) which is simply the definition
of r as the modulus of z and θ as the argument of z. Assume as inductive hypothesis that
zn = rn(cosnθ + i sinnθ); that is, |zn| = rn and arg(zn) = nθ. Then, by (i),∣∣zn+1

∣∣ = |zn| |z| = rn r = rn+1

and
arg(zn+1) = arg(zn) + arg z = nθ + θ = (n+ 1)θ.

Thus zn+1 = rn+1
(
cos(n + 1)θ + i sin(n + 1)θ

)
, as required. This completes the induction and

establishes the equation when n is positive.
When n = 0, z0 = 1, r0 = 1 and cosnθ = cos 0 = 1 and sinnθ = sin 0 = 0. Thus the

formula holds.
Finally, when n is negative, say n = −m for some m > 0, then

|zn| =
∣∣z−m∣∣ = |1/zm| = 1/ |zm| = 1/rm = r−m = rn

and
arg(zn) = arg(1/zm) = − arg(zm) = −mθ = nθ

using the formula already established for zm. This then establishes the required formula for
n negative. �

We use the modulus of a complex number to define distance in the complex plane. Note
that |z| is the distance of the complex number z from the origin. Thus, if z and w are complex
numbers, we think of |z − w| as the distance from w to z. (See Figure 1.2.)

What justifies the use of |z − w| as the distance between two complex numbers is that the
modulus satisfies the triangle inequality. Indeed, having something like the triangle inequality
is essential for performing analysis and so establishing this inequality is the first step in being
able to study complex analysis.

Theorem 1.2 (Triangle Inequality) Let z, w ∈ C. Then

(i) |z + w| 6 |z|+ |w|;

(ii) |z − w| >
∣∣|z| − |w|∣∣.
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z

w
|z − w|

Figure 1.2: Use of modulus for the distance between two complex numbers.

Proof: (i)

|z + w|2 = (z + w)(z̄ + w̄)

= zz̄ + zw̄ + z̄w + ww̄

= |z|2 + zw̄ + zw̄ + |w|2

= |z|2 + 2 Re(zw̄) + |w|2

6 |z|2 + 2 |zw̄|+ |w|2

= |z|2 + 2 |z| |w|+ |w|2

=
(
|z|+ |w|

)2
.

Therefore, upon taking square roots of both sides,

|z + w| 6 |z|+ |w| .

(ii) Note that |z|− |w| is a real number, so the right-hand side denotes the magnitude of this
real number. To verify the inequality, we use part (i) in the following:

|z| = |z − w + w| 6 |z − w|+ |w| ,

so
|z − w| > |z| − |w| . (1.2)

Then interchanging the roles of z and w in this inequality we obtain

|z − w| = |w − z| > |w| − |z| . (1.3)

Putting Equations (1.2) and (1.3) together gives

|z − w| >
∣∣|z| − |w|∣∣,

since the absolute value of |z| − |w| is the right-hand side of either (1.2) or (1.3). �

Remark/Warning: Note that when we have used an inequality above, it always involved real
numbers. The modulus |z| of a complex number z is real and so it makes sense to write assertions
involving inequalities and moduli of complex numbers. However, there is no inequality defined
on the complex numbers that interacts with its addition and multiplication in a helpful way.
As a consequence, in this course one should never need to write “z1 6 z2” for two (non-real)
complex numbers z1 and z2 and, if one were to do so, it is unlikely to have meaning.

In short, don’t write “z1 6 z2” for z1, z2 ∈ C!
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w
ε

Figure 1.3: The open disc of radius ε about the complex number w.

Open sets

It will be unavoidable to make reference to a few concepts from topology during the module.
However, since this is not a course about topology, these lecture notes will avoid dwelling on
them as much as possible. Furthermore, the lecturer has taken the decision to also avoid “front-
loading” the preliminaries with such concepts. Instead, they will be introduced in as brief a
manner as possible when needed. There is therefore only one concept from topology that we
shall introduce at this point, namely what it means for a subset of C to be ‘open.’ This concept
will appear throughout right from the start of our work, which is why we introduce it now. It will
enable us to talk about limits of functions and what it means for a function to be differentiable.

Definition 1.3 If w ∈ C and r > 0 is a real number, the open disc (or open ball) of radius r
about w is

B(w, r) = { z ∈ C | |z − w| < r }.

(See Figure 1.3 for an illustration of the open disc about a complex number w.)
Open discs are used in the following definition.

Definition 1.4 A subset U of C is called open if for every w ∈ U there exists some ε > 0 such
that

B(w, ε) ⊆ U.

This looks perhaps like a technical definition and a bit mysterious at first glance. It is worth
our spending a little time to unpack the main idea and to explain how it will fit in our context
(so as hopefully to make it less mysterious!).

The basic idea is as follows: Suppose that U is an open subset of C and consider some
complex number w selected from the set U . The definition (Definition 1.4) then ensures that
there is some open disc B(w, ε) contained inside U (as illustrated in Figure 1.4). That is, all the
complex numbers in the disc B(w, ε) are all in U and so the complex number w is surrounded
by points that lie in U . Thus we can approach w from any directon without leaving the set U .

The context where we shall use this concept is that we shall consider complex-valued functions
f : U → C defined upon an open subset U of C. If w ∈ U , we can approach w from all directions
while staying in the domain of f and consequently we can analyze the behaviour of the values f(z)
as z approaches w. In particular, this will allow us to discuss the existence and value of the
limit of f(z) as z approaches w.

For this reason, many of the theorems stated in the lecture course will be phrased in terms
of open sets U . However, since this is not a course on topology, it will generally be easy to verify
that any particular set we are interested in as being open. We shall not be considering esoteric
examples at all. As an example:

Lemma 1.5 If w ∈ C and r > 0 is any real number, the open disc B(w, r) is open.
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B(w, ε)
U

Figure 1.4: An open subset U in C.

w

A

Figure 1.5: Sets with points on the boundary are not open.

This is reasonably important as we should not call an object an “open” disc if it were not
itself open in the sense of the terminology we have introduced. The proof of this lemma will
be omitted during the lectures (as it belongs most naturally in a module on topology) and will
instead be illustrated by a picture.

Proof: This can be established quite easily once we draw a reasonable diagram of what is going
on. The diagram below illustrates what we are trying to achieve, but it would perhaps become
more transparent to understand our choice of ε if the arrows were drawn radially outwards
from w so that they pass through z.

Let U = B(w, r). Let z ∈ U . We must find some radius ε such that the ball about z of this
radius is kept within U .

w
z r

ε

Since z ∈ U , the modulus |z − w| < r. Take ε = r − |z − w|. Note then that ε > 0. We shall
show that

B(z, ε) ⊆ U.
If v ∈ B(z, ε), then |v − z| < ε. So

|v − w| = |(v − z) + (z − w)|

13



6 |v − z|+ |z − w|
< ε+ |z − w| = r.

So v ∈ B(w, r) = U . This shows that

B(z, ε) ⊆ U,

as required. We conclude that U = B(w, r) is indeed open. �

Almost any precise verification of openness of a set will follow roughly the same type of
argument. We shall often find open sets are those that can be defined by strict inequalities
involving the modulus of complex numbers (such as |z − w| < r as in B(w, r)).
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Chapter 2

Holomorphic Functions

The primary goal of this course is to understand the behaviour of functions of a complex-variable
that are differentiable. As a consequence, the main topic of this section will be differentiation.
We shall begin with a brief general discussion.

Given a function f : D → C of a complex variable, defined on some subset D ⊆ C, one can
associate two real-valued functions, namely

Re f : D → R and Im f : D → R.

Here, of course, Re f(z) is the real part and Im f(z) is the imaginary part of the value f(z).
If we write a complex number z ∈ D in terms of its real and imaginary parts as z = x+iy, then

we can view f : D → C as a function of two real variables. This is quite common and the usual
notation is to write u(x, y) and v(x, y) for the real and imaginary parts of the function f(x+ iy).
Thus

f(x+ iy) = u(x, y) + i v(x, y)

for x+ iy ∈ D and, in writing this, we have associated a pair of real-valued functions of two real
variables

u : D̃ → R and v : D̃ → R,

for a suitable subset D̃ of R2, to the complex function f : D → C. To be precise, the set D̃ is
given by D̃ = { (x, y) ∈ R2 | x + iy ∈ D }, the subset of R2 that corresponds to the subset D
of C.

Example 2.1 Calculate the real and imaginary parts of the function f : C→ C given by f(z) =
z2 expressed as functions of two real variables.

Solution: Write z = x+ iy. Then

f(z) = (x+ iy)2 = x2 − y2 + 2ixy,

so the real and imaginary parts are

u(x, y) = x2 − y2 and v(x, y) = 2xy,

respectively. �

Differentiability

The definition of what it means for a complex-valued function to be differentiable is essentially
the same definition as for a real-valued function (as was given in MT2502 and MT2503 ).
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Definition 2.2 Let U be an open subset of C and f : U → C be a function of a complex variable
defined on U . We say that f is differentiable at a point c ∈ U if the limit

lim
h→0

f(c+ h)− f(c)

h

exists. When this limit does exist, we call

f ′(c) = lim
h→0

f(c+ h)− f(c)

h

the derivative of f at c. We also write df
dz for the function f ′(z) (whenever this function is

defined).

Note: The definition of the derivative is also expressed, by writing w for z + h (for h 6= 0) as

df

dz
= f ′(z) = lim

w→z

f(w)− f(z)

w − z
.

Many textbooks will use this equivalent formulation.

When we speak of the limit in the above definition, and the equivalent formulation, what we
mean is that the value of

f(w)− f(c)

w − c
approaches a single value, that we denote by f ′(c), as w approaches c no matter which route one
uses. The requirement that U is an open set containing the point c, at which we differentiate f ,
is to allow us to approach c from any direction. Furthermore, our definition means that the value
of the above formula can be made to arbitrarily close to f ′(c) provided that we are sufficiently
close to c. In view of this intuition, the following formal definition is also used. (This formal
version is precisely as found in MT2502.) We shall, however, have little cause to manipulate
limits as expressed in the following formulation. This ε–δ definition is really only used in a few
of our proofs.

Definition 2.3 (Formal Definition) Let U be an open subset of C and f : U → C be a
function of a complex variable defined on U . We say that f is differentiable at a point c ∈ U ,
with derivative f ′(c), if for all ε > 0, there exists some δ > 0 (depending upon ε) such that
0 < |h| < δ implies ∣∣∣∣f(c+ h)− f(c)

h
− f ′(c)

∣∣∣∣ < ε.

Since the definition of differentiability is expressed as a limit in exactly the same way as was
used for real-valued functions, one can deduce the same basic facts about differentiability as for
real-valued functions using precisely the same methods. We list these now. (Some proofs appear
in the lecture notes, but they will not be proved during the lectures.)

Theorem 2.4 Let U be an open subset of C. If the function f : U → C is differentiable at
c ∈ U , then it is continuous at c (that is, limz→c f(z) = f(c)).

Proof: [Proof omitted during lectures and is non-examinable.]
Observe that if f is differentiable at c then

lim
z→c

(
f(z)− f(c)

)
= lim

z→c

((
f(z)− f(c)

z − c

)
(z − c)

)
= f ′(c) · 0 = 0.

Hence limz→c f(z) = f(c); that is, f is continuous at c. �
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Our second list is the standard list of rules for differentiability:

Theorem 2.5 Let f and g be functions of a complex variable. Then

(i) Sum Rule: If f and g are both differentiable at a point c, then f + g is differentiable at c
and

(f + g)′(c) = f ′(c) + g′(c).

(ii) If f is differentiable at a point c and α ∈ C, then αf is differentiable at c and

(αf)′(c) = αf ′(c).

(iii) Product Rule: If f and g are both differentiable at a point c, then f · g is differentiable
at c and

(f · g)′(c) = f ′(c) g(c) + f(c) g′(c);

that is, we have the usual general formula for differentiation of products:

d

dz

(
f(z) g(z)

)
= f ′(z) g(z) + f(z) g′(z).

(iv) Chain Rule: If g is differentiable at a point c and f is differentiable at g(c), then the
composite f ◦ g is differentiable at c and

(f ◦ g)′(c) = f ′(g(c)) g′(c).

(v) Quotient Rule: If f and g are both differentiable at a point c and g(c) 6= 0, then f/g is
differentiable at c and (

f

g

)′
(c) =

g(c) f ′(c)− f(c) g′(c)

g(c)2
.

Proof: [Omitted in lectures and currently also in the lecture notes. In a future version of the
notes, the proofs may be added for the sake of completeness. Proofs will not be examinable.] �

We shall be interested in functions that are not just differentiable at individual points in C
or individual points of some open subset, but rather are differentiable on the whole of some open
subset of C. Accordingly, we make the following definition:

Definition 2.6 Let U be an open subset of C and f : U → C be a function of a complex variable
defined on U . We say that f is holomorphic on U if it is differentiable at every point of U .

A function f : C → C that is holomorphic on the whole complex plane C (that is, differen-
tiable at every point of C) is sometimes called an entire function.

Note, for example, that the Sum Rule (Theorem 2.5(i)) then says that if f and g are holo-
morphic on some open subset U then the sum f + g is also holomorphic on U and

(f + g)′(z) = f ′(z) + g′(z) for all z ∈ U.

Similar observations apply to scalar multiples, products, composites and quotients of holomor-
phic functions.

Example 2.7 (i) Since sums and products of holomorphic functions are holomorphic on the
complex plane C, it follows straightaway that polynomials are holomorphic on C. So, for
example, if f(z) = zn, then f is holomorphic on C and

f ′(z) = nzn−1.

More generally, if g(z) = a0 + a1z + a2z
2 + · · · + anz

n, a polynomial with coefficients
a0, a1, . . . , an ∈ C, then g is holomorphic on C and

g′(z) = a1 + 2a2z + 3a3z
2 + . . . nanz

n−1.
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U

ch ∈ R

h = ik, k ∈ R

Figure 2.1: The Cauchy–Riemann Equations: Limits as h → 0 through real and imaginary
values.

(ii) If we use the quotient rule, then it follows that for polynomials f(z) and g(z), the quotient
f(z)/g(z) is holomorphic on any open set U such that U contains none of the roots of g.

In a course on calculus, the next typical examples of differentiable real-valued functions after
polynomials are usually exponential functions such as ex and trigonometric functions such as
sinx and cosx. We wish to do something similar for functions of a complex variable. It is,
however, not entirely obvious exactly how to define such functions. One possibility is to exploit
the properties that we expect the functions to have and so, for example, if z = x + iy is a
complex number with real and imaginary parts x and y we might define

ez = ex eiy = ex(cos y + i sin y).

The problem with this definition, however, is that it is more complicated to show ez given by
this formula is indeed differentiable.

The most straightforward solution is to define the functions we seek as power series. This
will also have the advantage of building some general theory that will both provide us with a
good source of holomorphic functions and fit within the direction of the mathematics we develop.
Accordingly the last part of this chapter will be devoted to a discussion of power series.

The Cauchy–Riemann Equations

Let f : U → C be a function of a complex variable defined upon some open subset U ⊆ C. If
f is differentiable at some point c ∈ U , this means

f ′(c) = lim
h→0

f(c+ h)− f(c)

h

exists. We interpret this as saying
f(c+ h)− f(c)

h

approaches the same value (in C) no matter how h approaches 0. In particular, if we let h→ 0
through real numbers or through purely imaginary numbers (i.e., h = ik where k ∈ R), then we
should obtain the same limit (see Figure 2.1). Exploiting this is what leads to what are known
as the Cauchy–Riemann equations.

Write u and v for the real and imaginary parts of f and view them as functions of two real
variables x and y by also writing z = x+ iy for z ∈ U . Thus

f(x+ iy) = u(x, y) + i v(x, y)
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whenever x + iy ∈ U . In particular, we write our fixed value as c = a + ib for a, b ∈ R. Now if
h is a sufficiently small real number such that a+ ib+ h ∈ U , then

f(a+ ib+ h)− f(a+ ib)

h
=
u(a+ h, b)− u(a, b)

h
+ i

v(a+ h, b)− v(a, b)

h
. (2.1)

Now if we view u(x, y) as a function of x alone then as h→ 0 the quotient

u(a+ h, b)− u(a, b)

h

approaches the derivative of u with respect to x evaluated at x = a (treating y as the constant b).
Those who have completed MT2503 know what we get. If we differentiate u(x, y) with respect
to x, treating y as constant, then the result is the partial derivative, denoted

∂u

∂x
and ux.

Those who have come in via MT2502 route need not worry. The partial derivative is exactly
what has just been described: view u(x, y) as a function of x only, treat y as constant, and
differentiate with respect to x to obtain ∂u

∂x . Similarly, the second term in Equation (2.1) has
limit equal to the partial derivative of v with respect to x as h→ 0, so we conclude

lim
h→0

f(a+ ib+ h)− f(a+ ib)

h
=
∂u

∂x
(a, b) + i

∂v

∂x
(a, b), (2.2)

evaluating both partial derivatives at (a, b).
On the other hand, we could consider a purely imaginary h, h = ik with k ∈ R sufficiently

small such that a+ ib+ ik ∈ U . Then

f(a+ ib+ ik)− f(a+ ib)

ik
=
u(a, b+ k)− u(a, b)

ik
+ i

v(a, b+ k)− v(a, b)

ik

=
v(a, b+ k)− v(a, b)

k
− i u(a, b+ k)− u(a, b)

k
.

We now let k → 0. In this case, we are, in the first quotient, viewing v(x, y) as a function of y,
treating x as the constant a, and as k → 0 we obtain the partial derivative of v with respect
to y evaluated at (a, b). The second term above has limit equal to the partial derivative of u
with respect to y and so we conclude

lim
k→0

f(a+ ib+ ik)− f(a+ ib)

ik
=
∂v

∂y
(a, b)− i ∂u

∂y
(a, b). (2.3)

Now recall that f ′(c) is the limit of

f(c+ h)− f(c)

h

as h→ 0 no matter how h approaches 0. Consequently, Equations (2.2) and (2.3) (which are the
limits as we approach along a horizontal or vertical line in the complex plane) must be equal:

∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i ∂u

∂y

(when all partial derivatives are evaluated at (a, b)). Now u and v are real-valued functions, so
if we take the real and imaginary parts of this last equation, we have established the Cauchy–
Riemann Equations as stated in the following theorem:
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Theorem 2.8 (Cauchy–Riemann Equations) Let f : U → C be a function of a complex
variable, with U an open subset of C, and suppose that f is differentiable at c = a + ib ∈ U
(where a, b ∈ R). Write

f(x+ iy) = u(x, y) + i v(x, y)

where u : Ũ → R and v : Ũ → R (and where Ũ = { (x, y) ∈ R2 | x+ iy ∈ U }). Then the partial
derivatives

∂u

∂x
,

∂u

∂y
,

∂v

∂x
,

∂v

∂y

of u and v exist at (a, b) and satisfy

∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −∂u

∂y
.

�

In particular, if a function f : U → C is holomorphic on the open subset U , then the Cauchy–
Riemann Equations are satisfied at every point of U . We mention one more observation that
appears above: when f(x + iy) = u(x, y) + i v(x, y), the derivative of f when it exists can be
expressed in terms of the partial derivatives as

f ′(x+ iy) =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i ∂u

∂y

for each z = x+ iy ∈ U .

Example 2.9 Consider the function f : C→ C given by

f(z) = z2.

Writing z = x+ iy, we have already observed the real and imaginary parts of f are given by

u(x, y) = x2 − y2 and v(x, y) = 2xy

(see Example 2.1). Let us calculate the partial derivatives:

∂u

∂x
= 2x,

∂u

∂y
= −2y,

∂v

∂x
= 2y,

∂v

∂y
= 2x.

Observe that the Cauchy–Riemann Equations do indeed hold:

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
.

(This should not be surprising: we have shown that the Cauchy–Riemann Equations hold for
every holomorphic function. In particular, they hold for the function f(z) = z2.)

Note that Theorem 2.8 says that if f is holomorphic on a set U , then it satisfies the Cauchy–
Riemann Equations at every point of U . This means that one way that the Cauchy–Riemann
Equations can be used to show that a particular function is not holomorphic by showing that
these equations do not hold. However, there are examples of functions that satisfy the Cauchy–
Riemann Equations but are still not holomorphic (see Example 2.11 below). Thus, the Cauchy–
Riemann Equations are necessary for holomorphic functions, but they are not sufficient to
establish differentiability.

The following examples illustrate the use of the Cauchy–Riemann Equations to show a
function is not differentiable.
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Example 2.10 Show that the functions (i) f(z) = z̄ and (ii) g(z) = |z| are not differentiable at
any point of C.

Solution: (i) Writing u and v for the real and imaginary parts of

f(x+ iy) = x− iy,

we observe
u(x, y) = x and v(x, y) = −y.

Thus
∂u

∂x
= 1 and

∂v

∂y
= −1.

In particular, ∂u
∂x 6=

∂v
∂y , so the Cauchy–Riemann Equations are never satisfied. Consequently,

f cannot be differentiated at any point of C.
(ii) When

g(x+ iy) = (x2 + y2)1/2,

the real and imaginary parts of g are

u(x, y) = (x2 + y2)1/2 and v(x, y) = 0.

To calculate the partial derivatives, we need to treat the point (x, y) = (0, 0) separately. For
(x, y) 6= (0, 0), we calculate

∂u

∂x
=

x

(x2 + y2)1/2
,

∂u

∂y
=

y

(x2 + y2)1/2

and
∂v

∂x
=
∂v

∂y
= 0.

In particular,

∂u

∂x
6= ∂v

∂y
if x 6= 0

and

∂v

∂x
6= −∂u

∂y
if y 6= 0.

In the case of the partial derivatives at (0, 0), observe

u(h, 0)− u(0, 0)

h
=
|h|
h

=

{
1 for real h > 0

−1 for real h < 0.

This has no limit as h→ 0 and hence ∂u
∂x does not exist at the origin. Thus the Cauchy–Riemann

Equations are not satisfied at z = 0 either since not all the partial derivatives involved exist.
In conclusion, there are no points in the complex plane where g(z) = |z| satisfies the Cauchy–

Riemann Equations and hence g is not differentiable on C. �

21



Comments: One way to interpret the previous example and the fact that the use of complex
conjugate and the modulus causes the Cauchy–Riemann Equations to fail is that one could think
intuitively of holomorphic functions as those that are genuinely functions of z alone and do not
involve complex conjugates z̄. This will not be made precise at all. Indeed it happens to be
the case that if f(z) is holomorphic on an open set, then f(z̄) is holomorphic on another open
set (but, of course, here one has used complex conjugation twice). Nevertheless, the Cauchy–
Riemann Equations give some intuition into which sort of functions are holomorphic.

