School of Mathematics and Statistics

MT3501 Linear Mathematics 2

Problem Sheet VII: The adjoint of a linear transformation

- 1. Let V be a finite-dimensional inner product space (over either \mathbb{R} or \mathbb{C}), let $S, T: V \to V$ be linear transformations and let α be a scalar. Using the definition of the adjoint, show that
 - (a) $(S+T)^* = S^* + T^*;$
 - (b) $(ST)^* = T^*S^*;$
 - (c) $(\alpha T)^* = \bar{\alpha} T^*;$
 - (d) $(T^*)^* = T;$
 - (e) TT^* and T^*T are self-adjoint transformations.

Are the transformations TT^* and T^*T necessarily equal? If not, give an example to show they can be different.

2. Let V and W be finite-dimensional inner product spaces and let $T: V \to W$ be a linear transformation. We shall define the *adjoint* of T to be a linear map $T^*: W \to V$ such that

$$\langle T(v), w \rangle = \langle v, T^*(w) \rangle$$

for all $v \in V$ and $w \in W$.

- (a) Show that if the adjoint T^* exists, then it is unique.
- (b) Show that the adjoint of T does always exist.

[Hint: Copy the proof of Lemma 7.2 as much as you can. This time use two orthonormal bases, one for V and one for W.]

- 3. Let V and W be finite-dimensional inner product space and $T: V \to W$ be an injective linear map. Show that
 - (a) the linear map $T^*T: V \to V$ is invertible (where T^* is as defined in Question 2);
 - (b) the linear map $P = T(T^*T)^{-1}T^*$ is the projection map onto the image $U = \operatorname{im} T$ associated to the direct sum decomposition $W = U \oplus U^{\perp}$.

[Hint: Copy the proof of Proposition 6.19 as much as you can.]

- 4. Let V be a finite-dimensional inner product space over the field F (where $F = \mathbb{R}$ or \mathbb{C}).
 - (a) If $w \in V$, show that $f_w: V \to F$, given by $f_w(v) = \langle v, w \rangle$ for $v \in V$, is a linear functional.
 - (b) Show that every linear function $f: V \to F$ is equal to f_w for some $w \in V$. [Hint: Pick an orthonormal basis $\{e_1, e_2, \ldots, e_n\}$ for V and consider the scalars $f(e_i)$.]
 - (c) Show that the map $\phi: V \to V^*$ given by $w \mapsto f_w$ is a bijection. If $F = \mathbb{R}$, show that ϕ is an isomorphism.
 - (d) If $F = \mathbb{C}$, is it true that ϕ is an isomorphism?

Now fix a linear transformation $V \to V$.

- (e) Show that the map $T': V^* \to V^*$, given by (T'f)(v) = f(T(v)) for all $f \in V^*$ and $v \in V$, is a linear transformation of the dual space V^* .
- (f) Show that $T'\phi = \phi T^*$, where T^* is the adjoint of T.

[Since ϕ is a bijection, the last part shows that the linear map induced on the dual space by T and the adjoint of T are closely related. They are often both denoted by T^* .]