School of Mathematics and Statistics MT3501 Linear Mathematics 2 Problem Sheet VI: Inner product spaces

1. Let C[0,1] be the vector space of all real-valued continuous functions $f: [0,1] \to \mathbb{R}$. Verify that the following formula defines an inner product on C[0,1]:

$$\langle f,g \rangle = \int_0^1 f(x)g(x) \,\mathrm{d}x.$$

[Hint: It may help to use the fact that if f(x) is a continous function such that $f(x) \ge 0$ for all x and $f(a) \ne 0$ for some $a \in [0, 1]$, then $\int_0^1 f(x) \, dx > 0$. (For those who have done MT2502, this can be easily deduced from the ε - δ definition of continuity.)]

- 2. If $A = [a_{ij}]$ is an $m \times n$ matrix over a field F, then its transpose A^{T} is the $n \times m$ matrix obtained by interchanging rows and columns: $A^{\mathsf{T}} = [a_{ji}]$ has (i, j)th entry equal to a_{ji} , which is the (j, i)th entry of A.
 - (a) Let A be an $m \times n$ matrix and B be an $n \times r$ matrix over some field F. Show that

$$(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}.$$

(b) Let A be an invertible matrix over a field F. Show that A^{T} is invertible and that

$$(A^{\mathsf{T}})^{-1} = (A^{-1})^{\mathsf{T}}.$$

(c) Let A and B be $m \times n$ matrices over a field F and α be a scalar in F. Show that

$$(A+B)^{\mathsf{T}} = A^{\mathsf{T}} + B^{\mathsf{T}}$$
 and $(\alpha A)^{\mathsf{T}} = \alpha A^{\mathsf{T}}$.

3. Consider the vector space $M_n(\mathbb{R})$ of all $n \times n$ matrices with real entries. Verify that the following formula defines an inner product on $M_n(\mathbb{R})$:

$$\langle A, B \rangle = \operatorname{tr}(AB^{\mathsf{I}}),$$

the trace of the product of A and the transpose of B. [Recall that the *trace* of a square matrix is the sum of its diagonal entries.]

4. Let V be an inner product space having norm $\|\cdot\|$. Show that

$$||v + w||^2 + ||v - w||^2 = 2(||v||^2 + ||w||^2)$$

for all $v, w \in V$.

5. Let x_i and y_i be real numbers for i = 1, 2, ..., n. Prove the following inequalities:

(a)
$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 \leq \left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} y_i^2\right);$$

(b) $\left(\sum_{i=1}^{n} x_i\right)^2 \leq n \sum_{i=1}^{n} x_i^2.$

[Hint: Use the Cauchy–Schwarz Inequality in an appropriate inner product space.]

6. Consider the vector space \mathbb{R}^3 with its usual inner product (given by the dot product). Apply the Gram–Schmidt process to the following bases to produce orthonormal bases for \mathbb{R}^3 :

(a)
$$\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right\};$$

(b) $\left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} -1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\1\\3 \end{pmatrix} \right\}.$

7. Let \mathcal{P}_2 denote the inner product space of all polynomials over \mathbb{C} of degree at most 2 with inner product given by

$$\langle f,g\rangle = \int_{-1}^{1} f(x)\overline{g(x)} \,\mathrm{d}x$$

Apply the Gram–Schmidt process to the set $\{1, x, x^2\}$ to produce an orthonormal basis for \mathcal{P}_2 .

8. Consider the space \mathcal{P}_3 of complex polynomials of degree at most 3 with inner product given by

$$\langle f,g \rangle = \int_0^1 f(x) \overline{g(x)} \, \mathrm{d}x$$

Find an orthonormal basis for \mathcal{P}_3 by applying the Gram–Schmidt process to the standard basis of monomials $\{1, x, x^2, x^3\}$.

9. Consider the vector space \mathbb{R}^3 . Let

$$\boldsymbol{v} = \begin{pmatrix} 0\\ 3\\ 1 \end{pmatrix}$$
 and $U = \operatorname{Span} \left(\begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix}, \begin{pmatrix} -1\\ 2\\ -1 \end{pmatrix} \right).$

Determine the orthogonal complement U^{\perp} .

Find the vector in U that is closest to v and hence determine the distance from v to U.

10. Let \mathcal{P}_3 be the space of complex polynomials of degree at most 3 and $U = \mathcal{P}_1$ be the subspace of polynomials of degree at most 1. Consider the following inner produce

$$\langle f,g \rangle = \int_0^1 f(x) \overline{g(x)} \,\mathrm{d}x.$$

Determine the orthogonal complement U^{\perp} with respect to this inner product.

Find the polynomial in U that is closest to x^3 with respect to the norm determined by this inner product and hence determine the distance from x^3 to U.

- 11. Let V be a finite-dimensional inner product space.
 - (a) Let w be a fixed vector in V. Show that the map $T: V \to V$ given by $T(v) = \langle v, w \rangle w$ is a linear map.

Determine the image and the kernel of this map T.

(b) Let U be a subspace of V and let $\{e_1, e_2, \ldots, e_k\}$ be an orthonormal basis for U. Define $P: V \to V$ by

$$P(v) = \sum_{i=1}^{k} \langle v, e_i \rangle e_i$$

for $v \in V$. Show that P is the projection map onto U with respect to the orthogonal direct sum decomposition $V = U \oplus U^{\perp}$.

[Hint: Show that v - P(v) is orthogonal to e_j for each j.]