Example 2.11 Consider the function f : C→ C given by

f(z) =

{
z5

|z|4 if z 6= 0

0 if z = 0.

Show that f satisfies the Cauchy–Riemann Equations at z = 0 but is not differentiable there.

Solution: We need to calculate the partial derivatives of the real and imaginary parts at (0, 0).
Consider a non-zero real number x. Then, according to our above formula for f ,

f(x) = x

so the real and imaginary parts of f along the real axis are

u(x, 0) = x and v(x, 0) = 0.

This enables us to calculate the partial derivatives of u and v with respect to x at (0, 0):

∂u

∂x
(0, 0) = 1 and

∂v

∂x
(0, 0) = 0.

Similarly, for a non-zero real numbers y,

f(iy) =
i5y5

y4
= iy,

so
u(0, y) = 0 and v(0, y) = y,

from which we calculate

∂u

∂y
(0, 0) = 0 and

∂v

∂y
(0, 0) = 1.

Hence the Cauchy–Riemann Equations, ∂u
∂x = ∂v

∂y and ∂v
∂x = −∂u

∂y , are satisfied at z = 0.

Now consider h = (1+i)√
2 k for some real number k. Note

f(h) =

(
1 + i√

2

)5

k,

so that
f(h)− f(0)

h
=

(
1 + i√

2

)4

= (cos π4 + i sin π
4 )4 = −1.

Hence the limit of (f(h)−f(0))/h as h→ 0 through complex numbers of the form h = (1+i)k/
√

2
is −1, whereas (from the partial derivatives we have calculated earlier) the limit through real
numbers h is ∂u

∂x(0, 0) + i ∂v∂x(0, 0) = 1. Since these values are different, we conclude that

lim
h→0

f(h)− f(0)

h

does not exist, so f is not differentiable at z = 0. �
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This last example confirms that although the Cauchy–Riemann Equations are necessary for
a function to be holomorphic, they are not sufficient to show this. All they really tell us is about
the limit

lim
h→0

f(c+ h)− f(c)

h

as h approaches 0 along the real axis and along the imaginary axis. The Equations do not
give any information about what the limit might be if h approaches 0 along a different path.
It is this missing information that explains why the Cauchy–Riemann Equations alone are not
sufficient to establish a function is holomorphic. What is surprising is that they are almost
enough to establish that a function is holomorphic. It turns out if one also assumes that the
partial derivatives ∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y are continuous, then one can establish
that the function is holomorphic. In this lecture course, we merely state the following (partial)
converse of the Cauchy–Riemann Equations.

Theorem 2.12 Let f : U → C be a function of a complex variable defined upon an open
subset U of C. Write

f(x+ iy) = u(x, y) + i v(x, y),

for each x+ iy ∈ U , and suppose that the partial derivatives

∂u

∂x
,

∂v

∂x
,

∂u

∂y
,

∂v

∂y

of the functions u and v exist and are continuous on U . Suppose in addition that the Cauchy–
Riemann Equations

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y

hold at every point of U . Then f is holomorphic on U .

There is just one additional comment that we make about the hypotheses of this theorem.
The assumption that the partial derivatives are continuous is not as strong or unexpected as one
might think. If f is a holomorphic function, then we shall observe later (amongst other things)
that the derivative f ′ is itself also holomorphic and so, in particular, continuous. Consequently,
the real and imaginary parts ∂u

∂x and ∂v
∂x of f ′ are necessarily continuous. In view of this,

one should not be so surprised that continuity of the partial derivatives appear amongst the
hypotheses in this theorem.

Proof: Currently omitted. See Howie [1, Theorem 4.3]. �

Before turning to power series, we mention one result about holomorphic functions, analogous
to the result for real-valued functions that is important. The proof actually depends upon the
analogous result for real-valued functions.

Theorem 2.13 Let w ∈ C and r > 0. Suppose that f : B(w, r) → C is holomorphic on the
open disc B(w, r). If f ′(z) = 0 for all z ∈ B(w, r), then f is constant on B(w, r).

Proof: First write
f(x+ iy) = u(x, y) + i v(x, y)

for x+ iy ∈ B(w, r). Note that

f ′(x+ iy) =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i ∂u

∂y
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w

t

Figure 2.2: Joining w = a+ ib to t = c+ id via c+ ib.

for all points x+ iy ∈ B(w, r) (with these equations having been established in our proof of the
Cauchy–Riemann Equations). Since f ′(z) = 0 for all z ∈ B(w, r), we conclude by taking real
and imaginary parts that

∂u

∂x
=
∂v

∂x
=
∂u

∂y
=
∂v

∂y
= 0

on the disc B(w, r).
Write w = a+ ib (for a, b ∈ R). Consider some t = c+ id ∈ B(w, r) (where also c, d ∈ R). We

can join t to w using horizontal and vertical lines in the complex plane (as shown in Figure 2.2).
For the sake of being concrete, let us consider the horizontal line from w = a + ib to c + ib.
Viewed as a function of x alone, the function u(x, b) has zero derivative: ∂u/∂x = 0 on the line
from w to c + ib. From results about functions of a real-variable, we conclude that u(x, b) is
constant on this line. Thus u(a, b) = u(c, b). By the same argument, using the partial derivative
∂v/∂x, we conclude v(a, b) = v(c, b). Thus

f(w) = u(a, b) + i v(a, b) = u(c, b) + i v(c, b) = f(c+ ib).

Similarly, using the vertical line from c + ib to t and exploiting the partial derivatives ∂u/∂y
and ∂v/∂y, we establish f(c+ ib) = f(t).

Putting this together, we conclude

f(t) = f(w)

for all t ∈ B(w, r), so f is constant on this disc. �

By exploiting the fact that the whole complex plane is the union of open discs with ever
growing radii, one deduces the following.

Corollary 2.14 If f is holomorphic on C and f ′(z) = 0 for all z ∈ C, then f is constant.

Proof: By the theorem, f is constant on every open disc B(0, r) for all radii r > 0. If z ∈ C,
there exists some radius r with r > |z| and we conclude f(z) = f(0). Hence f is constant on C.

�

Power series

The purpose of this section is to consider functions of the form

∞∑
n=0

cnz
n,

where c0, c1, c2, . . . ∈ C, and more generally of the form

∞∑
n=0

cn(z − a)n
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where also a ∈ C. For a particular complex number value of z, we can evaluate the sum

sN =
N∑
n=0

cn(z − a)n

for each natural number N . In this way, we define a sequence

s0, s1, s2, . . .

of partial sums. This sequence (sN ) may or may not converge to a complex number. Conse-
quently, we can define a complex-valued function f : D → C by

f(z) =

∞∑
n=0

cn(z − a)n

where D is some set of complex numbers for which this series converges. It would be possible
to make the concept of convergence precise with an ε–δ definition as was done in MT2502. We
shall, however, just state a theorem, Theorem 2.16 below, that tells that such a power series
defines a complex-valued function on a certain open disc.

Definition 2.15 A power series is a function of the form

f(z) =
∞∑
n=0

cn(z − a)n

(where a and c0, c1, . . . are complex numbers) whenever this converges (i.e., for whichever values
of z ∈ C the series of complex numbers converges).

Power series were discussed in both MT2502 and MT2503 with various facts presented. We
summarise the basic facts that we require in the following theorem. The primary place where
power series are considered is within the module MT3502 Real Analysis, albeit for power series
of real numbers. It is for this reason that the proofs are omitted. These proofs can be found (in
the context of power series involving real numbers) in MT3502.

Theorem 2.16 Let a and c0, c1, . . . be complex numbers and consider the power series∑∞
n=0 cn(z − a)n.

(i) There exists a radius of convergence R, either a real number in [0,∞) or R = ∞, such
that the power series

∑∞
n=0 cn(z− a)n converges (absolutely) for |z − a| < R and does not

converge for |z − a| > R.

(ii) The function f(z) =
∑∞

n=0 cn(z − a)n is differentiable at every z satisfying |z − a| < R
with derivative

f ′(z) =

∞∑
n=1

ncn(z − a)n−1.

Moreover, the latter power series has the same radius of convergence R as the original
series.

The term “absolute convergence” appearing in the theorem is actually stronger than con-
vergence. To say

∑∞
n=0 cn(z − a)n is absolutely convergent means that the series converges but

also the series of real numbers formed by taking the modulus of each term

∞∑
n=0

|cn(z − a)n|
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is convergent. In fact, convergence of the latter series of real numbers obtained by taking the
modulus always implies convergence of the former series of complex numbers.

Note that when R = 0, we are saying that the power series only converges when z = a. (Our
power series

∑∞
n=0 cn(z − a)n necessarily converges at z = a since all but the first term equal 0

at this value of z.) When R = ∞, we are saying the power series converges for all z ∈ C. The
second part of the theorem tells us that a power series can be differentiated term-by-term inside
the radius of convergence.

The following gives one way of calculating the radius of convergence of a power series.
Note, however, that there can be choices of coefficients cn such that the limit appearing in the
proposition does not exist. In those cases, more care would be needed to verify what the radius
of convergence actually is. Nevertheless, the proposition can be used in many interesting cases.

Proposition 2.17 Let a and c0, c1, . . . be complex numbers. Suppose that

R = lim
n→∞

∣∣∣∣ cncn+1

∣∣∣∣
exists. Then this limit R is the radius of convergence of the power series

∑∞
n=0 cn(z − a)n.

The proof of this result depends upon the Ratio Test : a basic fact about convergence of
real numbers that is covered in MT1002 and proved in MT2502. For the sake of all students,
especially those who may have managed to avoid it during their route to this module, we recall
the result:

Ratio Test: Let {b0, b1, b2, . . . } be a collection of positive real numbers. Suppose
that the limit ` = limn→∞ bn+1/bn exists. Then

(i) if ` < 1, the series
∑∞

n=0 bn converges;

(ii) if ` > 1, the series
∑∞

n=0 bn does not converge.

Proof of Proposition 2.17: As noted above, the power series certainly converges for z = a.
Assume that 0 < |z − a| < R. Then

lim
n→∞

∣∣cn+1(z − a)n+1
∣∣

|cn(z − a)n|
= lim

n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ |z − a|
= |z − a| lim

n→∞

∣∣∣∣cn+1

cn

∣∣∣∣
=
|z − a|
R

< 1.

Hence, by the Ratio Test,
∑∞

n=0 |cn(z − a)n| converges. Thus the power series converges abso-
lutely for |z − a| < R. This establishes that the radius of convergence is at least R.

Conversely, suppose |z − a| > R = limn→∞ |cn/cn+1|. Then

|z − a| > |cn/cn+1| for sufficiently large n,

so ∣∣cn+1(z − a)n+1
∣∣ > |cn(z − a)n| for sufficiently large n.

This means that cn(z − a)n 6→ 0 as n → ∞. Hence
∑∞

n=0 cn(z − a)n does not converge for
|z − a| > R. Hence the radius of convergence is precisely R. �

Example 2.18 (Complex exponential function) Define

ez =

∞∑
n=0

zn

n!
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to be the complex exponential function. (Note that we are not making an assertion about
what “powers” involving complex numbers in the exponent at this stage. Instead, we are merely
defining the symbol “ez” to mean the power series on the right-hand side, whenever it converges.)

The coefficients in this power series are cn = 1/n!. So∣∣∣∣ cncn+1

∣∣∣∣ =
(n+ 1)!

n!
= n+ 1→∞

as n→∞. Proposition 2.17 tells us that the radius of convergence of the power series is R =∞.
Hence the power series defines a function that is holomorphic on the whole complex plane C
with derivative obtained by term-by-term differentiation of the power series:

d

dz
(ez) =

∞∑
n=1

nzn−1

n!
=

∞∑
n=1

zn−1

(n− 1)!
=

∞∑
m=0

zm

m!
= ez.

Thus, the complex exponential function already shares one property with the real version of the
function.

Fix some complex number ζ and consider some other complex variable z. (So we are per-
mitting z to vary, but we are treating ζ as a constant.) Define

f(z) = ez eζ−z

The product and chain sum rules (Theorem 2.5) tells us that f(z) is holomorphic on the complex
plane C and that the derivative of f is

f ′(z) = ez eζ−z − ez eζ−z = 0.

It follows (by Corollary 2.14) that f is constant on C. Note e0 = 1 by definition, so from
f(z) = f(0) for all z ∈ C we deduce

ez eζ−z = e0eζ = eζ .

This formula now holds for all ζ and z in C, so substituting ζ = z+w for some complex numbers
z and w yields

ez ew = ez+w

for all complex-numbers w and z.

Example 2.19 (Complex trigonometric functions) Having defined ez, one way we could
define sin z and cos z is in terms of the exponential function. We shall use an alternative method,
namely via power series, as follows:

sin z =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1 = z − z3

3!
+
z5

5!
− z7

7!
+ . . .

cos z =
∞∑
n=0

(−1)n

(2n)!
z2n = 1− z2

2!
+
z4

4!
− z6

6!
+ . . . .

To determine the radius of convergence of these series takes a little more care than applying
the formula of Proposition 2.17 without thought. The problem with that formula is that in the
above power series a lot of the coefficients cn equal 0, so the limit in Proposition 2.17 does not
exist. The solution is to adapt the method, namely the use of the Ratio Test, employed to prove
that proposition.

If z ∈ C, put an = (−1)n

(2n+1)!z
2n+1 for each integer n > 0. Then

|an+1|
|an|

=
|z|2n+3

(2n+ 3)!
· (2n+ 1)!

|z|2n+1
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=
|z|2

(2n+ 3)(2n+ 2)
→ 0 as n→∞.

Hence
∑∞

n=0 |an| converges by the Ratio Test, so the power series
∑∞

n=0 an =
∑∞

n=0
(−1)n

(2n+1)!z
2n+1

is absolutely convergent for all z ∈ C. The radius of convergence is therefore R =∞.
A similar argument can be applied to the series for cos z.
In conclusion,

• the power series for sin z and cos z converge everywhere in the complex plane (i.e., the
radius of convergence R =∞);

• sin z and cos z are holomorphic on C and have derivatives

d

dz
(sin z) = cos z and

d

dz
(cos z) = − sin z.

(These are obtained by differentiating each power series term-by-term and observing that
the result is the other power series.)

Furthermore, since a power series converges absolutely inside its radius of convergence, we
are free to manipulate the power series as follows: For any z ∈ C,

cos z + i sin z = 1 + iz − z2

2!
− iz3

3!
+
z4

4!
+
iz5

5!
+
z6

6!
− . . .

= 1 + iz +
(iz)2

2!
+

(iz)3

3!
+

(iz)4

4!
+

(iz)5

5!
+ . . .

= eiz.

So
eiz = cos z + i sin z (2.4)

for all complex numbers z.
We can make further observations by substituting into the series above. If one substitutes −z

for z in the power series for sin z and cos z, then we obtain immediately

sin(−z) = − sin z and cos(−z) = cos z.

Therefore
e−iz = cos z − i sin z

from Equation (2.4) and when we add or subtract these two equations, we deduce

2 cos z = eiz + e−iz and 2i sin z = eiz − e−iz.

Hence
cos z = 1

2(eiz + e−iz)

and
sin z = 1

2i(e
iz − e−iz) = − i

2(eiz − e−iz).

(If we wanted to define cos z and sin z in terms of the exponential function, it is these two
formulae that we would have used. In the above, we have verified that the functions defined by
the power series satisfy the formulae that we wanted.)

Note that we can now also justify formulae referred to in Chapter 1 when we presented the
modulus-argument form of a complex number. Indeed, if θ is a real number, Equation 2.4 says

eiθ = cos θ + i sin θ
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and so if θ is a suitable argument for the complex number z, we are permitted to write

z = |z| (cos θ + i sin θ) = |z| eiθ

in terms of this complex number’s modulus and argument. We also calculate that

ex+iy = ex eiy = ex(cos y + i sin y)

for any z = x+ iy ∈ C.

Further complex trigonometric functions can be defined in terms of the two we currently
have, e.g.,

tan z =
sin z

cos z

when cos z 6= 0. We can also define complex hyperbolic functions in terms of the exponential
function by

sinh z = 1
2(ez − e−z) and cosh z = 1

2(ez + e−z).

Finally, we observe that when we substitute a real number into the power series we have
used, we get the original functions ex, sinx and cosx with which we are familiar. Indeed, the
most natural way to view what we have done is the following:

(i) Start with a differentiable function of a real variable (e.g., ex).

(ii) Find the power series expansion of this function: the Taylor series (see, for example,
MT2503 ; for ex this is

∑∞
n=0 x

n/n!).

(iii) Use this power series to extend the function to the complex numbers.

Essentially, the above procedure can be viewed as exactly what we have done in the last part of
this chapter.

29



Chapter 3

Contour Integration and Cauchy’s
Theorem

In this chapter, we introduce the main tool that is used to study complex analysis, namely the
integral of a (holomorphic) function around a suitable curve in the complex plane. The last half
of the chapter is devoted to a discussion of the most important theorem of complex analysis,
Cauchy’s Theorem, which states that the integral of a holomorphic function around a suitably
well-behaved closed curve is zero. This will turn out to be a very powerful tool that will be used
throughout the rest of the lecture course.

Curves

Before we define the integral of a function of a complex variable around along a curve, we must
first define the technical terms stating what we mean by a curve and which properties we use
when defining the integral.

Definition 3.1 (i) A curve (also known as a path) is a continuous function

γ : [a, b]→ C

defined on some closed interval [a, b] in R. We write

γ∗ = { γ(t) | t ∈ [a, b] }

for the image of the curve (that is, the actual subset of C that is traced as one follows the
curve).

(ii) A curve γ : [a, b] → C is smooth if γ is differentiable (with one-sided derivatives at the
end-points a and b) and the derivative γ′ is continuous.

In line with the position that we have taken in these notes, we shall not give a formal ε–δ
definition, of the flavour found in MT2502, of the concepts of continuity and differentiability as
they appear in Definition 3.1. For us, to see that γ : [a, b]→ C is a curve is to require that

γ(c) = lim
t→c

γ(t)

at every parameter c ∈ [a, b], with one-sided limits at c = a and b. Similarly to say γ is smooth
is to require that

γ′(c) = lim
t→c

γ(t)− γ(c)

t− c
at every point c ∈ [a, b], again with one-sided limits at c = a and b. The reality, however, is that
every example we consider will be built from functions that we already understand quite well.
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c

d
γ1

γ2

c
θ1

θ2

Figure 3.1: (i) A line segment, and (ii) a circular arc.

(See Example 3.2, where we merely use linear polynomials and exponential functions of t.) We
will be able to recognize smooth curves γ when we draw the image γ∗ on the complex plane.
Curves will be drawn without any breaks and smooth curves will, indeed, be smooth: they have
no sharp angles or changes in direction.

Observation: Furthermore note that, by taking real and imaginary parts, we can write any
curve γ in the form

γ(t) = x(t) + i y(t)

where x, y : [a, b] → R are continuous real-valued functions. Moreover, γ is smooth if and only
if x and y are differentiable with continuous derivatives.

Example 3.2 The two most common examples of smooth curves that we shall use are lines
and circular arcs.

(i) If c, d ∈ C, the line segment from c to d is

γ1 : [0, 1]→ C

given by
γ1(t) = c+ (d− c)t for 0 6 t 6 1.

Observe that γ1(0) = c and γ1(1) = d.

(ii) If c ∈ C, r > 0 and θ1, θ2 are angles chosen in some appropriate range (with θ1 < θ2), the
(anti-clockwise) circular arc

γ2 : [θ1, θ2]→ C

is given by
γ2(t) = c+ reit.

The derivatives of these curves are calculated using the usual rules of differentiation:

γ′1(t) = d− c
γ′2(t) = rieit.

Both are continuous functions of t (indeed γ′1 is constant), so line segments and circular arcs are
examples of smooth curves. These examples of curves are illustrated in Figure 3.1.

In fact, most of the examples of curves that we shall use in our applications will be constructed
by putting together various line segments and circular arcs.

The following concepts further expand upon the definition of curve as given in Definition 3.1.
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Figure 3.2: (i) A piecewise smooth curve that is not simple, and (ii) a contour.

Definition 3.3 (i) A piecewise smooth curve is a curve γ : [a, b] → C where there are real
numbers

a = a0 < a1 < a2 < · · · < an = b

such that γ : [ai, ai+1]→ C is a smooth curve for i = 0, 1, . . . , n− 1.

(We often write γ|[ai,ai+1] for the restriction of γ to the domain [ai, ai+1]; that is, viewing γ
as function on the subset of [ai, ai+1] only. A piecewise smooth curve is one where each
restriction γ|[ai,ai+1] is smooth.)

(ii) A curve γ : [a, b]→ C is closed if γ(a) = γ(b).

(iii) A curve γ : [a, b]→ C is simple if whenever a 6 t1 < t2 6 b (except possibly for t1 = a and
t2 = b) necessarily γ(t1) 6= γ(t2).

So:

• a piecewise smooth curve is one obtained by gluing together finitely many smooth curves;

• a closed curve is one which finishes where it starts;

• a simple curve is one which has no crossings, except possibly the start and the end coincide
(that is, simple curve are permitted to be closed).

Note that if γ is piecewise smooth as in (i) in the definition, then at a1, a2, . . . , an−1, the
left-hand and right-hand derivatives

lim
h→0+

f(ai − h)− f(ai)

−h
and lim

h→0+

f(ai + h)− f(ai)

h

(for 1 6 i 6 n− 1) exist, since γ : [ai−1, ai]→ C and γ : [ai, ai+1]→ C are smooth, but these are
not necessarily equal.

Finally, putting these concepts together:

Definition 3.4 A contour is a piecewise smooth, simple, closed curve.

Example 3.5 One example (that is fairly typical of our future applications) of a contour is the
following. Let ε and R be positive real numbers satisfying 0 < ε < R. Then define

γ(t) =


ε+ t(R− ε) if 0 6 t 6 1

Reiπ(t−1) if 1 < t 6 2

−R− (t− 2)(ε−R) if 2 < t 6 3

εeiπ(4−t) if 3 < t 6 4.
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γ

R−R 0 ε
−ε

Figure 3.3: The contour γ in Example 3.5.

Such a formula looks complicated, but one should interpret this curve simply as gluing together
the following smooth curves:

(i) the line segment from ε to R, followed by

(ii) a semi-circular arc centred on 0 from R to −R anticlockwise, followed by

(iii) the line segment from −R to −ε, finally followed by

(iv) a semi-circular arc centred on 0 from −ε to ε clockwise.

See Figure 3.3 for a graphical illustration of this contour.

We usually will not need to worry about writing down precise formulae for any contour that
we work with. We will be able to just parametrise each smooth piece of the contour separately
and work with them piece-by-piece. The reason why we can safely do so is basically found in
Proposition 3.11 below.

Definition 3.6 Let γ : [a, b]→ C be a smooth curve. The length of γ is

L(γ) =

∫ b

a

∣∣γ′(t)∣∣ dt.

If γ is a piecewise smooth curve, say

a = a0 < a1 < · · · < an = b

such that γ|[ai,ai+1] is smooth for each i, then the length of γ is

L(γ) =
n−1∑
i=0

L(γ|[ai,ai+1]),

the sum of the lengths of each smooth piece γ|[ai,ai+1].

Thus, with the above notation, the length of the piecewise smooth curve γ is

L(γ) =

n−1∑
i=0

∫ ai+1

ai

∣∣γ′(t)∣∣ dt,

though one should note that γ′(t) is possibly undefined at the finite collection of points a1, a2,
. . . , an−1.
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Example 3.7 Calculate the lengths of (i) the line segment γ1 from c to d, and (ii) the circular
arc γ2 of radius r subtended by angles θ1 and θ2, as given in Example 3.2.

Solution: (i) The line segment is parametrised as

γ1(t) = c+ (d− c)t for 0 6 t 6 1.

Then
γ′1(t) = d− c,

so the length of γ1 is

L(γ1) =

∫ 1

0
|d− c| dt = |d− c| ,

which is indeed the expected length of the line from c to d.
(ii) The circular arc is parametrised as

γ2(t) = c+ reit for θ1 6 t 6 θ2.

Then
γ′2(t) = rieit,

so the length of γ2 is

L(γ2) =

∫ θ2

θ1

∣∣rieit∣∣ dt = r

∫ θ2

θ1

dt = r(θ2 − θ1),

which is indeed the length of a circular arc of radius r subtended by angles θ1 to θ2. �

We can use the above calculation to determine the length of the contour γ given in Exam-
ple 3.5. For a piecewise smooth curve, one simply adds up the length of each smooth piece.
Thus, for this curve γ, one determines

L(γ) = (R− ε) + πR+ (R− ε) + πε

= 2(R− ε) + π(R+ ε).

Integration along a curve

We can now define what we mean by the integral of a function f of a complex variable evaluated
along some curve γ in the complex plane.

Definition 3.8 Let γ : [a, b]→ C be a piecewise smooth curve and f be a function of a complex
variable whose domain contains γ∗ such that f is continuous on γ∗. The integral of f along γ is
defined to be ∫

γ
f(z) dz =

∫ b

a
f(γ(t)) γ′(t) dt.

Notational Warning: Some previous iterations of this lecture course use the notation∮
γ
f(z) dz

for the integral of a function f around a piecewise smooth curve in the specific case that γ is
closed. In this lecture course, we shall not use that notation since we are sticking quite close to
that used in Howie [1] and Priestley [2].
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We shall now explain how to interpret and understand the integral that we have just defined,
and also how to practically calculate this integral. In terms of interpretation, we have assumed
that γ is piecewise smooth so there is a partition of [a, b], say

a = a0 < a1 < · · · < an = b,

such that γ is smooth on each [ai, ai+1] (for 0 6 i 6 n− 1); that is, γ′ exists on [ai, ai+1] and is
continuous on this subinterval. Now f is continuous on γ∗, so when we compose our functions,
we conclude

t 7→ f(γ(t)) γ′(t)

is a continuous function on [ai, ai+1]; that is,

f(γ(t)) γ′(t) = u(t) + i v(t)

where u and v are continuous real-valued functions on [ai, ai+1]. We shall now use the fact that
a continuous (real-valued) function is integrable on a closed and bounded interval to conclude∫ ai+1

ai

f(γ(t)) γ′(t) dt =

∫ ai+1

ai

u(t) dt+ i

∫ ai+1

ai

v(t) dt

makes sense. (In this module, we treat this “fact” as a “black box” that we shall just quote and
use. It is a theorem that is proved in MT3502.) Consequently, the integral∫ b

a
f(γ(t)) γ′(t) dt =

n−1∑
i=0

∫ ai+1

ai

f(γ(t)) γ′(t) dt

has some value and this is what we mean by the integral∫
γ
f(z) dz

of f along the curve γ.
However, just knowing that

∫
γ f(z) dz does have a value does not actually tell us what

this value is. Answering that question is the main thrust of what we do in this module. The
most elementary method is to rely upon the method already learnt for calculating integrals:
the Fundamental Theorem of Calculus (i.e., we recognize the integrand as the derivative of
some function and perform integration as “reverse differentiation”). Here we expand upon that
idea and also demonstrate how the breaking of f(γ(t)) γ′(t) into real and imaginary parts is
unnecessary. This will simplify the whole process.

Indeed, suppose that we can recognize the integrand

f(γ(t)) γ′(t) = u(t) + i v(t)

as the derivative of some complex-valued function F : [a, b]→ C. Then

u(t) = (ReF )′(t) and v(t) = (ImF )′(t),

the derivatives of the real and imaginary parts of F . Hence, by the Fundamental Theorem of
Calculus for real-valued functions:∫

γ
f(z) dz =

∫ b

a
f(γ(t)) γ′(t) dt

=

∫ b

a
u(t) dt+ i

∫ b

a
v(t) dt
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=

∫ b

a
(ReF )′(t) dt+ i

∫ b

a
(ImF )′(t) dt

= ReF (t)

∣∣∣∣b
t=a

+ i ImF (t)

∣∣∣∣b
t=a

= F (t)

∣∣∣∣b
t=a

= F (b)− F (a).

In conclusion, we did not actually need to break f(γ(t)) γ′(t) into real and imaginary parts.
Once we recognize it is as the derivative of some function F , we can simply perform “reverse
differentiation” and then evaluate F (t) between the limits (these being the end-points of the
parametrisation interval). The following two examples implement exactly this method. We shall
also extend this idea in a version of the Fundamental Theorem of Calculus suitable for integrals
along a curve (see Theorem 3.12 below).

Example 3.9 Calculate ∫
γ

1

z
dz

where γ is a circular contour of radius 1 about the origin.

Solution: We parametrise γ as

γ(t) = eit for 0 6 t 6 2π.

Then γ′(t) = ieit and so ∫
γ

1

z
dz =

∫ 2π

0

1

eit
· ieit dt

= i

∫ 2π

0
dt = 2πi.

�

Example 3.10 Calculate ∫
γ

ez dz

where γ is a square contour with corners 0, 1, 1 + i and i.

Solution: We parametrise the four parts of the square contour as

γ1(t) = t for 0 6 t 6 1,

γ2(t) = 1 + it for 0 6 t 6 1,

γ3(t) = 1 + i− t for 0 6 t 6 1,

γ4(t) = (1− t)i for 0 6 t 6 1

(see Figure 3.4). Then∫
γ

ez dz =

∫
γ1

ez dz +

∫
γ2

ez dz +

∫
γ3

ez dz +

∫
γ4

ez dz

=

∫ 1

0
et dt+

∫ 1

0
e1+it · idt+

∫ 1

0
e1+i−t · (−1) dt+

∫ 1

0
e(1−t)i · (−i) dt

= et
∣∣∣∣1
t=0

+ e1+it

∣∣∣∣1
t=0

+ e1+i−t
∣∣∣∣1
t=0

+ e(1−t)i
∣∣∣∣1
t=0
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γ1

γ2

γ3

γ4

Figure 3.4: The square contour γ in Example 3.10.

= (e− 1) + (e1+i − e) + (ei − e1+i) + (1− ei)

= 0.

�

One thing that is apparent in the second calculation (and to a lesser extent in the first) is
that we chose a parametrisation of our contour that was convenient to us. We should verify that
contour integration does indeed behave as well as we want.

Proposition 3.11 Let γ : [a, b]→ C be a piecewise smooth curve and f : γ∗ → C be continuous.
Then

(i) ∫
~γ
f(z) dz = −

∫
γ
f(z) dz,

where ~γ denotes the curve γ traced backwards:

~γ(t) = γ(a+ b− t) for a 6 t 6 b.

(ii) If a < c < b, γ1 = γ|[a,c] and γ2 = γ|[c,b], then∫
γ
f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz.

(iii) Reparametrisation: Let ψ : [c, d] → [a, b] be a differentiable real-valued bijective func-
tion with positive continuous derivative. Define γ̃ = γ ◦ ψ : [c, d]→ C (the composite of γ
and ψ). Then ∫

γ̃
f(z) dz =

∫
γ
f(z) dz.

The reason for requiring ψ′(t) > 0 always in part (iii) is to ensure that we do not backtrack as
we trace γ̃. Indeed this assumption ensures that ψ is a monotonic increasing function from [c, d]
to [a, b]. In particular, ψ(c) = a and ψ(d) = b. Consequently, γ̃ traces precisely the same subset
of C as the curve γ does, but potentially at a different rate.

Proof: (i) By the Chain Rule,
~γ′(t) = −γ′(a+ b− t).

Therefore ∫
~γ
f(z) dz =

∫ b

a
f( ~γ(t)) ~γ′(t) dt

37



= −
∫ b

a
f(γ(a+ b− t)) γ′(a+ b− t) dt.

Substitute s = a + b − t. Note that s = b when t = a, that s = a when t = b, and that
dt/ds = −1, to conclude ∫

~γ
f(z) dz =

∫ a

b
f(γ(s)) γ′(s) ds

= −
∫ b

a
f(γ(s)) γ′(s) ds

= −
∫
γ
f(z) dz.

(ii) This part is the most straightforward. It follows by applying the general fact that∫ b

a
g(t) dt =

∫ c

a
g(t) dt+

∫ b

c
g(t) dt

for any continuous function g : [a, b] → R to the real and imaginary parts of the integrand
appearing in the definition of

∫
γ f(z) dz.

(iii) By definition ∫
γ̃
f(z) dz =

∫ d

c
f(γ̃(t)) γ̃′(t) dt

=

∫ d

c
f(γ(ψ(t))) γ′(ψ(t))ψ′(t) dt.

Substitute s = ψ(t), noting that ψ(c) = a, ψ(d) = b and ds/dt = ψ′(t). Thus∫
γ̃
f(z) dz =

∫ b

a
f(γ(s)) γ′(s) ds

=

∫
γ
f(z) dz,

as required. �

Let us now establish how our basic method for calculating integrals can be used to establish
a version of the Fundamental Theorem of Calculus for integrals along a curve.

Theorem 3.12 (Fundamental Theorem of Calculus for Integrals along a Curve) Let
γ : [a, b]→ C be a piecewise smooth curve and let F : U → C be a function of a complex variable
defined on an open subset U containing γ∗. Assume that F is holomorphic on U with derivative
f = F ′ that is continuous on γ∗. Then∫

γ
f(z) dz = F (γ(b))− F (γ(a)).

Thus, under these strong conditions, we can calculate the integral of f along the curve γ
from the values of F at the end-points of the curve.

Proof: Assume that γ has the property that γ is smooth on each [ai, ai+1] where

a = a0 < a1 < · · · < an = b.
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Define g = F ◦ γ : [a, b] → R. By (a suitable extension of) the Chain Rule, g is differentiable
on [ai, ai+1] and

g′(t) = F ′(γ(t)) γ′(t) = f(γ(t)) γ′(t).

Hence ∫
γ
f(z) dz =

n−1∑
i=0

∫ ai+1

ai

f(γ(t)) γ′(t) dt

=
n−1∑
i=0

∫ ai+1

ai

g′(t) dt

=
n−1∑
i=0

(
g(ai+1)− g(ai)

)
(by our basic method)

= g(an)− g(a0).

Thus ∫
γ
f(z) dz = F (γ(b))− F (γ(a)).

�

Corollary 3.13 (Easy Version of Cauchy’s Theorem) Let γ : [a, b]→ C be a contour and
let F : U → C be a function of a complex variable defined on an open subset U containing γ∗.
Assume that F is holomorphic on U with derivative f = F ′ that is continuous on γ∗. Then∫

γ
f(z) dz = 0.

Proof: By the Fundamental Theorem of Calculus for Path Integrals,∫
γ
f(z) dz = F (γ(b))− F (γ(a)) = 0

since γ is closed (that is, γ(b) = γ(a)). �

The “Easy Version” of Cauchy’s Theorem basically applies to any function f(z) that we can
recognise as the derivative of a function. For example, it tells us that if f(z) is, for example, any
one of ez or zn for some n = 0, 1, . . . (all of which arise as the derivative of another function)
then ∫

γ
f(z) dz = 0

for any contour γ. The “Easy Version” does not apply to functions that we are not able to
recognise as the (continuous) derivative of a holomorphic function. For such functions (which
are the ones we are now consequently most interested in) we shall need a more powerful version
of Cauchy’s Theorem.

Before discussing more general versions of Cauchy’s Theorem in detail, we complete our
initial exploration of integrating along a curve by establishing some useful tools for bounding
such an integral.

Lemma 3.14 Let γ : [a, b]→ C be a piecewise smooth curve and let f : γ∗ → C be continuous.
Then ∣∣∣∣∫

γ
f(z) dz

∣∣∣∣ 6 ∫ b

a

∣∣f(γ(t)) γ′(t)
∣∣ dt.
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Proof: Let

c =

∫
γ
f(z) dz

and write c = |c| eiθ for some θ ∈ [0, 2π]. Then

|c| = Re |c| = Re

(
e−iθ

∫
γ
f(z) dz

)
= Re

(
e−iθ

∫ b

a
f(γ(t)) γ′(t) dt

)
= Re

(∫ b

a
e−iθ f(γ(t)) γ′(t) dt

)
=

∫ b

a
Re
(

e−iθ f(γ(t)) γ′(t)
)

dt

6
∫ b

a

∣∣∣e−iθ f(γ(t)) γ′(t)
∣∣∣ dt

=

∫ b

a

∣∣f(γ(t)) γ′(t)
∣∣ dt,

as required. �

Theorem 3.15 (Crude Estimation Theorem) Let γ : [a, b] → C be a piecewise smooth
curve and let f : γ∗ → C be continuous. Suppose that |f(z)| 6M for all z ∈ γ∗. Then∣∣∣∣∫

γ
f(z) dz

∣∣∣∣ 6M · L(γ),

where L(γ) denotes the length of γ.

Proof: We use the previous lemma. Our hypothesis tells us |f(γ(t)) γ′(t)| 6 M |γ′(t)| for all
t ∈ [a, b]. Hence ∣∣∣∣∫

γ
f(z) dz

∣∣∣∣ 6 ∫ b

a

∣∣f(γ(t)) γ′(t)
∣∣ dt

6
∫ b

a
M
∣∣γ′(t)∣∣ dt

= M

∫ b

a

∣∣γ′(t)∣∣ dt

= M · L(γ),

as claimed. �

Cauchy’s Theorem

We have already used the Fundamental Theorem of Calculus for Path Integrals to establish the
“Easy Version” of Cauchy’s Theorem; that is,∫

γ
f(z) dz = 0

for any function f that occurs as the (continuous) derivative of a holomorphic function defined
on an open set U containing γ∗. The purpose of this section is to gain a (partial) understanding
of why a more general version of this result is true.

40



I(γ)

E(γ)

γ

Figure 3.5: The Jordan Curve Theorem: A contour γ has an interior and an exterior.

In order to state the main version of Cauchy’s Theorem that we shall use, we need the
following fact that is intuitively clear, but rather challenging (i.e., well beyond this lecture
course) to prove in full generality.

Theorem 3.16 (Jordan Curve Theorem) Let γ : [a, b] → C be a contour. Then the com-
plex plane can be expressed as the union of three disjoint subsets:

(i) γ∗, the image of γ;

(ii) I(γ), the interior of γ, which is open, bounded and connected;

(iii) E(γ), the exterior of γ, which is open, unbounded and connected.

We shall not spend any particular time on the technical terms appearing in the statement
of the Jordan Curve Theorem. When saying the interior and exterior are open, we are merely
using the term introduced in Definition 1.4 as elsewhere in the lecture course. The interior being
bounded means that there is some bound on the values of the modulus: there exists M such
that

|z| 6M for all z ∈ I(γ),

while |z| can be arbitrarily large for z ∈ E(γ). Equivalently, it means that the interior I(γ) is
contained in some disc B(0,M).

The term connected is a topological concept that we shall not state precisely in this module.
For subsets of the complex plane it is equivalent to the following:

A subset A of C is (path) connected if every pair a, b ∈ A of points in A can be joined
by a path in A.

See Figure 3.5 for an illustration of the Jordan Curve Theorem.
Using the language arising in the Jordan Curve Theorem, we can state our most general

form of Cauchy’s Theorem that we shall use.

Theorem 3.17 (Cauchy’s Theorem) Let γ be a contour and let f be a holomorphic function
on some open subset U such that γ∗ ∪ I(γ) ⊆ U (that is, U contains both the contour γ and its
interior). Then ∫

γ
f(z) dz = 0.
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We shall present two proofs of special cases of Cauchy’s Theorem. The first is essentially
the one appearing in some previous versions of this lecture course. The proof depends upon
an important theorem that appears in MT2506 Vector Calculus and this version of Cauchy’s
Theorem assumes stronger conditions, namely the continuity of the derivative f ′, than the
general version. Since we wish to use Cauchy’s Theorem to show that for any holomorphic
function, the derivative f ′ is differentiable we shall still want the more general version where we
do not assume the additional property.

The advantage of presenting this proof though is that we are able to link the concept of
contour integral to the concept of line integral as introduced in MT2506 and provide some
context for those who have covered that module. The following proof is not examinable and
those who have not studied MT2506 will not miss anything significant as a consequence of the
missing background. A proof of an alternative version of Cauchy’s Theorem will be presented
afterwards.

Theorem 3.18 Let γ be a contour and let f be a holomorphic function on an open subset U
with γ∗ ∪ I(γ) ⊆ U . Suppose in addition that f ′ is continuous on U . Then∫

γ
f(z) dz = 0.

Proof: The first step is to replace γ, if necessary, by its reverse ~γ so that (with use of Propo-
sition 3.11(i)) we can assume that γ is positively oriented (i.e., is traced anti-clockwise).

Write f(x+iy) = u(x, y)+i v(x, y) in terms of its real and imaginary parts to define functions
u, v : Ũ → R where

Ũ = { (x, y) ∈ R2 | x+ iy ∈ U }.

Similarly, write γ(t) = x(t) + i y(t) to define two real-valued functions x, y : [a, b]→ R. Then by
definition ∫

γ
f(z) dz =

∫ b

a

(
u(x(t), y(t)) + i v(x(t), y(t))

) (
x′(t) + iy′(t)

)
dt

=

∫ b

a

(
u(x(t), y(t))x′(t)− v(x(t), y(t)) y′(t)

)
dt

+ i

∫ b

a

(
v(x(t), y(t))x′(t) + u(x(t), y(t)) y′(t)

)
dt.

Consider the first term: It is∫ b

a

(
u(x(t), y(t))

dx

dt
− v(x(t), y(t))

dy

dt

)
dt =

∮
γ̃

(u(x, y) dx− v(x, y) dy)

in the notation of MT2506 (and where γ̃(t) = (x(t), y(t)) is the curve in Ũ corresponding to γ).
We now use Green’s Theorem:

Green’s Theorem: Under the hypotheses that γ̃ is a piecewise smooth, positively-
oriented, simple curve bounding an area A and such that the functions P and Q have
continuous partial derivatives in some domain containing R, the following equation
holds: ∮

γ̃
(P (x, y) dx+Q(x, y) dy) =

∫∫
A

(
∂Q

∂x
− ∂P

∂y

)
dx dy.

Hence, in our context,∮
γ̃

(u(x, y) dx− v(x, y) dy) = −
∫∫

I(γ̃)

(
∂v

∂x
+
∂u

∂y

)
dx dy.
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Now the Cauchy–Riemann Equations (Theorem 2.8) tell us that

∂v

∂x
= −∂u

∂y

always, so the above integral on the right-hand size is zero. Hence∫ b

a

(
u(x(t), y(t))x′(t)− v(x(t), y(t)) y′(t)

)
dt = 0.

The same argument, relying upon the other Cauchy–Riemann Equation tells us that∫ b

a

(
v(x(t), y(t))x′(t) + u(x(t), y(t)) y′(t)

)
dt = 0.

Hence ∫
γ
f(z) dz = 0,

as claimed. �

Theorem 3.19 (Cauchy’s Theorem for a Triangle) Let γ be a triangular contour and let
f be holomorphic on an open set containing γ and its interior. Then∫

γ
f(z) dz = 0.

Proof: The first step is to subdivide γ, by dividing each edge of γ in half, into four smaller
triangular contours which, temporarily, we label δ1, δ2, δ3 and δ4 (see Figure 3.6). Then∫

γ
f(z) dz =

4∑
i=1

∫
δi

f(z) dz

since the integrals along each interior edge cancel as they are traversed in opposite directions
(see Proposition 3.11(i)). Therefore∣∣∣∣∫

γ
f(z) dz

∣∣∣∣ 6 4∑
i=1

∣∣∣∣∫
δi

f(z) dz

∣∣∣∣ .
It follows that at least one of the four smaller contours δi satisfies∣∣∣∣∫

δi

f(z) dz

∣∣∣∣ > 1

4

∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ .
We define γ1 to be one of the new triangular contours δi that satisfies this inequality. Note that
each edge of γ1 has half the length of the corresponding edge of γ, so L(γ1) = 1

2L(γ).
We now repeat the process with the triangular contour γ1. We divide it into four subtriangles

and, by the same argument, find one of them, called γ2, to be one of these new triangles satisfying∣∣∣∣∫
γ2

f(z) dz

∣∣∣∣ > 1

4

∣∣∣∣∫
γ1

f(z) dz

∣∣∣∣ > 1

16

∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ .
Continuing to repeat the process, we construct a sequence of triangular contours γ1, γ2, γ3, . . .
with the following properties: ∣∣∣∣∫

γn

f(z) dz

∣∣∣∣ > 1

4n

∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ (3.1)
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γδ1

δ2

δ3

δ4

Figure 3.6: Subdividing the triangular contour γ into four smaller triangles.

L(γn) =
1

2n
L(γ). (3.2)

Now, for each n ∈ N, pick a point cn in the interior of the triangular contour γn. At each
stage we choose γn+1 via subdivision of the interior of γn, so I(γn+1) ⊆ I(γn). Hence if m > n,
then both cm and cn lie inside the triangular contour γn. Hence

|cm − cn| 6 L(γn) =
1

2n
L(γ)

whenever m > n. Hence
|cm − cn| → 0 as m,n→∞.

This means that (cn) is a Cauchy sequence, so necessarily converges to some point c ∈ C. (The
fact that Cauchy sequences in C converge can be deduced very quickly, using the real and
imaginary parts, from the fact that the same is true for Cauchy sequences of real numbers, as
is shown in MT2502.) Moreover, for every choice of n, this limit c lies in the union γ∗n ∪ I(γn)
(that is, c lies either on the contour γn or inside it). The reason for this is that if it were the
case that c ∈ E(γn), the exterior of γ, then there is an ε > 0 with B(c, ε) ⊆ E(γ) because the
exterior is open. However, then B(c, ε) contains none of the points cm with m > n, contrary to
the fact that c is the limit of the sequence (cn).

Take ε > 0. As f is differentiable at c, there exists δ > 0 such that∣∣∣∣f(c+ h)− f(c)

h
− f ′(c)

∣∣∣∣ < ε (3.3)

when 0 < |h| < δ. Consider the open disc B(c, δ) of radius δ about c. Since c lies inside or on
every γn and L(γn) = 1

2nL(γ)→ 0 as n→∞, there exists n such that

γ∗n ⊆ B(c, δ)

(that is, the triangular contour lies inside the open disc of radius δ about c; see Figure 3.7).
Therefore if z lies on γ∗n, then z = c+ h for some h with |h| < δ, so∣∣f(z)− f(c)− f ′(c) (z − c)

∣∣ 6 ε |z − c|
by Equation (3.3). Note that we already know∫

γn

1 dz =

∫
γn

z dz = 0

as observed once we had established our “Easy Version” of Cauchy’s Theorem (Corollary 3.13).
Hence∫

γn

f(z) dz =

∫
γn

(
f(z)− f(c)− f ′(c) (z − c)

)
dz +

(
f(c)− f ′(c)c

) ∫
γn

1 dz + f ′(c)

∫
γn

z dz
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cγn

B(c, δ)

Figure 3.7: The triangular contour γn contained inside the open disc of radius δ about c.

=

∫
γn

(
f(z)− f(c)− f ′(c) (z − c)

)
dz.

Since |f(z)− f(c)− f ′(c) (z − c)| < ε |z − c| 6 εL(γn) for z on γ∗n, we deduce∣∣∣∣∫
γn

f(z) dz

∣∣∣∣ =

∣∣∣∣∫
γn

(
f(z)− f(c)− f ′(c) (z − c)

)
dz

∣∣∣∣
6 εL(γn) · L(γn)

=
ε

4n
L(γ)2

using the Crude Estimation Theorem (3.15). Hence, using Equation (3.1),∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ 6 ε · L(γ)2.

Since ε > 0 is arbitrary, we conclude ∫
γ
f(z) dz = 0.

�

Corollary 3.20 (Cauchy’s Theorem for Polygonal Contours) Let γ be a polygonal con-
tour (that is, it is built from a finite collection of line segments joined together) and let f be
holomorphic on an open set containing γ and its interior. Then∫

γ
f(z) dz = 0.

Proof: The first stage is to triangulate γ; that is, subdivide the interior of γ into triangles (see
Figure 3.8). In this way, we construct a collection γ1, γ2, . . . , γk of triangular contours such
that ∫

γ
f(z) dz =

k∑
i=1

∫
γi

f(z) dz

(since the integrals along the interior edges cancel in the sum using Proposition 3.11(i)). Hence,
by Cauchy’s Theorem for a Triangle (Theorem 3.19),∫

γ
f(z) dz = 0.

�
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γ

Figure 3.8: Triangulation of the polygonal contour γ.

A full proof of Cauchy’s Theorem, as stated in Theorem 3.17, is beyond this lecture course.
In fact, the work done so far takes us quite a long way towards a full proof. A strategy (which
can actually be fully implemented) is the following: If f is holomorphic on an open set containing
an arbitrary contour γ and its interior, approximate γ by a polygonal contour γ̃ in such a way
that the integrals ∫

γ
f(z) dz and

∫
γ̃
f(z) dz

are close (i.e., within some given ε > 0). Then
∫
γ̃ f(z) dz = 0 by the case already established.

From this, one deduces the general version of Cauchy’s Theorem. The main challenge remaining
in this approach is obtaining the polygonal approximation γ̃ such that the integrals are within ε
if each other. This requires much care and that is the reason we omit this aspect of the proof of
the general result.
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Chapter 4

Consequences of Cauchy’s Theorem

Now that we know what Cauchy’s Theorem says, we can obtain a variety of consequences. We
shall be using our general form of Cauchy’s Theorem (Theorem 3.17) thoughout this section.

The first observation will be a useful tool throughout our work.

Theorem 4.1 (Deformation Theorem) Let U be an open set, γ be a positively oriented
contour such that γ and its interior are contained in U , a be a point in the interior of γ, and
γ1 be a positively oriented circular contour, centred at a, contained together with its interior
inside γ. Suppose f is holomorphic on U \ {a}. Then∫

γ
f(z) dz =

∫
γ1

f(z) dz.

Note: The term “positively oriented” appeared in the previous chapter. For completeness, we
recall that a contour is positively oriented if it is traced anti-clockwise.

The upshot of the Deformation Theorem is that one can replace γ by a nice (i.e., circular,
for example) and small contour without changing the integral. See Figure 4.1 for an illustration
of how one would apply the Deformation Theorem.

Proof: Pick two points w and z on the contour γ and two points u and v on the contour γ1 in
such a way that we can join w to u by a curve γ2 and z to v by a curve γ3 that do not cross.
Write γ4 and γ5 for the two pieces that w and z subdivide γ into and write γ6 and γ7 for those
that u and v divide γ1 into. See Figure 4.2.

γ

a
γ1

Figure 4.1: Application of the Deformation Theorem
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a

w

z

u

v

γ2

γ3

γ4

γ5 γ6
γ7

Figure 4.2: Proof of the Deformation Theorem: Subdivision of the contours

Let us write δ1 for the contour obtained by following γ3, ~γ7, ~γ2 and γ5 and δ2 for that
obtained by following γ2, ~γ6, ~γ3 and γ4. Note that, by our construction, a does not lie in the
interior of δ1 or δ2. Since f is holomorphic on U \ {a}, we can now apply Cauchy’s Theorem
(Theorem 3.17) to conclude ∫

δ1

f(z) dz =

∫
δ2

f(z) dz = 0.

Adding
∫
δ1
f(z) dz to

∫
δ2
f(z) dz, and then expanding into each contributing curve, we obtain∫

γ3

f(z) dz −
∫
γ7

f(z) dz −
∫
γ2

f(z) dz +

∫
γ5

f(z) dz

+

∫
γ2

f(z) dz −
∫
γ6

f(z) dz −
∫
γ3

f(z) dz +

∫
γ4

f(z) dz = 0.

Thus ∫
γ4

f(z) dz +

∫
γ5

f(z) dz =

∫
γ6

f(z) dz +

∫
γ7

f(z) dz;

that is, ∫
γ
f(z) dz =

∫
γ1

f(z) dz,

as claimed. �

Cauchy’s Integral Formula and its consequences

We shall use the Deformation Theorem throughout our work in this section, including in the
proof of the following result.

Theorem 4.2 (Cauchy’s Integral Formula) Let f be a holomorphic function on an open
set U , let γ be a positively oriented contour which together with its interior are contained
inside U , and let a be a point in the interior of γ. Then

f(a) =
1

2πi

∫
γ

f(z)

z − a
dz.

Proof: First, since f is differentiable at a, there exists δ > 0 such that 0 < |z − a| < δ implies∣∣∣∣f(z)− f(a)

z − a
− f ′(a)

∣∣∣∣ < 1.

48



Now take any ε > 0 satisfying 0 < ε < δ and such that the positively oriented circular contour γε
of radius ε about a is, together with its interior, contained inside γ. Now f(z)/(z − a) is
holomorphic on U \ {a}, so by the Deformation Theorem (Theorem 4.1)∫

γ

f(z)

z − a
dz =

∫
γε

f(z)

z − a
dz.

Thus, in effect, our first step is to replace γ by the circular contour γε. We parametrise γε as
γε(t) = a+ ε eit for 0 6 t 6 2π, so that∫

γε

1

z − a
dz =

∫ 2π

0

1

ε eit
· εi eit dt = 2πi

(as in Example 3.9). Thus

1

2πi

∫
γ

f(z)

z − a
dz − f(a) =

1

2πi

(∫
γε

f(z)

z − a
dz − f(a)

∫
γε

1

z − a
dz

)
=

1

2πi

∫
γε

f(z)− f(a)

z − a
dz.

Now if z lies on the contour γε, then |z − a| = ε < δ, so∣∣∣∣f(z)− f(a)

z − a

∣∣∣∣ =

∣∣∣∣f(z)− f(a)

z − a
− f ′(a) + f ′(a)

∣∣∣∣
6

∣∣∣∣f(z)− f(a)

z − a
− f ′(a)

∣∣∣∣+
∣∣f ′(a)

∣∣
< 1 +

∣∣f ′(a)
∣∣ .

Hence, using the Crude Estimation Theorem (Theorem 3.15),∣∣∣∣ 1

2πi

∫
γ

f(z)

z − a
dz − f(a)

∣∣∣∣ =
1

2π

∣∣∣∣∫
γε

f(z)− f(a)

z − a
dz

∣∣∣∣
6

1

2π
· (1 +

∣∣f ′(a)
∣∣) · 2πε

= ε(1 +
∣∣f ′(a)

∣∣).
This is true for any ε satisfying 0 < ε < δ, while the left-hand side is independent of ε. Hence,
we may let ε→ 0 and conclude that the left-hand side is zero. Thus

1

2πi

∫
γ

f(z)

z − a
dz = f(a),

as claimed. �

Example 4.3 Evaluate ∫
γ

z

z − 3
dz

where (i) γ is a positively oriented circle of radius 2 about 2, and (ii) γ is a positively oriented
circle of radius 2 about 0.

Solution: (i) Take f(z) = z. This function is holomorphic on C and the complex number 3
lies inside γ (see Figure 4.3(i)), so Cauchy’s Integral Formula (Theorem 4.2) says

1

2πi

∫
γ

f(z)

z − 3
dz = f(3).
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2 3

γ

0 3

γ

Figure 4.3: The contours γ in Example 4.3, parts (i) and (ii)

Hence ∫
γ

z

z − 3
dz = 2πi f(3) = 6πi.

(ii) Take g(z) = z/(z − 3). This function is holomorphic on C \ {3}, which contains γ and
its interior, so ∫

γ

z

z − 3
dz = 0

by Cauchy’s Theorem (Theorem 3.17). �

Example 4.4 Evaluate ∫
γ

ez

z3 − 9z
dz

where γ is the positively oriented square contour with corners −2−3i, 4−3i, 4+3i and −2+3i.

Solution: Note that
z3 − 9z = z(z − 3)(z + 3)

and two of the roots, 0 and 3, lie inside γ, but −3 is in the exterior of γ. Divide the contour γ
into two using a vertical line joining 1− 3i to 1 + 3i, so that 0 and 3 lie in different parts of the
subdivided contour. Let γ1 and γ2 denote the contours as shown in Figure 4.4. The integrals
along the inner vertical line cancel, so we conclude∫

γ

ez

z3 − 9z
dz =

∫
γ1

ez

z3 − 9z
dz +

∫
γ2

ez

z3 − 9z
dz.

Now f(z) = ez/(z2 − 9) is holomorphic on and inside γ1 (as this contour contains 0 but
not 3), so ∫

γ1

ez

z3 − 9z
dz =

∫
γ1

f(z)

z
dz = 2πi f(0),

by Cauchy’s Integral Formula (Theorem 4.2). Similarly, g(z) = ez/z(z + 3) is holomorphic on
and inside γ2, so ∫

γ2

ez

z3 − 9z
dz =

∫
γ2

g(z)

z − 3
= 2πi g(3).

Hence ∫
γ

ez

z3 − 9z
dz = 2πi

(
e0

−9
+

e3

3× 6

)
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γ2

γ1

γ1

γ2

30−3

Figure 4.4: Example 4.4: Subdivision of γ into γ1 and γ2.

=
2πi

18
(e3 − 2)

=
πi

9
(e3 − 2).

�

Having established Cauchy’s Integral Formula (Theorem 4.2), we can now deduce a variety
of further consequences including the properties of holomorphic listed in the introduction.

Theorem 4.5 (Liouville’s Theorem) Let f be a bounded holomorphic function on C. Then
f is constant.

Proof: Suppose |f(z)| 6 M for all z ∈ C. Fix two points a, b ∈ C. Now consider any
radius R such that R > 2 max{|a| , |b|}. Let γ be the positively oriented circular contour of
radius R about 0 (see Figure 4.5). Since a and b both lie inside γ, Cauchy’s Integral Formula
(Theorem 4.2) tells us

f(a) =
1

2πi

∫
γ

f(z)

z − a
dz and f(b) =

1

2πi

∫
γ

f(z)

z − b
dz.

Hence

f(a)− f(b) =
1

2πi

∫
γ

(
f(z)

z − a
− f(z)

z − b

)
dz

=
1

2πi

∫
γ

f(z) (a− b)
(z − a)(z − b)

dz.

Now if z lies on the contour γ, then

|z − a| > |z| − |a| = R− |a| > 1
2R

(since |a| 6 1
2R) and

|z − b| > 1
2R

similarly. Therefore

|f(a)− f(b)| = 1

2π

∣∣∣∣∫
γ

f(z) (a− b)
(z − a)(z − b)

dz

∣∣∣∣
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a

b
R

γ

Figure 4.5: The proof of Liouville’s Theorem

6
1

2π
· M |a− b|(

1
2R
)2 · L(γ)

=
1

2π
· M |a− b|1

4R
2
· 2πR

=
4M |a− b|

R
,

by the Crude Estimation Theorem (Theorem 3.15). The left-hand side is independent of R and
we are permitted to take R as large as we want. Therefore, if we let R→∞, we conclude

|f(a)− f(b)| = 0;

that is,
f(a) = f(b).

We conclude that f is indeed constant. �

Liouville’s Theorem means that, for example, although the function sinx is bounded when
viewed as a function of a real variable, the function sin z, of a complex variable, is unbounded.
Indeed, if z = iy (for y real), then

|sin(iy)| = |sinh y| → ∞ as y →∞.

(See Problem Sheet II, Question 10, for some background.)
We can also deduce the following important observation as a consequence of Liouville’s

Theorem. It is a fact about algebra, namely the roots of polynomial equations, but is most
easily proved using complex analysis.

Theorem 4.6 (Fundamental Theorem of Algebra) Let p(z) be a non-constant polynomial
with complex coefficients. Then there exists some ζ ∈ C such that p(ζ) = 0.

To prove the Fundamental Theorem of Algebra, we shall make use of an important fact about
continuous functions requiring a brief piece of terminology. This fact is usually established within
a course on topology (for example, MT4526 Topology).

A subset K of C is closed if its complement C\K is open. (Note then that the terms “closed”
and “not open” have different meanings and should not be confused.) It can be shown that a
subset K of C that is both closed and bounded is what is known as compact and then

52



a continous function f : K → C defined on a closed and bounded subset K is
bounded: there is some M > 0 such that

|f(z)| 6M for all z ∈ K.

Examples of closed and bounded subsets of C include:

(i) the image γ∗ of any contour (since the complement equals the union I(γ) ∪ E(γ) of the
interior and the exterior, both of which are open);

(ii) the image of any contour together with its interior (as C \ (γ∗ ∪ I(γ)) = E(γ) is open).

The special case of (ii) that we need in the proof below is the “closed” disc { z ∈ C | |z| 6 R }
about 0 since this is the circular contour of radius R together with its interior.

Proof of the Fundamental Theorem of Algebra: Let

p(z) = cnz
n + cn−1z

n−1 + · · ·+ c1z + c0,

where c0, c1, . . . , cn ∈ C, cn 6= 0 and n > 1. Suppose, seeking to obtain a contradiction, that
p(z) 6= 0 for all z ∈ C. Then the function 1/p(z) is holomorphic on C.

Now observe, for non-zero z, that

|p(z)| = |z|n
∣∣∣cn +

cn−1

z
+ · · ·+ c1

zn−1
+
c0

zn

∣∣∣
> |z|n

(
|cn| −

|cn−1|
|z|

− · · · − |c1|
|z|n−1 −

|c0|
|z|n

)
→∞ as |z| → ∞,

using repeated use of the Triangle Inequality (Theorem 1.2). Therefore there exists some R > 0
such that ∣∣∣∣ 1

p(z)

∣∣∣∣ 6 1 if |z| > R.

Now since 1/p(z) is continuous, it is bounded on the set K = { z ∈ C | |z| 6 R }. Hence∣∣∣∣ 1

p(z)

∣∣∣∣ 6M if |z| 6 R.

Putting this together, we conclude that 1/p(z) is bounded on C:∣∣∣∣ 1

p(z)

∣∣∣∣ 6 max{1,M} for all z ∈ C.

Hence, Liouville’s Theorem (Theorem 4.5) tells us that 1/p(z) is constant, which contradicts the
assumption that p(z) is a non-constant polynomial.

We conclude that there must exist some ζ ∈ C such that p(ζ) = 0. �

Cauchy’s Formula for Derivatives and applications

Theorem 4.7 (Cauchy’s Formula for Derivatives) Let f be a holomorphic function on the
open set U . Then, for any natural number n, f has an nth derivative f (n) on U given by

f (n)(a) =
n!

2πi

∫
γ

f(z)

(z − a)n+1
dz

for any positively oriented contour γ that, together with its interior, is contained in U and such
that a lies in the interior of γ.
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Once we have established this result, we have fulfilled the promise that we would show that
a holomorphic function can be differentiated as many times as wanted.

Proof: We proceed by induction on n. The case n = 0 is Cauchy’s Integral Formula (Theo-
rem 4.2). Let us then assume n > 1, that f (n−1) exists on U and is given by the formula in the
statement (of course, replacing n by n− 1 in that formula). Let γ be any contour that, together
with its interior, is contained in U and let a be a point in the interior of γ. Now if h is small
enough that a+ h also lies in the interior of γ, put

E(h) =
f (n−1)(a+ h)− f (n−1)(a)

h
− n!

2πi

∫
γ

f(z)

(z − a)n+1
dz

=
(n− 1)!

2πih

∫
γ
f(z)

(
1

(z − a− h)n
− 1

(z − a)n
− nh

(z − a)n+1

)
dz

=
(n− 1)!

2πih

∫
γ
f(z) q(z, h) dz,

where

q(z, h) =
1

(z − a− h)n
− 1

(z − a)n
− nh

(z − a)n+1
.

Choose r such that the positively oriented circular contour γr of radius 2r about a is contained
in the interior of γ. Assume |h| < r. Then, by the Deformation Theorem (Theorem 4.1),

E(h) =
(n− 1)!

2πih

∫
γr

f(z)

(
1

(z − a− h)n
− 1

(z − a)n
− nh

(z − a)n+1

)
dz.

Consider the line segment from a to a + h, which (borrowing notation from that used for
certain subsets of the real line) we shall denote here by [a, a+ h]. Note that

d

dw

(
1

(z − w)n

)
=

n

(z − w)n+1
,

so by the Fundamental Theorem of Calculus for integrals along curves (Theorem 3.12),∫
[a,a+h]

n

(z − w)n+1
dw =

1

(z − a− h)n
− 1

(z − a)n

for any z not on the line segment [a, a+ h] (including, for example, any z ∈ γ∗r ). Thus

q(z, h) =

∫
[a,a+h]

(
n

(z − w)n+1
− n

(z − a)n+1

)
dw

= n

∫
[a,a+h]

(
1

(z − w)n+1
− 1

(z − a)n+1

)
dw.

(Note that the second term in the integrand is constant (independent of w) so when we integrate
it along [a, a+ h] the effect is just to multiply by (a+ h)− a = h.)

Similarly
d

dζ

(
1

(z − ζ)n+1

)
=

n+ 1

(z − ζ)n+2
,

so ∫
[a,w]

n+ 1

(z − ζ)n+2
dζ =

1

(z − w)n+1
− 1

(z − a)n+1

for z not on the line segment [a,w]. Hence

q(z, h) = n(n+ 1)

∫
[a,a+h]

∫
[a,w]

1

(z − ζ)n+2
dζ dw
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a ζ
w

a+ h

> r

2r

γr

Figure 4.6: Arrangement of the variables in the proof of Cauchy’s Formula for Derivatives.

and so

E(h) =
(n+ 1)!

2πih

∫
γr

∫
[a,a+h]

∫
[a,w]

f(z)

(z − ζ)n+2
dζ dw dz.

(See Figure 4.6 for an illustration of the arrangement of a+ h, w on the line segment [a, a+ h]
between a and a+ h, and ζ on the line segment [a,w] between a and w.)

We now apply the Crude Estimation Theorem (Theorem 3.15) to bound the function E(h).
Note that if z lies on γ∗r , w lies on the line segment [a, a+h] and ζ lies on the line segment [a,w],
then

|z − ζ| > r, L([a,w]) = |w − a| 6 |h| , and L([a, a+ h]) = |h| ,

and f is bounded on γ∗r (as this image γ∗r is a closed and bounded subset of C), say

|f(z)| 6M for z on γ∗r .

Hence, by the Crude Estimation Theorem,

|E(h)| 6 (n+ 1)!

2π |h|
· 4πr · |h|2 · M

rn+2

=
2 (n+ 1)!M

rn+1
|h| .

Therefore
E(h)→ 0 as h→ 0;

that is,

lim
h→0

f (n−1)(a+ h)− f (n−1)(a)

h
=

n!

2πi

∫
γ

f(z)

(z − a)n+1
dz,

so f is n-times differentiable at a and f (n)(a) is given by the claimed formula. �

Example 4.8 Evaluate the integral ∫
γ

ez
2

(z − 1)2
dz

where γ is a positively oriented circular contour of radius 2 about 0.
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Solution: Write f(z) = ez
2
. Note that f is holomorphic on C and that 1 lies inside the

contour γ. Hence, by Cauchy’s Formula for Derivatives,

f ′(1) =
1

2πi

∫
γ

f(z)

(z − 1)2
dz.

By the Chain Rule, f ′(z) = 2z ez
2
, so∫
γ

f(z)

(z − 1)2
dz = 2πi · 2e = 4πei.

�

Theorem 4.9 (Taylor’s Theorem) Suppose f is a holomorphic function on an open disc
B(a, r) for some a ∈ C and some r > 0. Then

f(z) =
∞∑
n=0

cn(z − a)n

for all z ∈ B(a, r), where each cn is given by

cn =
1

2πi

∫
γ

f(w)

(w − a)n+1
dw =

f (n)(a)

n!

for any positively oriented contour γ contained inside B(a, r) with a in its interior.

We know already (see Theorem 2.16) that any power series is holomorphic inside its radius of
convergence. Taylor’s Theorem provides a converse to that theorem: it says that every function f
that is holomorphic on some open set U can be expressed as a power series on any open disc
inside U . In this context, we mention the following terminology:

Definition 4.10 A function f is said to be analytic on an open set U if f is given by a power
series in every open disc inside U .

Putting together Theorems 2.16 and 4.9, we observe:

Corollary 4.11 A function f : U → C is holomorphic on an open set U if and only if it is
analytic on U .

This tells us that the terms “holomorphic” and “analytic” are essentially equivalent for
functions of a complex variable. This explains why many sources use the terms interchangeable
(including the Course Catalogue description for this module!).

Proof of Taylor’s Theorem: Note first that the fact the formula for cn given by the above
integral equals f (n)(a)/n! follows by Cauchy’s Formula for Derivatives (Theorem 4.7). To tidy
up and simplify the remained of the proof, apply the translation mapping a to 0 and replace f(z)
by f(z + a). Thus, we can assume that a = 0, so that f is holomorphic on B(0, r). Fix some
z ∈ B(0, r) (so |z| < r) and we claim that

f(z) =
∞∑
n=0

cnz
n

for z ∈ B(0, r), where each coefficient is given by

cn =
1

2πi

∫
γ

f(w)

wn+1
dw
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0

z

γ

R

Figure 4.7: The contour used to prove of Taylor’s Theorem.

and, by application(s) of the Deformation Theorem (Theorem 4.1), we assume that γ is a
positively oriented circular contour about 0 of radius R with |z| < R < r. (See Figure 4.7.) We
shall then use Cauchy’s Integral Formula (Theorem 4.2) to note

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw.

We use the formula for the sum of a geometric progression to observe

1 +
z

w
+
( z
w

)2
+ · · ·+

( z
w

)N
=

1− (z/w)N+1

1− (z/w)
,

so

1

w − z
=

1

w
· 1

1− (z/w)
=

1

w

( N∑
n=0

( z
w

)n
+

(z/w)N+1

1− (z/w)

)
.

Substituting this into our expression from Cauchy’s Integral Formula, we obtain

f(z) =
N∑
n=0

(
1

2πi

∫
γ

f(w)

wn+1
dw

)
zn + EN (z)

=
N∑
n=0

cnz
n + EN (z), (4.1)

where the remainder term is given by

EN (z) =
1

2πi

∫
γ

f(w) (z/w)N+1

w − z
dw.

Now f is bounded on the contour γ (as γ∗ is closed and bounded), say

|f(w)| 6M for all w ∈ γ∗,

while |w| = R and
|w − z| > |w| − |z| = R− |z|

for w ∈ γ∗. Hence, by the Crude Estimation Theorem (Theorem 3.15),

|EN (z)| 6 1

2π
· M

R− |z|

(
|z|
R

)N+1

· 2πR

=
RM

R− |z|

(
|z|
R

)N+1

→ 0 as N →∞

57



since |z| /R < 1. Hence, letting N →∞ in Equation (4.1) gives

f(z) =

∞∑
n=0

cnz
n

as required. �

58



Chapter 5

Interlude: Harmonic functions

In this section, we present an application of the theory developed, or perhaps more accurately
how the theory fits within a particular branch of applied mathematics. What we present links
most closely to the Cauchy–Riemann Equations (Theorem 2.8), but some of the observations
made in the previous two chapters are also important here.

Consider a holomorphic function f : U → C defined upon some subset U of C. As previously,
we take real and imaginary parts, so write

f(x+ iy) = u(x, y) + i v(x, y)

to define two real-valued functions u, v : Ũ → R defined upon the subset

Ũ = { (x, y) ∈ R2 | x+ iy ∈ U }

of R2. We know that u and v satisfy the Cauchy–Riemann Equations at every point of Ũ :

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
.

We have also observed that f possesses nth derivatives for all n > 1 (see Cauchy’s Formula for
Derivatives, Theorem 4.7), so f ′ can be differentiated. We can therefore differentiate the above
equations further:

∂2u

∂x2
=

∂

∂x

(
∂v

∂y

)
=

∂2v

∂x ∂y

∂2u

∂y2
=

∂

∂y

(
−∂v
∂x

)
= − ∂2v

∂y ∂x
.

Moreover, f ′′ can be differentiated, so is certainly continuous. Therefore

∂2v

∂x ∂y
and

∂2v

∂y ∂x

both exist and are continuous. This last fact is a sufficient condition for the two mixed second-
order derivatives are equal:

∂2v

∂x ∂y
=

∂2v

∂y ∂x

Putting this together, we conclude
∂2u

∂x2
+
∂2u

∂y2
= 0;
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that is, u satisfies Laplace’s equation. The same argument applies to the imaginary part v of
the holomorphic function f .

In this context, we make the following definition.

Definition 5.1 Let V be an open subset of R2. A function u : V → R, defined upon V , is said
to be harmonic on V if

(i) u has continuous second-order partial derivatives on V , and

(ii) u satisfies Laplace’s equation
∂2u

∂x2
+
∂2u

∂y2
= 0.

The operator
∂2

∂x2
+

∂2

∂y2

is often by denoted by ∇2 or by ∆ (the choice between the two appears to be individual whim),
so Laplace’s equation can also be written as

∇2u = 0 or ∆u = 0.

Harmonic functions appear in many areas of applied mathematics, such as electromagnetism,
fluid dynamics, etc. In this chapter, however, we concentrate on the link between harmonic
functions and holomorphic functions. One direction in the link has already been observed:

Theorem 5.2 Let f : U → C be a holomorphic function defined upon some open subset U
of C. Write

f(x+ iy) = u(x, y) + i v(x, y)

to define functions u, v : Ũ → R where the domain Ũ = { (x, y) ∈ R2 | x + iy ∈ U } is an open
subset of R2. Then u and v are harmonic functions on Ũ . �

We establish a weaker version than a full converse to the above theorem. There is a more
general converse, for a harmonic function defined on an arbitrary open subset of R2, but the
proof is a bit more challenging (as we need to consider integrals along more complicated curves)
but the same ideas work.

Theorem 5.3 Let a = (a1, a2) ∈ R2, r > 0 and suppose that u : B(a, r) → R is a harmonic
function on the open disc B(a, r) = {x ∈ R2 | |x− a| < r }. Then there exists a holomorphic
function f : B(c, r)→ C (where c = a1 + ia2) such that u is the real part of f :

u(x, y) = Re f(x+ iy) for (x, y) ∈ B(a, r).

To prove the theorem, we need a method to construct holomorphic functions. We shall use
the following observation:

Theorem 5.4 Let g be a holomorphic function on an open disc B(c, r). Then there exists a
holomorphic function F on B(c, r) such that F ′(z) = g(z) for all z ∈ B(c, r).

Proof: If z ∈ B(c, r), let us write [c, z] for the line segment from c to z. We define

F (z) =

∫
[c,z]

g(w) dw.
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c

z

z + h

Figure 5.1: Proof of Theorem 5.4: Integrating around a triangle

Let z ∈ B(c, r) and let ε > 0. Since g is, in particular, continuous on the disc there exists some
δ > 0 such that B(z, δ) ⊆ B(c, r) and such that |w − z| < δ implies

|g(w)− g(z)| < 1
2ε.

Let h ∈ C such that |h| < δ. This means that z+h ∈ B(z, δ) ⊆ B(c, r). (See Figure 5.1.) Apply
Cauchy’s Theorem to the triangular contour whose edges are the line segment from c to z, then
from z to z + h and then from z + h to c:∫

[c,z]
g(w) dw +

∫
[z,z+h]

g(w) dw −
∫

[c,z+h]
g(w) dw = 0

Note that
∫

[z,z+h] g(z) dw = h g(z) (as we are integrating a constant function along the line

segment [z, z + h]). Hence

F (z + h)− F (z)

h
− g(z) =

1

h

∫
[z,z+h]

(
g(w)− g(z)

)
dw.

By the Crude Estimation Theorem,∣∣∣∣F (z + h)− F (z)

h
− g(z)

∣∣∣∣ 6 1

|h|
· 1

2ε · |h| < ε

when |h| < δ (since then |w − z| < δ so |g(w)− g(z)| < 1
2ε for all w on the line segment [z, z+h]).

It follows that

F ′(z) = lim
h→0

F (z + h)− F (z)

h
= g(z);

that is, F is holomorphic on B(c, r) with derivative equal to g. �

We now prove our partial converse concerning harmonic functions.

Theorem 5.3: Write D = B(c, r) for the open disc in C that corresponds to the original open
disc B(a, r) (that is, where c = a1 + ia2). Define g : D → C by

g(x+ iy) =
∂u

∂x
− i ∂u

∂y
.

(The idea here is that g is a function that would equal the derivative of the function f that we
seek.) The real and imaginary parts of g are given by

ũ =
∂u

∂x
and ṽ = −∂u

∂y
.
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Let us calculate the partial derivates of ũ and ṽ:

∂ũ

∂x
=

∂

∂x

(
∂u

∂x

)
=
∂2u

∂x2

∂ũ

∂y
=

∂

∂y

(
∂u

∂x

)
=

∂2u

∂y ∂x

∂ṽ

∂x
=

∂

∂x

(
−∂u
∂y

)
= − ∂2u

∂x ∂y

∂ṽ

∂y
=

∂

∂y

(
−∂u
∂y

)
= −∂

2u

∂y2

Now, by hypothesis, u is a harmonic function, so its second-order partial derivatives are contin-
uous and it satisfies Laplace’s equation. From this we conclude

∂2u

∂x ∂y
=

∂2u

∂y ∂x
and

∂2u

∂x2
= −∂

2u

∂y2
.

In conclusion, ũ and ṽ satisfy the Cauchy–Riemann Equations,

∂ũ

∂x
=
∂ṽ

∂y
and

∂ṽ

∂x
= −∂ũ

∂y
,

while these partial derivatives are continuous since the second-order partial derivatives of u are,
by assumption, continuous. Our partial converse to the Cauchy–Riemann Equations (Theo-
rem 2.12) tells us that g is holomorphic on D.

Now apply Theorem 5.4: There exists a function F that is holomorphic on B(c, r) such that
F ′ = g. Therefore

F ′(z) =
∂u

∂x
− i∂u

∂y
.

Write û for the real part of F . Since F satisfies the Cauchy–Riemann Equations, we conclude

∂û

∂x
= ReF ′(x+ iy) =

∂u

∂x
and

∂û

∂y
= − ImF ′(x+ iy) =

∂u

∂y
.

Hence û − u has partial derivatives that are zero on D, so we conclude that û − u is constant,
say û(x, y) = u(x, y)+k for some constant k. Then f(z) = F (z)−k is the required holomorphic
function on D such that the real part of f(x+ iy) equals u(x, y). �

Definition 5.5 If u(x, y) is a harmonic function, then a function v(x, y) such that

f(x+ iy) = u(x, y) + i v(x, y)

is holomorphic, with real part u, is called a harmonic conjugate of u.

The previous theorem tells us that, at least on an open disc, a harmonic function always
possesses a harmonic conjugate. As noted before the theorem, the result exists in greater
generality so harmonic functions do indeed always possess harmonic conjugates. The proof
given does not give us a pleasant way to find the harmonic conjugate of a harmonic funciton,
since it tells us to integrate along a curve to find the required holomorphic function. Instead,
the best method to employ is to solve the Cauchy–Riemann Equations.

Example 5.6 Consider the function u : R2 → R given by

u(x, y) = x3 − 3xy2 − 2y.
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(i) Show that u is harmonic on R2.

(ii) Find a harmonic conjugate of u.

(iii) Find a holomorphic function f(z), expressed as a function of a single complex variable z,
such that u(x, y) is the real part of f(x+ iy).

Solution: (i) We calculate the following partial derivatives of u:

∂u

∂x
= 3x2 − 3y2,

∂u

∂y
= −6xy − 2

and
∂2u

∂x2
= 6x,

∂2u

∂x ∂y
=

∂2u

∂y ∂x
= −6y,

∂2u

∂y2
= −6x

Observe that the second-order partial derivatives are continuous and satisfy

∂2u

∂x2
+
∂2u

∂y2
= 0.

Hence u is harmonic on R.
(ii) If u and v are the real and imaginary parts of a holomorphic function f , then they satisfy

the Cauchy–Riemann Equations. Thus

∂v

∂y
=
∂u

∂x
= 3x2 − 3y2,

so, upon integrating with respect to y,

v(x, y) = 3x2y − y3 + g(x)

for some function g(x) of x alone (i.e., independent of y). Now substitute into ∂v
∂x = −∂u

∂y :

6xy + g′(x) = 6xy + 2

Hence g′(x) = 2 and we conclude g(x) = 2x + c for some constant c. Any constant c will work
here, since we are just adding a constant to the holomorphic function f , so we shall take c = 0.
Thus

v(x, y) = 2x+ 3x2y − y3

is a harmonic conjugate of u(x, y).
(iii) For v(x, y) as above,

f(x+ iy) = u(x, y) + i v(x, y)

= x3 − 3xy2 − 2y + i(2x+ 3x2y − y3)

= x3 + 3ix2y − 3xy2 − iy3 + 2i(x+ iy)

= (x+ iy)3 + 2i(x+ iy);

that is,
f(z) = z3 + 2iz.

�
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Chapter 6

Singularities, Poles and Residues

We have spent considerable time considering functions f : U → C that are holomorphic on an
open set U . We now turn to understanding in greater depth the behaviour of functions f that
are holomorphic on essentially a large proportion of an open set U but where the functions fail
to be differentiable for some reason at some of the points in U . The term singularity is used for
the points at which a function f : U → C is not holomorphic, but there is some inconsistency
in sources relating to this terminology. Some use singularity to mean simply a point at which
f is not holomorphic, while others require a singularity to be a limit of a sequence of points at
which f is holomorphic. In view of this, we shall generally avoid using the term “singularity”
but make good use of the following precise term, which all sources seem to agree upon.

Definition 6.1 Let f : D → C be a function of a complex variable defined upon some subset D
of C. A point a ∈ C is called an isolated singularity of f if there exists some r > 0 such that
f is defined and holomorphic on the punctured disc

B′(a, r) = { z ∈ C | 0 < |z − a| < r },

but f is not differentiable at a.

So a function f has an isolated singularity at a if it is holomorphic on an open disc about a
except either it fails to be differentiable at a or is simply not defined at a.

Laurent’s Theorem

The purpose of this chapter is to understand the behaviour of functions around isolated sin-
gularities and, in particular, what happens when we integrate such functions around contours.
The first observation is the following:

Theorem 6.2 (Laurent’s Theorem) Let 0 6 R < S 6∞ and

A = { z ∈ C | R < |z − a| < S },

an open annulus centred on a ∈ C. Assume f is holomorphic on A. Then

f(z) =

∞∑
n=−∞

cn(z − a)n

for all z ∈ A, where the coefficients are given by

cn =
1

2πi

∫
γ

f(w)

(w − a)n+1
dw

for all integers n, where γ is a positively oriented circular contour of some radius about a whose
image is contained inside A.
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0

z

γ1

γ2

rs

Figure 6.1: The contours in the proof of Laurent’s Theorem

When we take R = 0 in Laurent’s Theorem, the result then applies to the case that f has
an isolated singularity at a. Accordingly we make the following definition:

Definition 6.3 Let f be a function of a complex variable with an isolated singularity at a
point a ∈ C. The Laurent series (or Laurent expansion) of f at a is a (doubly infinite) series

f(z) =
∞∑

n=−∞
cn(z − a)n

valid for all z in some punctured disc B′(a, r) = B(a, r) \ {a} about a.

Laurent’s Theorem tells us that such a Laurent series always exists. To interpret what the
doubly infinite series means, one views

∞∑
n=−∞

cn(z − a)n =
∞∑
n=0

cn(z − a)n +
∞∑
m=1

c−m(z − a)−m

as the sum of two series, one that involves powers of (z − a) and the other involving powers
of (z − a)−1. Equivalently, the Laurent series equals

lim
M,N→∞

N∑
n=−M

cn(z − a)n

where, in the limit, M,N →∞ independently of each other.

Proof of Laurent’s Theorem (Sketch): As in the proof of Taylor’s Theorem (Theo-
rem 4.9), first translate, purely for notational convenience, so that we can assume that f is
holomorphic on the annulus

A = { z ∈ C | R < |z| < S }

centred on 0; that is, we assume a = 0. Fix z ∈ A and choose radii r and s with R < r < |z| <
s < S. Consider the contours γ1 and γ2 as shown in Figure 6.1.

Since f is holomorphic on A, the interior of γ1 and γ2 both lie inside A, and z lies in the
interior of γ1 but not γ2, Cauchy’s Integral Formula (Theorem 4.2) says

f(z) =
1

2πi

∫
γ1

f(w)

w − z
dw

while

0 =
1

2πi

∫
γ2

f(w)

w − z
dw
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by Cauchy’s Theorem (Theorem 3.17). If we add the two together and note that the integrals
along the line segments cancel, we conclude

f(z) =
1

2πi

∫
γs

f(w)

w − z
dw − 1

2πi

∫
γr

f(w)

w − z
dw

where γr and γs are positively oriented circular contours of radii r and s, respectively, about 0.
We use the formulae

1

w − z
=

1

w

(
1

1− (z/w)

)
=

1

w

∞∑
n=0

( z
w

)n
when |z| < |w|

and similarly

1

w − z
= −1

z

∞∑
m=0

(w
z

)m
when |z| > |w|

to conclude

f(z) =
1

2πi

∫
γs

f(w)

w

∞∑
n=0

( z
w

)n
dw +

1

2πi

∫
γr

f(w)

z

∞∑
m=0

(w
z

)m
dw

=
1

2πi

∫
γs

( ∞∑
n=0

f(w)

wn+1
zn
)

dw +
1

2πi

∫
γr

( ∞∑
m=0

f(w)wm z−m−1

)
dw.

(Note that |z| < |w| = s when w ∈ γ∗s and |z| > |w| = r when w ∈ γ∗r .) Now interchange the
integral and the sums:

f(z) =

∞∑
n=0

(
1

2πi

∫
γs

f(w)

wn+1
dw

)
zn +

∞∑
m=0

(
1

2πi

∫
γr

f(w)wm dw

)
z−m−1

=
∞∑

n=−∞
cnz

n,

where

cn =
1

2πi

∫
γr

f(w)

wn+1
dw for n > 0

and

cn =
1

2πi

∫
γs

f(w)w−(n+1) dw for n 6 −1.

Finally use of the Deformation Theorem (Theorem 4.1) shows that

cn =
1

2πi

∫
γ

f(w)

wn+1
dw

for both formulae, where γ is a positively oriented circular contour of any radius about 0 withinA,
as in the statement of the theorem. �

Why is this a sketch proof? The answer is that the interchange of the integral and the
summation requires some justification. To fully justify it one typically observes the two series
converge uniformly on the images γ∗r and γ∗s of the contours, respectively. The topic of uniform
convergence is covered elsewhere (namely MT3502 Real Analysis) so we omit the details.
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Theorem 6.4 If f is holomorphic on an open annulus A = { z ∈ C | R < |z − a| < S }, the
coefficients in any Laurent series for f at a are uniquely determined by f .

What this theorem means is that if we manage to find a valid Laurent series for f that holds
in the annulus A, then it is the unique one we were looking for. The proof basically involves
taking possible Laurent series for f , integrating f(z)/(z − a)n+1 around the contour γ as in
Laurent’s Theorem and observing that out drops (a suitable multiple of) a specific coefficient in
the series we started with. We need to interchange integration and summation, and again this
depends upon uniform convergence. In view of this, we omit the proof of Theorem 6.4 since it
depends entirely on material outside the module.

Classifying isolated singularities

The use of the Laurent series enables us to make a set of definitions to classify the singularities
of a function f .

Definition 6.5 Let f be a function of a complex variable that is holomorphic on a punctured
disc B′(a, r) with an isolated singularity at a. Let

∞∑
n=−∞

cn(z − a)n

be the Laurent series of f at a. Then

(i) f has a removable singularity at a if cn = 0 for all negative n;

(ii) f has a pole of order m at a (for some positive integer m) if c−m 6= 0 and cn = 0 for all
n < −m;

(iii) f has an isolated essential singularity at a if there is no m such that cn = 0 for all n < −m.

We also use the terms

• simple pole for a pole of order 1,

• double pole for a pole of order 2,

• triple pole for a pole of order 3, etc.

A function f is said to be meromorphic on an open set U if it is holomorphic on U except
for a collection of poles.

Example 6.6 (i) Consider the function

f(z) =
1

(z − 1)3
.

This is holomorphic on C \ {1}. It has an isolated singularity at 1. Its Laurent series
expresses f as a series in powers of (z − 1). However, it is already given as a series in
powers of (z − 1), so the Laurent series is

f(z) = · · ·+ 0 · (z − 1)−4 + 1 · (z − 1)−3 + 0 · (z − 1)−2 + 0 · (z − 1)−1

+ 0 + 0 · (z − 1) + 0 · (z − 1)2 + . . . .

Hence f has a triple pole at z = 1.
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(ii) Consider the function

g(z) =
sin z

z
.

This is holomorphic on C \ {0}, but not defined at 0. Taking the power series for sin z,

sin z =
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1,

and dividing by z gives the Laurent series for (sin z)/z at 0:

sin z

z
=

∞∑
n=0

(−1)n

(2n+ 1)!
z2n

= 1− 1

3!
z2 +

1

5!
z4 − 1

7!
z6 + . . . ,

for all z ∈ C \ {0}. Thus g has a removable singularity at z = 0.

(iii) Consider the function

h(z) = cos

(
1

z

)
.

This is holomorphic on C \ {0}. We find a Laurent series by substituting 1/z into the
power series for cos z:

h(z) =
∞∑
n=0

(−1)n

(2n)!

(
1

z

)2n

= · · · − 1

6!
z−6 +

1

4!
z−4 − 1

2!
z−2 + 1,

for all z ∈ C \ {0}. Thus h has an essential isolated singularity at z = 0.

(iv) Consider

cot z =
cos z

sin z
.

Then cot z is holomorphic at all points where sin z 6= 0; that is, cot z is holomorphic on

C \ {. . . ,−3π,−2π,−π, 0, π, 2π, 3π, 4π, . . . }.

In particular, cot z is holomorphic on the punctured disc B′(0, π) of radius π about 0. To
calculate a Laurent expansion, we expand the series for cos z and sin z:

cos z = 1− z2

2
+
z4

24
− z6

720
+ . . .

sin z = z

(
1− z2

6
+

z4

120
− . . .

)
= z(1− r)

where r = z2

6 −
z4

120 + . . . . Note that if z is sufficiently close to 0, then |r| < 1 and then

1

1− r
= 1 + r + r2 + r3 + . . . .

Hence

cot z =
1

z

(
1− z2

2
+
z4

24
− . . .

)(
1 +

(
z2

6
− z4

120
+ . . .

)
+

(
z4

36
− . . .

)
+ . . .

)
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=
1

z

(
1− z2

3
+ (terms of degree > 4)

)
=

1

z
− z

3
+ (terms of degree > 3).

This establishes the first two terms of the Laurent series for cot z at z = 0. Hence cot z has
a simple pole at 0.

Removing a removable singularity: If f has a removable singularity at a point a, then
there is some punctured open disc B′(a, r) for which f is holomorphic on the punctured disc
and has a Laurent series of the form

f(z) =

∞∑
n=0

cn(z − a)n

valid on this punctured disc. However, this series is actually a power series and converges not
only on the punctured disc B′(a, r) but also at the point z = a (since all terms, except possibly
the first, are zero). Hence the power series

∑∞
n=0 cn(z − a)n converges on the (non-punctured)

open disc B(a, r) and so defines a holomorphic function on this disc. As a consequence, if we
redefine the original function f by specifying that f(a) = c0 then

f(z) =

∞∑
n=0

cn(z − a)n

for all z ∈ B(a, r) and now f is a holomorphic function on the whole open disc B(a, r). This
process is often called “removing the singularity” at a: it has the effect of taking a function f
with a removable singularity at a point a, redefining the value f(a) and obtaining a function
that is now holomorphic in an open set containing a.

Cauchy’s Residue Theorem

To understand how to integrate a function f around an isolated singularity, we need the following
definition.

Definition 6.7 Suppose that the function f has an isolated singularity at a point a and Laurent
series

∞∑
n=−∞

cn(z − a)n

at a. The coefficient c−1 appearing in this Laurent series is called the residue of f at a. We
write

res(f, a)

for this residue.

Example 6.8 If we manage to find the Laurent series, we can simply read off the residue from
the coefficients:

res

(
1

(z − 1)3
, 1

)
= 0

res

(
cos

(
1

z

)
, 0

)
= 0

res(cot z, 0) = 1

according to the calculations in Example 6.6.
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It turns out that it is the residue of a function f that determines the value when we integrate f
around a contour that encircles an isolated singularity.

Proposition 6.9 Suppose that f is holomorphic on some punctured disc B′(a, r), where a ∈ C
and r > 0. Let γ be a positively oriented circular contour of radius R (where 0 < R < r)
about a. Then ∫

γ
f(z) dz = 2πi res(f, a).

Sketch Proof: First note that, for any integer n,∫
γ
(z − a)n dz =

{
0 if n 6= −1,

2πi if n = −1,

using the Fundamental Theorem of Calculus for integrals along a curve for n 6= −1 (The-
orem 3.12) and a generalisation of Example 3.9 (or Cauchy’s Integral Formula if preferred)
for n = −1. By Laurent’s Theorem,

f(z) =
∞∑

n=−∞
cn(z − a)n

for some coefficients cn. Then∫
γ
f(z) dz =

∫
γ

∞∑
n=−∞

cn(z − a)n dz

=
∞∑

n=−∞
cn

∫
γ
(z − a)n dz

= 2πi c−1

= 2πi res(f, a).

The interchange of summation and integral requires justification. It can be established using
uniform convergence of the Laurent series on the image γ∗ of the contour, but as before the
details are omitted as uniform convergence is covered in another module. �

We have hidden the hard part of the most important result of this chapter within the
omitted step of the above proposition. As a consequence, this theorem, as follows, is now easy
to establish.

Theorem 6.10 (Cauchy’s Residue Theorem) Let f be holomorphic on an open set con-
taining a positively oriented contour γ and its interior, except for finitely many isolated singu-
larities a1, a2, . . . , ak in the interior of γ. Then∫

γ
f(z) dz = 2πi

k∑
j=1

res(f, aj).

Proof: Since the singularities a1, a2, . . . , ak are isolated, we can choose small radii r1, r2,
. . . , rk such that the positively oriented circular contours γj of radius rj about aj are disjoint
and contained inside γ. Insert curves that join these circular contours to the original contour γ
(as shown in Figure 6.2) to create two new contours δ1 and δ2 that together involve all the pieces
of γ and γj (for 1 6 j 6 k) and such that the singularities a1, a2, . . . , ak are in the exteriors of
both δ1 and δ2. Hence, by Cauchy’s Theorem,∫

δ1

f(z) dz =

∫
δ2

f(z) dz = 0.
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Figure 6.2: Proof of Cauchy’s Residue Theorem

Note that the curves joining the contours are traced once in each direction, so upon adding, the
integrals along these curves cancel and we obtain∫

γ
f(z) dz −

k∑
j=1

∫
γj

f(z) dz = 0.

Hence ∫
γ
f(z) dz =

k∑
j=1

∫
γj

f(z) dz =

k∑
j=1

2πi res(f, aj),

using Proposition 6.9. This establishes the theorem. �

Calculating residues

In view of Cauchy’s Residue Theorem, one can see that calculating residues is important for
determining integrals.

Method 0: Find a Laurent series for our function f about an isolated singularity a by brute
force and then read off the residue from the coefficient of (z − a)−1 in this series.

This basic method is how we found the residues in Example 6.8. However, in certain cir-
cumstances we can use other more straightforward methods.

Lemma 6.11 (Type I, Multiple Pole) Suppose

f(z) =
g(z)

(z − a)m

where g is holomorphic in some open disc B(a, r) about a and g(a) 6= 0. Then f has a pole of
order m at a and

res(f, a) =
1

(m− 1)!
g(m−1)(a).

In particular, when m = 1, we see that g(z)/(z − a) has a simple pole at a when g(a) 6= 0
and the residue in that case is

res

(
g(z)

z − a
, a

)
= g(a).
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Proof: Since g is holomorphic in B(a, r), it has a power series representation

g(z) =

∞∑
n=0

cn(z − a)n

for z ∈ B(a, r), by Taylor’s Theorem (Theorem 4.9). Hence, upon dividing by (z − a)m,

f(z) = c0(z − a)−m + c1(z − a)−m+1 + · · ·+ cm−1(z − a)−1

+ cm + cm+1(z − a) + cm+2(z − a)2 + . . .

for z ∈ B′(a, r). Hence c0 = g(a) 6= 0, so f has a pole of order m. Finally

res(f, a) = cm−1 =
1

(m− 1)!
g(m−1)(a),

by the formula for the coefficients given in Taylor’s Theorem. �

Example 6.12 (i) ez/(z − 1) has a simple pole at z = 1 and residue

res

(
ez

z − 1
, 1

)
= e.

(ii) sin z/(z − 1
2π)3 has a triple pole at z = 1

2π and residue

res

(
sin z

(z − 1
2π)3

, 1
2π

)
=

1

2

d2

dz2
(sin z)

∣∣∣∣
z=

1
2π

= −1
2 sin

(
1
2π
)

= −1
2 .

Lemma 6.13 (Type II, Simple Pole) Suppose that

f(z) =
g(z)

h(z)

where g and h are holomorphic in some open disc B(a, r) about a, g(a) 6= 0, h(a) = 0 and
h′(a) 6= 0. Then f has a simple pole at a and

res(f, a) =
g(a)

h′(a)
.

Proof: First note that the assumption on h ensures that its Taylor series at a has zero constant
term and non-zero degree 1 term, say h(z) =

∑∞
n=1 cn(z − a)n for some coefficients cn ∈ C with

c1 6= 0. Therefore h(z) = (z − a) k(z) where k(z) =
∑∞

n=0 cn+1(z − a)n is a power series that
converges on B(a, r) and consequently is a holomorphic function on this disc. Furthermore,

k(a) = c1 = h′(a) 6= 0

(using Taylor’s Theorem 4.9). Then

f(z) =
g(z)/k(z)

z − a
(6.1)

where g(z)/k(z) is holomorphic in some open disc around a. Hence, by Lemma 6.11, f has a
simple pole at a.

To calculate the residue, we now use the formula in Lemma 6.11:

res(f, a) =
g(a)

k(a)
=

g(a)

h′(a)
,

as claimed. �

Example 6.14

res(cot z, 0) = res
(cos z

sin z
, 0
)

=
cos 0

cos 0
= 1.
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Chapter 7

Applications of Contour Integration

In this chapter, we demonstrate applications of the theory developed to the calculation of a
variety of real integrals and summations. Very little new theory relating directly to complex
analysis is presented in this chapter, though a few additional facts about inequalities will be
required.

Evaluation of real integrals

Example 7.1 Evaluate ∫ ∞
0

1

x4 + 1
dx.

Solution: Define

f(z) =
1

z4 + 1

and integrate f around the contour γ shown in Figure 7.1, where we assume R > 1.
The function f is holomorphic on an open set containing γ and its interior, except for simple

poles inside γ at
z = eπi/4 and e3πi/4.

The resides at these poles (by Lemma 6.13) are

res(f, eπi/4) =
1

4z3

∣∣∣∣
z=eπi/4

=
1

4
e−3πi/4

res(f, e3πi/4) =
1

4z3

∣∣∣∣
z=e3πi/4

=
1

4
e−πi/4.

γ0 R−R

eπi/4e3πi/4

Figure 7.1: The contour γ consisting of the line segment [−R,R] and a semicircular arc.
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Hence, by Cauchy’s Residue Theorem (Theorem 6.10),∫
γ
f(z) dz = 2πi

(
1

4
e−3πi/4 +

1

4
e−πi/4

)
=
πi

2

(
− 1√

2
− 1√

2
i+

1√
2
− 1√

2
i

)
= −πi

2

√
2

=
π√
2
. (7.1)

Write ΓR for the semicircular part of the contour γ. Note that |z| = R if z lies on the
image Γ∗R of this semicircular arc, so∣∣z4 + 1

∣∣ > |z|4 − 1 = R4 − 1

and

|f(z)| =
∣∣∣∣ 1

z4 + 1

∣∣∣∣ 6 1

R4 − 1

for such z. Hence ∣∣∣∣∫
ΓR

f(z) dz

∣∣∣∣ 6 1

R4 − 1
· πR

=
π

R3 − (1/R)
→ 0 as R→∞ (7.2)

by the Crude Estimation Theorem (Theorem 3.15). Translating Equation (7.1) into its smooth
pieces: ∫ R

−R

1

x4 + 1
dx+

∫
ΓR

f(z) dz =
π√
2

;

that is,

2

∫ R

0

1

x4 + 1
dx+

∫
ΓR

f(z) dz =
π√
2

using the fact that 1/(x4 + 1) is an even function of the real variable x. Let R → ∞, using
Equation (7.2), to conclude ∫ ∞

0

1

x4 + 1
dx =

π

2
√

2
.

�

Our second example is similar, but will involve an integral over the whole interval (−∞,∞) =
R. In this context, we need to note the following.

Warning: Our method in Example 7.1 involved a function f(x) of a real variable that is an
even function, so we were permitted to write∫ R

−R
f(x) dx = 2

∫ R

0
f(x) dx

and then let R→∞ to determine the value of∫ ∞
0

f(x) dx.

74



When f(x) is not an even function, we can apply a similar method to calculate the limit

lim
R→∞

∫ R

−R
f(x) dx.

This limit is denoted

PV

∫ ∞
−∞

f(x) dx

and is called Cauchy’s principal value integral, but it is not necessarily the integral∫ ∞
−∞

f(x) dx.

An example of the problem is ∫ R

−R
x dx = 0

for any choice of R > 0, so upon letting R→∞ we observe

PV

∫ ∞
−∞

x dx = 0.

However the integral ∫ ∞
−∞

x dx

does not exist, since if x were integrable on (−∞,∞), then it would also have an integral
on [0,∞) and yet ∫ R

0
x dx = 1

2R
2 →∞ as R→∞.

If, however, one can show that, given some function f ,

lim
R→∞

∫ R

0
|f(x)| dx and lim

R→∞

∫ 0

−R
|f(x)| dx

are both finite, then this will tell us that ∫ ∞
−∞

f(x) dx

exists and will be equal to the principal value integral.
The full explanation for this belongs in a course in analysis that covers integration theory.

In what follows, we shall use this last fact to justify dropping the “PV” from the integral.

Example 7.2 Evaluate ∫ ∞
−∞

1

x2 + x+ 1
dx.

Solution: Define

f(z) =
1

z2 + z + 1

and integrate f around the contour γ shown in Figure 7.2, where R > 1, as was used in the
previous example. Observe that f is holomorphic on an open set containing γ and its interior
except for a simple pole at z = e2πi/3 inside γ. (Note that (z − 1)(z2 + z + 1) = z3 − 1, so the
zeros of z2 + z + 1 are z = e2πi/3 and e4πi/3.)
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γ0 R−R

e2πi/3

Figure 7.2: The contour γ consisting of the line segment [−R,R] and a semicircular arc.

Here e2πi/3 = −1
2 +

√
3

2 i, so the residue of f at e2πi/3 (by Lemma 6.13) is

res(f, e2πi/3) =
1

2z + 1

∣∣∣∣
z=e2πi/3

=
1√
3 i

Hence by Cauchy’s Residue Theorem (Theorem 6.10),∫
γ
f(z) dz = 2πi res(f, e2πi/3) =

2π√
3
. (7.3)

As before we write ΓR for the semicircular piece, of radius R, of the contour γ. Now if z lies
on Γ∗R, then |z| = R and

|f(z)| = 1

|z2 + z + 1|
6

1

|z|2 − |z| − 1
=

1

R2 −R− 1
,

so, by the Crude Estimation Theorem (Theorem 3.15),∣∣∣∣∫
ΓR

f(z) dz

∣∣∣∣ 6 πR

R2 −R− 1

=
π

R− 1− (1/R)
→ 0 as R→∞.

Expanding Equation (7.3) gives∫ R

−R

1

x2 + x+ 1
dx+

∫
ΓR

f(z) dz =
2π√

3
.

Let R→∞ to conclude

PV

∫ ∞
−∞

1

x2 + x+ 1
dx =

2π√
3
.

Finally we verify that this is a genuine integral on (−∞,∞), not just a PV-integral. Es-
sentially, we observe that f(x) behaves asymptotically like 1/x2. Indeed, note that if |x| > 4,
then

|x|2 > 4 |x| > 2(|x|+ 1)

so
|x|+ 1 6 1

2x
2 when |x| > 4.

Therefore, for |x| > 4, using the triangle inequatility,∣∣x2 + x+ 1
∣∣ > |x|2 − |x| − 1 > x2 − 1

2x
2 = 1

2x
2
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so

|f(x)| 6 2

x2
for |x| > 4.

Therefore, for R > 4, ∫ R

0
|f(x)| dx =

∫ 4

0
|f(x)| dx+

∫ R

4
|f(x)| dx

6
∫ 4

0
|f(x)| dx+

∫ R

4

2

x2
dx

=

∫ 4

0
|f(x)| dx− 1

x

∣∣∣∣R
x=1

= 1− 1

R
+

∫ 4

0
|f(x)| dx

6 1 +

∫ 4

0
|f(x)| dx.

Therefore the sequence of integrals is bounded as R varies and so we conclude

lim
R→∞

∫ R

0
|f(x)| dx exists.

The same argument shows that
∫ 0
−R |f(x)| dx is also bounded as R→∞. We have now verified

the required steps to permit us to remove the PV from the integral and we conclude∫ ∞
−∞

1

x2 + x+ 1
dx =

2π√
3
.

�

Example 7.3 Evaluate ∫ ∞
0

cosx

x2 + 1
dx.

One is tempted to integrate the function (cos z)/(z2 + 1) about the contour γ we have been
using before. The problem with that suggestion is that this function is not sufficiently bounded
on the semicircular part of the contour. Instead, one proceeds as follows.

Solution: Define

f(z) =
eiz

z2 + 1

and integrate f around the contour γ shown in Figure 7.3, where R > 1. Note that f is
holomorphic on an open set containing γ and its interior except for a simple pole at z = i.

By Lemma 6.13, the residue is

res(f, i) =
eiz

2z

∣∣∣∣
z=i

=
e−1

2i
,

so, by Cauchy’s Residue Theorem (Theorem 6.10),∫
γ
f(z) dz = 2πi res(f, i) =

π

e
. (7.4)

If z lies on the semicircular part ΓR of the contour, then∣∣eiz∣∣ = eRe(iz) = e− Im z 6 1
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γ0 R−R

i

Figure 7.3: The contour γ consisting of the line segment [−R,R] and a semicircular arc.

and ∣∣z2 + 1
∣∣ > |z|2 − 1 = R2 − 1,

so ∣∣∣∣∫
ΓR

f(z) dz

∣∣∣∣ 6 πR

R2 − 1

=
π

R− (1/R)
→ 0 as R→∞

using the Crude Estimation Theorem (Theorem 3.15). Now expand Equation (7.4):∫ R

−R

eix

x2 + 1
dx+

∫
ΓR

f(z) dz =
π

e
.

Hence ∫ R

−R

cosx

x2 + 1
dx+ i

∫ R

−R

sinx

x2 + 1
dx+

∫
ΓR

f(z) dz =
π

e
,

so

2

∫ R

0

cosx

x2 + 1
dx+

∫
ΓR

f(z) dz =
π

e
,

since (cosx)/(x2 + 1) is an even function and (sinx)/(x2 + 1) is an odd function of the real
number x. Now let R→∞ to conclude∫ ∞

0

cosx

x2 + 1
dx =

π

2e
.

�

For the next example, we need an additional fact about integration around an arc centred
at a simple pole and a fact about a real inequality.

Lemma 7.4 (Indentation at a simple pole) Suppose f has a simple pole at a point a and
γδ is a positively oriented arc of a circle centred at a, radius δ > 0 and subtending an angle θ
at a. Then

lim
δ→0

∫
γδ

f(z) dz = iθ res(f, a).
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θ

γδ

δ

α
a

Figure 7.4: Indentation about a simple pole: the circular arc γδ about 0 of radius δ.

Proof: Exploiting the Laurent series of f , we can write

f(z) =
b

z − a
+ g(z)

valid in some punctured disc B′(a, r), where b = res(f, a) and g(z), given by a convergent power
series, is holomorphic in the open disc B(a, r). Now g is, in particular, continuous on the closed
and bounded set { z ∈ C | |z − a| 6 1

2r }, so is bounded, say

|g(z)| 6M if |z − a| 6 1
2r.

Thus, if δ 6 1
2r, ∣∣∣∣∫

γδ

g(z) dz

∣∣∣∣ 6M · δθ → 0 as δ → 0,

with use of the Crude Estimation Theorem (Theorem 3.15), noting L(γδ) = δθ.
On the other hand, let us parametrise γδ, shown in Figure 7.4, as γδ(t) = a+δeit for α 6 t 6 β

(so that θ = β − α). Then ∫
γδ

b

z − a
dz =

∫ β

α

b

δeit
δieit dt

= ib

∫ β

α
dt

= ib(β − α) = ibθ.

Hence ∫
γδ

f(z) dz = ibθ +

∫
γδ

g(z) dz → ibθ

as δ → 0. �

Lemma 7.5 (Jordan’s Inequality) If 0 < t 6 1
2π, then

2

π
6

sin t

t
6 1.

Proof: Write f(t) = (sin t)/t. Using the Taylor series expansion for sin t, observe

sin t

t
→ 1 as t→ 0.

Also note that f(1
2π) = 2/π. Then we calculate

f ′(t) =
cos t

t
− sin t

t2
=
t cos t− sin t

t2
.

In view of this, we now consider g(t) = t cos t− sin t. Note g(0) = 0 and that

g′(t) = cos t− t sin t− cos t = −t sin t 6 0
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γ

R−R
ε−ε

0

Figure 7.5: The contour γ with an indentation around a simple pole at z = 0.

for 0 6 t 6 1
2π. Hence g is a decreasing function on [0, 1

2π], so

t cos t− sin t 6 0 for 0 6 t 6 1
2π.

Therefore

f ′(t) =
t cos t− sin t

t2
6 0 for 0 < t 6 1

2π,

so f is a decreasing function on (0, 1
2π]. Putting this together we now conclude

2

π
6 f(t) 6 1 for 0 < t 6 1

2π.

�

We now turn to our example:

Example 7.6 Evaluate ∫ ∞
0

sinx

x
dx.

Solution: Define

f(z) =
eiz

z

and integrate f around the contour γ shown in Figure 7.5 where 0 < ε < R. Since f is
holomorphic in an open set containing γ and its interior (it has an isolated singularity at 0),∫

γ
f(z) dz = 0 (7.5)

by Cauchy’s Theorem.
Write ΓR and Γε for the positively oriented contours of radii R and ε about 0 in the Figure.

The residue of f at the simple pole is

res(f, 0) = e0 = 1,

using Lemma 6.11, and hence use of Lemma 7.4 tells us

lim
ε→0

∫
Γε

f(z) dz = iπ res(f, 0) = iπ.
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Parametrise ΓR as ΓR(t) = R eit for 0 6 t 6 π. Then∣∣∣∣∫
ΓR

f(z) dz

∣∣∣∣ 6 ∫ π

0

∣∣f(γ(t)) γ′(t)
∣∣ dt by Lemma 3.14

=

∫ π

0

∣∣∣∣∣eiR(cos t+i sin t)

R eit
·Ri eit

∣∣∣∣∣ dt

=

∫ π

0
|eR(i cos t−sin t)|dt

=

∫ π

0
e−R sin t dt

= 2

∫ π/2

0
e−R sin t dt

6 2

∫ π/2

0
e−2Rt/π dt by Jordan’s Inequality (Lemma 7.5)

= − π
R

e−2Rt/π
∣∣∣π/2
t=0

=
π

R
(1− e−R)

→ 0 as R→∞.

Finally expand Equation (7.5) as∫ R

ε

eix

x
dx+

∫
ΓR

f(z) dz +

∫ −ε
−R

eix

x
dx−

∫
Γε

f(z) dz = 0.

Take the imaginary part and use the fact that (sinx)/x is an even function to give

2

∫ R

ε

sinx

x
dx+ Im

∫
ΓR

f(z) dz − Im

∫
Γε

f(z) dz = 0.

Let ε→ 0 and R→∞, using the observations above, to conclude

2

∫ ∞
0

sinx

x
dx− π = 0.

Hence ∫ ∞
0

sinx

x
dx =

π

2
.

�

More specialised examples of real integrals

We have now covered the standard methods for evaluating real integrals using contour integra-
tion. The following examples of evaluating real integrals are a little more specialised.

Example 7.7 Evaluate ∫ ∞
0

1

x100 + 1
dx.

Solution: Define

f(z) =
1

z100 + 1
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w

γ2
ΓR

0

Figure 7.6: The wedge contour γ containing the pole w = eiπ/100.

and integrate f around the “wedge” contour γ shown in Figure 7.6, where R > 1. The line
segment γ2 shown is at an angle of π/50 to the real axis, so that precisely one root of z100 + 1,
namely w = eiπ/100, lies inside γ.

The residue of f at the simple pole z = w is (by Lemma 6.13)

res(f, w) =
1

100w99
.

Note w100 = −1, so 1/w99 = −w and hence res(f, w) = −w/100. Cauchy’s Residue Theorem
(Theorem 6.10) then tells us ∫

γ
f(z) dz = 2πi res(f, w) = −πiw

50
. (7.6)

Write ΓR for the circular arc appearing as a piece of γ. If z lies on Γ∗R,∣∣z100 + 1
∣∣ > |z|100 − 1 = R100 − 1,

so ∣∣∣∣∫
ΓR

f(z) dz

∣∣∣∣ 6 1

R100 − 1
· πR

50
→ 0 as R→∞.

The line segment γ2 is parametrised as γ2(t) = eiπ/50(R− t) for 0 6 t 6 R, so∫
γ2

f(z) dz =

∫ R

0

1

(R− t)100 + 1
· (−eiπ/50) dt

= −eiπ/50

∫ R

0

1

(R− t)100 + 1
dt

= −eiπ/50

∫ R

0

1

x100 + 1
dx

upon substituting x = R− t. Hence Equation (7.6) is

(1− eiπ/50)

∫ R

0

1

x100 + 1
dx+

∫
ΓR

f(z) dz = −πiw
50

,

so, upon letting R→∞, we obtain∫ ∞
0

1

x100 + 1
dx =

πiw

50(eiπ/50 − 1)

=
πi eiπ/100

50(eiπ/50 − 1)

=
πi

50(eiπ/100 − e−iπ/100)
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ΓRγ2

π/4

Figure 7.7: The “wedge” contour used in Example 7.8.

=
π

100 sin(π/100)

=
π/100

sin(π/100)
.

�

Example 7.8 Evaluate ∫ ∞
0

cosx2 dx.

Solution: Integrate f(z) = eiz
2

around the contour γ shown in Figure 7.7. Cauchy’s Theorem
tells us that ∫

γ
f(z) dz = 0;

that is, ∫ R

0
eix

2
dx+

∫
ΓR

f(z) dz +

∫
γ2

f(z) dz = 0, (7.7)

where ΓR denotes the circular arc and γ2 the line segment at an angle of π/4 to the real axis.
Note, upon parametrising ΓR as ΓR(t) = R eit for 0 6 t 6 π/4, that∣∣∣∣∫

ΓR

f(z) dz

∣∣∣∣ =

∣∣∣∣∣
∫ π/4

0
eiR

2e2it · iR eit dt

∣∣∣∣∣
6
∫ π/4

0
|eiR2e2it · iR eit|dt

= R

∫ π/4

0
e−R

2 sin 2t dt

6 R
∫ π/4

0
e−4R2t/π dt,

since by Jordan’s Inequality (Lemma 7.5), (sin 2t)/2t > 2/π for 0 6 t 6 π/4. Hence∣∣∣∣∫
ΓR

f(z) dz

∣∣∣∣ 6 − π

4R
e−4R2t/π

∣∣∣π/4
t=0

=
π

4R
(1− e−R

2
)

→ 0
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as R→∞. We parametrise γ2 as γ2(t) = eiπ/4(R− t) for 0 6 t 6 R, so that∫
γ2

f(z) dz =

∫ R

0
eie

iπ/2(R−t)2 · (−eiπ/4) dt

= −eiπ/4
∫ R

0
e−(R−t)2 dt.

Therefore Equation (7.7) becomes∫ R

0
eix

2
dx = eiπ/4

∫ R

0
e−(R−t)2 dt−

∫
ΓR

f(z) dz

= eiπ/4
∫ R

0
e−u

2
du−

∫
ΓR

f(z) dz,

upon substituting u = R− t. Let R→∞ to conclude∫ ∞
0

eix
2

dx = eiπ/4
∫ ∞

0
e−u

2
du = eiπ/4 ·

√
π

2
,

as the latter integral is a standard known integral. (It arises in the context of probability and
statistics in regard to the normal distribution. It can be verified by complex analysis with much
ingenuity, but is most usually established by other methods.) Finally taking real parts gives∫ ∞

0
cosx2 dx =

√
π

2
√

2
.

�

Integrals of functions involving trigonometric functions

A different application of contour integration can be applied to evaluate integrals of the form∫ 2π

0
f(θ) dθ

where f(θ) is a function expressed so as to involve trigonometric functions. The method is to
write

cos θ = 1
2(eiθ + e−iθ) and sin θ = 1

2i(e
iθ − e−iθ)

and to convert our integral into a contour integral involving a function of a complex variable
about the positively oriented circular contour of radius 1 about 0.

Example 7.9 Let a be a real number with a > 1. Evaluate∫ 2π

0

1

a+ sin θ
dθ.

Solution: Observe ∫ 2π

0

1

a+ sin θ
dθ =

∫ 2π

0

2i

2ai+ eiθ − e−iθ
dθ

=

∫ 2π

0

2

(2ai+ eiθ − e−iθ) eiθ
· ieiθ dθ

=

∫ 2π

0

2

e2iθ + 2ai eiθ − 1
· ieiθ dθ
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=

∫
γ
f(z) dz

where γ denotes the positively oriented circular contour of radius 1 about 0 and

f(z) =
2

z2 + 2aiz − 1
.

The roots of z2 + 2aiz − 1 = 0 are

−2ai±
√
−4a2 + 4

2
= −ai±

√
−(a2 − 1)

= (−a±
√
a2 − 1)i.

Note that the root b1 = (−a +
√
a2 − 1)i lies inside the circle γ∗, but the other root b2 =

(−a−
√
a2 − 1)i is in the exterior. As f(z) = 2/(z − b1)(z − b2), the residue of f at b1 is

res(f, b1) =
2

z − b2

∣∣∣∣
z=b1

=
2

b1 − b2
=

1

i
√
a2 − 1

.

Hence, by Cauchy’s Residue Theorem (Theorem 6.10),∫ 2π

0

1

a+ sin θ
dθ =

∫
γ
f(z) dz

= 2πi res(f, b1)

=
2π√
a2 − 1

.

�

Summation of series

For our final type of applications, we intend to evaluate the sum of an infinite series. In our
example, we shall evaluate such a sum by integrating

f(z) =
cos z

z2 sin z
=

cot z

z2

around a square contour γN with vertices at the four points

±(N + 1
2)π ± (N + 1

2)πi.

Accordingly, we need the following fact:

Lemma 7.10 If z lies on the image of the square contour γN that has vertices at the points
±(N + 1

2)π ± (N + 1
2)πi, for some positive integer N , then

|cot z| 6 coth

(
3π

2

)
.

Proof: If z lies on one of the horizontal sides of γ∗N , then

z = x± (N + 1
2)πi

where −(N + 1
2)π 6 x 6 (N + 1

2)π. Then

|cot z| = |cos z|
|sin z|

=
|ei(x±(N+

1
2 )πi) + e−i(x±(N+

1
2 )πi)|

|ei(x±(N+
1
2 )πi) − e−i(x±(N+

1
2 )πi)|
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6
e(N+

1
2 )π + e−(N+

1
2 )π

e(N+
1
2 )π − e−(N+

1
2 )π

= coth(N + 1
2)π

6 coth
3π

2
,

since f(x) = cothx = coshx
sinhx is decreasing:

f ′(x) =
sinhx

sinhx
− cosh2 x

sinh2 x
= 1− cosh2 x

sinh2 x
6 0.

On the other hand, if z lies on one of the vertical sides of γ∗N , then

z = ±(N + 1
2)π + xi

where −(N + 1
2)π 6 x 6 (N + 1

2)π. Then

|cos z| =
∣∣cos(±(N + 1

2)π + xi)
∣∣ = |sinxi| = |sinhx|

and
|sin z| =

∣∣sin(±(N + 1
2)π + xi)

∣∣ = |cosxi| = |coshx| ,

so
|cot z| = |tanhx| 6 1.

Note coth(3π/2) > 1, so the result holds by combining the two inequalities. �

Example 7.11 Evaluate the sum
∞∑
n=1

1

n2
.

Solution: We shall integrate the function f(z) = (cot z)/z2 around the square contour γN ,
shown in Figure 7.8, with vertices at ±(N + 1

2)π ± (N + 1
2)πi. Note that f has poles at z = 0,

±π, ±2π, . . . , ±Nπ that all lie inside γN (the other poles are outside γN ). Thus∫
γN

f(z) dz = 2πi

N∑
n=−N

res(f, nπ)

by Cauchy’s Residue Theorem (Theorem 6.10).
Since f(z) = (cos z)/(z2 sin z), we have a simple pole (of Type II) at z = nπ (for n 6= 0) and,

by Lemma 6.13,

res(f, nπ) =
cos z

z2 cos z

∣∣∣
z=nπ

=
1

n2π2
.

To determine the residue of f at z = 0, we shall make use of the terms of the Laurent series
for cot z that we found in Example 6.6(iv):

cot z =
1

z
− z

3
+ (terms of degree > 3)

Hence the Laurent series of f(z) around 0 is

f(z) =
cot z

z2
= z−3 − 1

3
z−1 + (terms of degree > 1)

and so

res(f, 0) = −1

3
.
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γN

Figure 7.8: The square contour γN with vertices at ±(N + 1
2)± (N + 1

2)πi.

Hence ∫
γN

f(z) dz = 2πi

(
−1

3
+

2

π2

N∑
n=1

1

n2

)
. (7.8)

If z lies on γ∗N , then

|z| > (N + 1
2)π and |cot z| 6 coth(3π/2)

by Lemma 7.10. Hence, using the Crude Estimation Theorem (Theorem 3.15),∣∣∣∣∫
γN

f(z) dz

∣∣∣∣ 6 coth(3π/2)

(N + 1
2)2 π2

· 4(2N + 1)π

=
8 coth(3π/2)

π
· 1

N + 1
2

→ 0 as N →∞.

Hence letting N →∞ in Equation (7.8) gives

2

π2

∞∑
n=1

1

n2
=

1

3
.

Therefore
∞∑
n=1

1

n2
=
π2

6
.

�

Overview of summations: The method presented is useful for evaluating a sum of the form

∞∑
n=1

1

nk
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where k is even. It does not help when k is odd, since when we use the given method we observe

res

(
cot z

zk
, 0

)
= 0

and

res

(
cot z

zk
,−n

)
= − res

(
cot z

zk
, n

)
.

Consequently the sum of the residues, when k is odd, is 0 in this case we learn nothing by
applying contour integration.

We can also apply contour integration to a function of the form

1

zk sin z
,

again when k is even, to determine the value of summations of the form

∞∑
n=1

(−1)n

nk
.
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Chapter 8

Logarithms and Related
Multifunctions

In this section, we seek to define what is mean by the logarithm of a complex number z. We
require that the function log z has two principal properties:

1. It is the inverse of the exponential function ez.

2. It is well-behaved (i.e., holomorphic) on a sufficiently large proportion of the complex plane
that we can make use of it.

Let us explore Property 1 to see how we should define log z. If z ∈ C, let us suppose, for
some z ∈ C, we have defined

log z = a+ ib

with real part a and imaginary part b. We will require

z = elog z = ea+ib = ea(cos b+ i sin b).

Hence ea = |z| and b = arg z. In view of this, if one is to define logarithm as an inverse of the
exponential function, then it would be given by

log z = log |z|+ i arg z, (8.1)

where log |z| denotes the familiar real-valued logarithm of the real number |z|. This at least
gives a value when z 6= 0.

Note then that if z = x+ iy, then using the definition in Equation (8.1),

log ez = log ex+iy = log
∣∣ex+iy

∣∣+ i arg ex+iy = log ex + iy = x+ iy = z.

Hence with this definition, log z would indeed be an inverse for the exponential function, since
it satisfies both

elog z = z and log ez = z.

However, there are two obvious issues that arise:

1. The argument of a complex number is not uniquely specified.

2. It is not at all clear that Equation (8.1) actually defines a holomorphic function.

The first issue is the more profound: we cannot hope to show a function is holomorphic until
after we have made sense of what the function even means.
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1

Figure 8.1: A singularity in log z as we trace a circle around 0

Up to this point, the method we have used to get a unique value for the argument of a
complex number is to prescribe that the argument is selected from a particular range of values.
For example, one might use the range

0 6 arg z < 2π for all z ∈ C

(and we do not choose any value at all for the argument of 0). One could use such a range of
argument to then define logarithm via Equation (8.1).

This looks like a potential sensible way to define logarithm, but an issue arises if we examine
the behaviour of logarithm as we follow the positively oriented contour of radius 1 about 0. We
parametrise this contour as

γ(t) = eit for 0 6 t 6 2π.

Then

log γ(t) = log
∣∣eit∣∣+ i arg(eit)

= i arg(eit)

=

{
it if 0 6 t < 2π

0 if t = 2π;

that is, logarithm does not vary in a continous way as we trace this circle (as shown in Figure 8.1):
there is a jump in the value as we complete the circle and return to 1.

We need to avoid such a discontinuity: once we have chosen a range of values for the
argument, we need to prevent such a circling of the origin. The solution is the following action:

Define a branch cut : select a part of the complex plane that we remove (“cut”) from
the plane in such a way to prevent circling the origin.

Example 8.1 To define the logarithm as

log z = log |z|+ i arg z

where
0 < arg z < 2π,

cut the plane along the real axis. The resulting cut plane is

Ccut = C \ [0,∞)

as illustrated in Figure 8.2.
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cut

Figure 8.2: A cut plane Ccut.

If we want to use a different range of argument, then we should use a different (appropriately
selected) cut to the plane.

The point z = 0 where our branch cut begins (and which must be included in any cut used so
as to avoid circling the origin) is called a branch point for the logarithm function. The function
log z = log |z|+ i arg z determined by the range of argument selected is then called a branch of
the multifunction log z.

Now that we have specified how to define (a branch of) logarithm with use of a branch cut,
we need to show that the logarithm function so defined is actually holomorphic on the cut plane.
We shall now explain why logarithm is indeed holomorphic on Ccut.

Cut the plane with a straight line cut starting at the branch point z = 0. (The requirement
that it be straight is not necessary for our argument that follows, but for convenience we shall
use a straight line cut.) This choice of cut then defines, as described above, a range of values
for the argument of a complex number in the resulting cut plane. Suppose that

α < arg z < α+ 2π

is the range of argument chosen for z in Ccut. (The points on the line removed are those that
could have α as a value of their argument.) Choose some point c that does not lie on the cut.
For convenience we shall chooose c to be on the line that continues from the cut (see Figure 8.3);
that is, so that arg c = α + π. Now, if z lies in the cut plane (i.e., z ∈ C but not on the cut),
define

F (z) =

∫
[c,z]

1

w
dw

where [c, z] denotes the line segment from c to z. (Our choice of cut as a straight line together
with the location of the point c ensures that the line segment [c, z] is contained in the cut plane.
If we chose a more complicated cut, for example, then we would need a more careful choice of
path from c to z.)

Note that 1/w is a holomorphic function of w on the cut plane, since its pole at w = 0 is one
of the points we have removed. We may then use a variation of Theorem 5.4 (proved by exactly
the same method) to conclude

the function F is holomorphic on Ccut with derivative

F ′(z) =
1

z
.

Now consider the function eF (z)/z. This is also holomorphic on Ccut (since 0 is not in this
cut plane) and

d

dz

(
eF (z)

z

)
=
F ′(z) eF (z)

z
− eF (z)

z2
= 0
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cut

c

z

Figure 8.3: The cut plane and definition of F (z) as an integral along [c, z].

since F ′(z) = 1/z. Hence eF (z)/z is constant on Ccut. Observe eF (c)/c = e0/c = 1/c, so

eF (z) = 1
cz for all z ∈ Ccut.

Now c 6= 0, so we can write c = ek for some complex number k ∈ C (indeed, we take Re k = log |c|
and Im k to be the choice of argument for c). Then

eF (z)+k = c eF (z) = z for all z ∈ Ccut.

Our argument at the start of the chapter shows that

F (z) + k = log |z|+ i arg z

for some choice of argument. The left-hand side is a holomorphic function and so, in particular,
is continuous. Hence we conclude that

log z = log |z|+ i arg z

where arg z is chosen from a suitable range (such that it is continuous on Ccut) is indeed holo-
morphic on Ccut.

We have established the following:

Theorem 8.2 Define the complex logarithm as

log z = log |z|+ i arg z

on a suitable cut plane using a branch cut starting at the branch point z = 0 and a suitable
choice of argument. Then log z is holomorphic on Ccut with derivative

d

dz
(log z) =

1

z
.

�

The most common choices of cut are:

(i) along the positive real axis with argument range 0 < arg z < 2π;

(ii) along the negative real axis with argument range −π < arg z < π;

(iii) along the negative imaginary axis with argument range −π/2 < arg z < 3π/2.

This third option is actually the lecturer’s favourite choice: it often has the advantage of avoiding
the contour that we are attempting to work with in many examples.
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ai

ε R

cut

Figure 8.4: The contour γ used when integrating (log z)/(z2 + a2).

Example 8.3 Let a be a real number with a > 0. Evaluate∫ ∞
0

log x

x2 + a2
dx.

Solution: To define the complex logarithm, we shall cut the plane along the negative imaginary
axis. Thus for z ∈ Ccut = C \ { yi | y 6 0 }, we define

log z = log |z|+ i arg z

where argument is selected from the range −π/2 < arg z < 3π/2. In terms of this logarithm,
define

f(z) =
log z

z2 + a2

and integrate this f around the contour γ shown in Figure 8.4, where we choose R > a and
0 < ε < min{1, a/2}.

Note that f is holomorphic on an open subset of C that avoids the cut and contains γ and
its interior, except for a simple pole at z = ai inside γ. By Lemma 6.13,

res(f, ai) =
log(ai)

2ai
=

log a+ iπ/2

2ai

so ∫
γ
f(z) dz = 2πi res(f, ai)

=
π

a

(
log a+

iπ

2

)
. (8.2)

Write ΓR and Γε, respectively, for the semicircular pieces of γ of radii R and ε (so the first
is positively oriented and the second negatively oriented about 0). If z lies on Γ∗R, then

|log z| = |logR+ i arg z| 6 logR+ π

and ∣∣z2 + a2
∣∣ > |z|2 − a2 = R2 − a2.

Hence ∣∣∣∣∫
ΓR

f(z) dz

∣∣∣∣ 6 logR+ π

R2 − a2
· πR
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=
π(logR+ π)

R− (a2/R)
→ 0 as R→∞,

since (logR)/R→ 0 as R→∞.
If z lies on Γ∗ε, then

|log z| = |log ε+ i arg z| 6 |log ε|+ π = π − log ε

(since log ε < 0 for ε < 1), and∣∣z2 + a2
∣∣ > a2 − |z|2 = a2 − ε2 > 3

4a
2 > 1

2a
2.

Hence ∣∣∣∣∫
Γε

f(z) dz

∣∣∣∣ 6 π − log ε
1
2a

2
· πε

=
2π

a2
(πε− ε log ε)→ 0 as ε→ 0

(since ε log ε→ 0 as ε→ 0).
Let us parametrise the line segment from −ε to −R by δ(t) = −t for ε 6 t 6 R. Note

δ′(t) = −1 and log(−t) = log t + iπ for ε 6 t 6 R according to our definition of logarithm.
Hence ∫

[−R,−ε]
f(z) dz = −

∫
δ
f(z) dz =

∫ R

ε

log t+ iπ

t2 + a2
dt.

Consequently Equation 8.2, when expanded, becomes∫ R

ε

log x

x2 + a2
dx+

∫
ΓR

f(z) dz +

∫ R

ε

log(t) + iπ

t2 + a2
dt+

∫
Γε

f(z) dz =
π

a

(
log a+

iπ

2

)
;

that is,

2

∫ R

ε

log x

x2 + a2
dx+ iπ

∫ R

ε

1

t2 + a2
dt+

∫
ΓR

f(z) dz +

∫
Γε

f(z) dz =
π

a

(
log a+

iπ

2

)
.

Take real parts and let ε→ 0 and R→∞. We conclude that

2

∫ ∞
0

log x

x2 + a2
dx =

π

a
log a;

that is, ∫ ∞
0

log x

x2 + a2
dx =

π log a

2a
.

�

Functions defined as complex exponent powers

One can use logarithm to then define what we mean, given any complex number α, by a power zα

as a function of a complex variable z.

Definition 8.4 Let α ∈ C. To define zα for z in an appropriate subset of C, proceed as follows:

(i) Cut the plane to define a suitable branch of logarithm log z = log |z|+ i arg z.

(ii) Define
zα = eα log z.
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Note that, as a composite of two holomorphic functions, zα is then holomorphic on the cut
plane Ccut and

d

dz
(zα) =

d

dz

(
eα log z

)
= α · d

dz
(log z) · eα log z

= α · 1

z
· zα

= α zα−1.

This function also satisfies other natural properties. For example, if α > 0 (most likely non-
integer since otherwise we would use the usual power function) then

|zα| = eRe(α log z) = eα log|z| = |z|α .

If one uses such power functions, then one can obtain similar integrals to that calculated in
Example 8.3 and the examples in the previous chapter. Due to current pressures of time, no
example is included in these notes of such an integral.
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Chapter 9

Locating and Counting Zeros and
Poles

In this chapter, we shall discuss how the theory developed help us determine information about
the location of the zeros and poles of some functions. We shall also be counting the number of
zeros and poles, but when doing so we are counting these including multiplicities. Consequently,
all though the function z3 has only one location at which it has a zero, namely z = 0, this is a
repeated zero and we will count this zero three times.

To make the concept of multiplicities precise, we first recall the concept of the order of a
pole: A function f has a pole of order m at a point a ∈ C if its Laurent series has the form

f(z) = c−m(z − a)−m + c−m+1(z − a)−m+1 + . . . ,

valid in some punctured open disc B′(a, r), where c−m 6= 0. When counting a pole of order m,
we shall count this pole m times.

A similar definition is made for zeros:

Definition 9.1 Let f be holomorphic in some open disc B(a, r). We say f has a zero of order m
at a if the Taylor series for f has the form

f(z) = cm(z − a)m + cm+1(z − a)m+1 + . . . ,

valid in B(a, r), where cm 6= 0.

Note that since the coefficients c0, c1, . . . , cm−1 in the Taylor series are zero in this definition,
a zero of order m at a point a ∈ C means that

f(a) = f ′(a) = f ′′(a) = · · · = f (m−1)(a) = 0

by the formula for the coefficients appearing in Taylor’s Theorem.

Theorem 9.2 (Argument Principle) Let γ be a positively oriented contour and let f be a
function that is holomorphic on an open set containing γ and its interior, except that f has
P poles (including multiplicities) inside γ. Assume that f is non-zero on γ and has Z zeros
(including multiplicities) inside γ. Then

1

2πi

∫
γ

f ′(z)

f(z)
dz = Z − P.

Proof: First note that f ′/f is defined and holomorphic on γ and its interior, except that it has
isolated singularities whenever f has a pole or a zero. Let a1, a2, . . . , ak be the points inside γ
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where f has either a pole or a zero. Then Cauchy’s Residue Theorem (Theorem 6.10) says

1

2πi

∫
γ

f ′(z)

f(z)
dz =

k∑
j=1

res

(
f ′

f
, aj

)
. (9.1)

Consider a point a = aj where f has a pole or a zero. The Laurent series for f valid in a
punctured disc around a has the form

f(z) = (z − a)m g(z)

where g is holomorphic in an open disc around a, where m is positive at a zero and is negative
at a pole, and where g(a) 6= 0. Then

f ′(z) = m(z − a)m−1 g(z) + (z − a)m g′(z)

so
f ′(z)

f(z)
=

m

z − a
+
g′(z)

g(z)
. (9.2)

Here g′(z)/g(z) is holomorphic in some open disc around a (since g(a) 6= 0), so we conclude
that Equation (9.2) is essentially the Laurent series for f ′(z)/f(z) about a (at least once we
expand g′(z)/g(z) as a power series). We can then extract the residue as the coefficient of (z −
a)−1:

res

(
f ′

f
, a

)
= m.

Hence, in the sum appearing in Equation (9.1), every zero of order m contributes m to the sum
and every pole of order m contributes −m to the sum. We conclude

1

2πi

∫
γ

f ′(z)

f(z)
dz =

k∑
j=1

res

(
f ′

f
, aj

)
= Z − P,

as claimed. �

Rouché’s Theorem

The above theorem gives a lot of information about the location and multiplicities of zeros and
poles. We shall use this to establish the following result:

Theorem 9.3 (Rouché’s Theorem) Let f and g be holomorphic on an open set containing
a contour γ and its interior. Suppose

|f(z)| > |g(z)| for z on γ∗.

Then f and f + g have the same number of zeros inside γ.

Proof: Let t be a real number with t ∈ [0, 1]. Note that

|f(z) + t g(z)| > |f(z)| − t |g(z)| > |f(z)| − |g(z)| > 0

by our assumption, so
f(z) + t g(z) 6= 0 for all z ∈ γ∗.

Hence the function f + tg satisfies the hypotheses of Theorem 9.2 and we conclude

φ(t) =
1

2πi

∫
γ

f ′(z) + t g′(z)

f(z) + t g(z)
dz
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equals the number of zeros (up to multiplicity) of f(z) + t g(z) inside γ.
We claim that φ is a continuous function of t. Indeed, observe

φ(t)− φ(s) =
1

2πi

∫
γ

(
f ′(z) + t g′(z)

f(z) + t g(z)
− f ′(z) + s g′(z)

f(z) + s g(z)

)
dz

=
1

2πi

∫
γ

(f(z) + s g(z))(f ′(z) + t g′(z))− (f(z) + t g(z))(f ′(z) + s g′(z))

(f(z) + t g(z))(f(z) + s g(z))
dz

=
t− s
2πi

∫
γ

f(z) g′(z)− f ′(z) g(z)

(f(z) + t g(z))(f(z) + s g(z))
dz.

Recall that f(z) + t g(z) is non-zero for t ∈ [0, 1] and z ∈ γ∗. Hence the integrand above is a
continuous function of s, t and z. We have already noted that a continuous function defined
on a closed and bounded subset of C is bounded. The same is true for a continuous function
of (s, t, z) on the set [0, 1] × [0, 1] × γ∗ (basically because [0, 1] is a closed and bounded subset
of R and γ∗ is a closed and bounded subset of C). Hence, there exists some constant M such
that ∣∣∣∣ f(z) g′(z)− f ′(z) g(z)

(f(z) + t g(z))(f(z) + s g(z))

∣∣∣∣ 6M
for all s, t ∈ [0, 1] and all z ∈ γ∗. Hence, by the Crude Estimation Theorem (Theorem 3.15),

|φ(t)− φ(s)| 6 M · L(γ)

2π
|t− s| ,

which is enough to show φ is continuous. (Given ε > 0, take δ = ε/M · L(γ). For such δ,
|t− s| < δ implies |φ(t)− φ(s)| < ε.)

However, the function φ counts the number of zeros of f + tg inside γ, so only takes integer
values. Hence, if φ is also continuous, then we conclude φ is constant. Therefore φ(0) = φ(1);
that is f(z) + g(z) has the same number of zeros (including multiplicity) as f(z) inside γ. �

Example 9.4 Show that all the solutions of

z5 + z3 + 2z + 5 = 0

satisfy |z| < 2.

Solution: Take f(z) = z5, g(z) = z3 +2z+5 and γ be the positively oriented circular contour
of radius 2 about 0. Note that f(z) has zeros at 0 (of multiplicity 5), so all five of the zeros
of f(z) lie inside γ. Note that when z lies on γ∗,

|f(z)| =
∣∣z5
∣∣ = 25 = 32

and
|g(z)| =

∣∣z3 + 2z + 5
∣∣ 6 |z|3 + 2 |z|+ 5 = 23 + 4 + 5 = 17.

Hence f and g satisfy the hypotheses of Rouché’s Theorem, so

f(z) + g(z) = z5 + z3 + 2z + 5

has the same number of zeros (that is, five) inside γ as f . Thus all five solutions of f(z)+g(z) = 0
lie inside γ; that is, satisfy |z| < 2. �

Example 9.5 Determine the number of solutions of

z5 + 3z2 + 6z + 1 = 0

in the open annulus A = { z ∈ C | 1 < |z| < 2 }.
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Solution: First take γ1 to be the positively oriented circular contour of radius 1 about 0,

f1(z) = 6z + 1 and g1(z) = z5 + 3z2.

Note that f1 has one zero inside γ1, namely z = −1
6 . If z lies on γ∗1 , then

|f1(z)| = |6z + 1| > 6 |z| − 1 = 5

and
|g1(z)| =

∣∣z5 + 3z2
∣∣ 6 ∣∣z5

∣∣+ 3
∣∣z2
∣∣ = 4.

Hence, by Rouché’s Theorem (Theorem 9.3), f1(z) + g1(z) = z5 + 3z2 + 6z + 1 has the same
number of zeros inside γ1 as f1(z) does, namely one.

Also note, as observed in the proof of Rouché’s Theorem, f1(z) + g1(z) is non-zero on γ1

since |f1(z) + g1(z)| > |f1(z)| − |g1(z)| > 5− 4 = 1.
Now take γ2 be the positively oriented circular contour of radius 2 about 0,

f2(z) = z5 and g2(z) = 3z2 + 6z + 1.

Note that f(z) has five zeros inside γ2, and that if z lies on γ∗2 , then

|f2(z)| = |z|5 = 25 = 32

and
|g2(z)| =

∣∣3z2 + 6z + 1
∣∣ 6 3 |z|2 + 6 |z|+ 1 = 25.

Hence, by Rouché’s Theorem, f2(z) + g2(z) = z5 + 3z2 + 6z + 1 has the same number of zeros
inside γ2 as f2(z) does, namely five.

Putting this together, we conclude that z5 + 3z2 + 6z + 1 = 0 has four solutions in the
annulus A = { z ∈ C | 1 < |z| < 2 }. �

The Argument Principle

Let us return to the conclusion of Theorem 9.2 and apply it to locate the zeros of a holomorphic
function. Let f be a function that is holomorphic on C and suppose that f is non-zero on the
image of a positively oriented contour γ : [a, b]→ C. The theorem tells us that

Z =
1

2πi

∫
γ

f ′(z)

f(z)
dz (9.3)

is the number of zeros inside γ.
We shall now describe how to determine the value of the formula (9.3). First cut the plane

and define a branch of logarithm on Ccut as determined by some choice of range of argument.
Note then that log f(z) is holomorphic whenever f(z) lies in the cut plane and

d

dz

(
log f(z)

)
=
f ′(z)

f(z)

by the Chain Rule. Hence if γ0 : [c, d] → C is a piecewise smooth curve such that f(z) ∈ Ccut

when z lies on the image of γ0 then∫
γ0

f ′(z)

f(z)
dz = log f(γ0(d))− log f(γ0(c)) (9.4)

by the Fundamental Theorem of Calculus for integrals along a curve.
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The issue, however, is that as we follow the original contour γ, the values of f(z) may cross
the branch cut. The way to address this is to break the parametrization interval of γ : [a, b]→ C
into pieces

a = a0 < a1 < a2 < · · · < an = b

to achieve the following. Write γj : [aj−1, aj ]→ C for the jth piece of the contour γ. The choice
of pieces is done so that we can achieve the following:

• First choose a range of argument (that we shall denote arg(1) rather than arg) and a branch
of logarithm so that f(z) does not cross the branch cut when z = γ(t) for a0 6 t 6 a1;
that is, so that the curve f ◦ γ1 : [a0, a1]→ C does not cross the cut.

• Having chosen a range of argument arg(j−1) and a branch of logarithm appropriate for the
curve γj−1, take a new cut so that f ◦ γj(t) does not cross this cut for aj 6 t 6 aj+1.
Moreover, choose a range of argument, denoted arg(j), on the new cut plane beginning with
arg(j) f(γ(aj)) = arg(j−1) f(γ(aj)). That is, we start with the previous value of argument
and choose a range that works as we continue to trace the next piece γj of the contour.

See Figure 9.1 for a diagram of the closed curve f ◦ γ : [a, b] → C and indication of how
we might choose the aj and possible branch cuts. In this particular diagram, the curve γ is
broken into four pieces. For the first piece, we might cut the plane along the negative imaginary
axis and take argument for γ1 : [a0, a1] → C in the range −π/2 < arg(1) z < 3π/2. Then, in
particular, f(γ(a)) = f(γ(a0)) has argument in the range −π/2 < arg(1) f(a) < 0 and f(γ(a1)),
which is labelled “a1” in the figure, has argument in the range π < arg(1) f(a1) < 3π/2. For
the second piece, we might cut along the negative real axis and take argument in the range
π < arg(2) z < 3π. Then f(γ(a2)) has argument in the range 5π/2 < arg(2) f(a2) < 3π. Next,
we might cut along the positive imaginary axis for the third piece and take argument in the range
5π/2 < arg(3) z < 9π/2. Then f(γ(a3)) has argument in the range 4π < arg(3) f(a3) < 9π/2.
For the final (fourth) piece, cut the plane along the positive real axis and take argument in the
range 4π < arg(4) z < 6π. In particular, as f(z) returns to the point f(a) = f(a4), the value of
argument in the range 11π/2 < arg(4) f(a) < 6π. In particular, the value of argument for f(a)
has increased by 6π as we return having circled around the origin three times.

Now applying Equation (9.4) to the jth piece γj , we deduce∫
γj

f ′(z)

f(z)
dz = log f(γj(aj+1))− log f(γj(aj))

= log |f(γ(aj+1))|+ i arg(j) f(γ(aj+1))

− log |f(γ(aj))| − i arg(j) f(γ(aj))

expressed in terms of the range of argument chosen when tracing the curve γj . Since we have
chosen the argument ranges so that arg(j) f(γ(aj)) = arg(j−1) f(γ(aj)), we determine that∫

γ

f ′(z)

f(z)
dz =

n∑
j=1

∫
γj

f ′(z)

f(z)
dz

= log |f(γ(b))|+ i arg(n) f(γ(b))

− log |f(γ(a))| − i arg(1) f(γ(a))

= i
(
arg(n) f(c)− arg(1) f(c)

)
(9.5)

where c = γ(a) = γ(b). Returning to the original result (9.3), we conclude that

Z =
1

2π

(
arg(n) f(c)− arg(1) f(c)

)
100



a = a0 = a4

a1

a2

a3

Figure 9.1: The pieces that comprise f ◦ γ. The label is the parameter, so the point labelled aj
is the complex number f(γ(aj)).

is determined by the increase in the value of argument of f(z) as z traces the contour γ.
Accordingly, we make the following definition:

Definition 9.6 Let γ be a piecewise smooth curve and f be a holomorphic function that is
non-zero on γ∗. Write ∆γ(arg f) for the overall change in the argument of f(z) as z traces the
curve γ; that is, according to the formula (9.5)

∆γ(arg f) =
1

i

∫
γ

f ′(z)

f(z)
dz.

The interpretation of the Argument Principle, that we shall treat as a method in what
follows, is that Theorem 9.2 tells us that, if f is holomorphic and non-zero on the image of a
positively oriented contour γ, then

Z =
1

2π
∆γ(arg f)

is the number of zeros of f inside γ. All we need to do, therefore, is keep track of the change in
the argument of f(z) as we follow the contour γ.

Example 9.7 (MT3503 exam, January 2009) Determine the number of roots of

z6 + iz − 1 = 0

in the first quadrant.

Solution: Let f(z) = z6 + iz − 1. Then f is holomorphic on C. If x is a real number then

f(x) = (x6 − 1) + ix.

This is non-zero since the imaginary part vanishes only when x = 0 at which point the real part
is non-zero.
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Figure 9.2: Application of the Argument Principle

If y is a real number then
f(iy) = −(y6 + y + 1).

Define g(y) = y6 + y + 1. Then g(y) → ∞ as y → ±∞. Also g′(y) = 6y5 + 1 so g′(y) = 0 only
when y = − 5

√
1/6. Therefore the function g has a minimum at y = − 5

√
1/6, namely

g

(
− 5

√
1

6

)
=

1

6
5

√
1

6
− 5

√
1

6
+ 1 = 1− 5

6
5

√
1

6
> 0.

It follows that g(y) > 0 for all real y, so f(iy) = −g(y) is never zero.
In conclusion, f(z) has no roots on the real and imaginary axes. It has only a finite number

of roots in the first quadrant (certainly no more than six), so we can assume that if R is large
enough then all roots of f(z) in the first quadrant lie inside the positively oriented contour γ
shown in Figure 9.2. The observation that there are no roots on the real and imaginary axes
enable us to be certain that f(z) is non-zero on the image of this contour. We shall now trace the
change in argument of f(z) as z travels around γ so that we can apply the Argument Principle.

On the line segment [0, R]: Here z = x with 0 6 x 6 R and

f(x) = (x6 − 1) + ix.

The argument of φ of f(x) is given by

φ = arg f(x) = tan−1

(
x

x6 − 1

)
.

Consider the function x 7→ x/(x6 − 1) and its behaviour as x increases from 0 to R (where
we assume that R is large). This function is shown in Figure 9.3. It is continuous on [0, 1)
and on (1,∞) and has a discontinuity at x = 1. The value of x/(x6 − 1) decreases from 0
to −∞ (at x = 1) and then decreases from +∞ to R/(R6 − 1) ≈ 0. This corresponds to
φ = tan−1(x/(x6− 1) decreasing from π (note that f(0) = −1) to π/2 at x = 1 (when f(1) = i)
and then decreasing to approximately 0 when x = R (large). These values are summarized in
Table 9.1. (The 1− and 1+ columns indicate the limits as x approaches 1 from the left- and the
right-hand sides.) Hence the change of the argument of f(z) as z travels from 0 to R along the
real axis is

∆[0,R](arg f(z)) ≈ −π.
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Figure 9.3: The function x 7→ x/(x6 − 1)

x 0 1− 1+ R (large)

f(x) −1 i i (R6 − 1) + iR

x

x6 − 1
0 −∞ +∞ R

R6−1
≈ 0

φ = tan−1
(

x
x6−1

)
π π/2 π/2 ≈ 0

Table 9.1: The value of the argument of f(x) = (x6 − 1) + ix on the real axis

On the quarter circle ΓR: Let us write ΓR for the positively oriented circular arc of
radius R about the origin that travels from the point R on the real axis to the point iR on the
imaginary axis. If z lies on the image of ΓR, then z = Reit with 0 6 t 6 π/2 and

f(Reit) = R6e6it + iReit − 1

= (R6 cos 6t−R sin t− 1) + i(R6 sin 6t+R cos t). (9.6)

The argument of φ of f(z), for z = Reit, is given by

φ = arg f(z) = tan−1

(
R6 sin 6t+R cos t

R6 cos 6t−R sin t− 1

)
.

Thus for large R,
φ ≈ tan−1(tan 6t) = 6t.

If one thinks about the location of points in the complex plane, this approximation is rea-
sonable. The point f(Reit) is specified in Equation (9.6) and is, relatively speaking, close to the
point R6e6it. Indeed, if all we are interested in is the argument of f(Reit), then the argument is
the same as that of

f(Reit)

R6
= e6it +

iReit − 1

R6
≈ e6it.

Now we consider the behaviour of φ as t ranges from 0 to π/2. Since φ ≈ 6t, we conclude
that the change in argument of f(z) as z traces the quarter circle ΓR is

∆ΓR(arg f(z)) ≈ 6 · (π/2)− 0 = 3π.
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On the line segment [iR, 0]: We now consider the behaviour of f(z) as z travels from iR
to 0 along the imaginary axis. Thus z = iy where y decreases from R (large) to 0. We have
calculated already that

f(iy) = −(y6 + y + 1)

is a real number. Hence the argument of f(z) is constant as we travel along this line segment,
so

∆[iR,0](arg f(z)) = 0.

Putting this together we conclude that

∆γ(arg f(z)) ≈ −π + 3π + 0 = 2π.

Therefore the number of zeros of f inside γ is

Z =
1

2π
∆γ(arg f(z)) ≈ 1.

However, this number is an integer and we can assume that R is taken sufficiently large that the
error is very small (much smaller than the difference between two integers). Hence we conclude

Z = 1.

We conclude that f(z) = 0 has precisely one root in the first quadrant. �

Example 9.8 Determine the number of solutions of the equation

z3 − iz − i = 0

in the first quadrant of the complex plane.

Solution: Define f(z) = z3 − iz − i. Note that when x is real, f(x) = x3 − i(x + 1) is
non-zero as its real and imaginary parts cannot be simultaneously be zero. Similarly, when
y is real, f(iy) = y − i(y3 + 1) is non-zero. Hence there are no zeros of f(z) on the positive
real or imaginary axes. There are at most three zeros of f(z) in the first quadrant, so we can
take a sufficiently large radius R > 0 such that all the zeros of f(z) in the first quadrant lie
inside the contour γ shown in Figure 9.2 used above. We shall consider the change of argument
φ = arg f(z) as z travels along the contour γ.

On the line segment [0, R]: Here z = x with 0 6 x 6 R and

f(z) = x3 − i(x+ 1).

Hence

φ = arg f(z) = tan−1

(
−x+ 1

x3

)
.

As x increases from 0 to R, the fraction −(x + 1)/x3 increases in a continuous way from −∞
to −(R + 1)/R3 ≈ 0. Note that f(0) = −i and so the value of φ varies from −π/2 to (approxi-
mately) 0. Thus

∆[0,R](arg f(z)) ≈ π

2
.

On the quarter circle ΓR: Here z = R eit with 0 6 t 6 π/2 and

f(z) = R3e3it − iR eit − i = (R3 cos 3t+R sin t) + (R3 sin 3t−R cos t− 1)i.

Hence

φ = arg f(z) = tan−1

(
R3 sin 3t−R cos t− 1

R3 cos 3t+R sin t

)
≈ 3t
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Figure 9.4: The function y 7→ −(y3 + 1)/y

when R is large. As t increases from 0 to π/2, the value of φ increases from 0 to 3π/2, so

∆ΓR(arg f(z)) ≈ 3π

2
.

On the line segment [0, iR]: Here z = iy where y decreases from R to 0 as we travel
along the line segment. Then

f(z) = y − i(y3 + 1)

and

φ = arg f(z) = tan−1

(
−y

3 + 1

y

)
.

Here we need to analyse the behaviour of −(y3 + 1)/y as y ranges from R down to 0. Note that

d

dy
(−y2 − y−1) = −2y + y−2 =

1− 2y3

y2
,

which vanish when y3 = 1/2 and is positive when 0 < y < 1/ 3
√

2 and negative for y > 1/ 3
√

2.
Hence, when we allow y to decrease from R to 0, the fraction −(y3 +1)/y initially increases from
its initial value −(R3 + 1)/R ≈ −R2, to a maximum (albeit still negative) value at y = 1/ 3

√
2,

and then decreases towards −∞ (which it approaches as y → 0). The function y 7→ −(y3 + 1)/y
is shown in Figure 9.4.

The corresponding effect on the argument is that φ starts starts at the value of (approx-
imately) −π/2 as we begin tracing the line segment, increases in value, but returns to the
value −π/2 as we complete the segment. In summary,

∆[iR,0](arg f(z)) ≈ 0.

Hence
1

2π
∆γ(arg f(z)) ≈ 1

2π

(
π

2
+

3π

2
+ 0

)
= 1.

Since R can be chosen large enough that the error is very small, we conclude that f has one
root in the first quadrant of the complex plane. �
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