School of Mathematics and Statistics MT3501 Linear Mathematics 2 Problem Sheet V: Jordan normal form

1. Find all possible Jordan normal forms (discounting rearrangements of the Jordan blocks) for those linear transformations whose characteristic polynomial $c_T(x)$ and minimum polynomial $m_T(x)$ are as follows:

$$c_T(x) \qquad m_T(x)$$
(i) $(x-2)^4(x-3)^2 \qquad (x-2)^2(x-3)^2;$
(ii) $(x-7)^5 \qquad (x-7)^2;$
(iii) $(x-2)^7 \qquad (x-2)^3;$
(iv) $(x-3)^4(x-5)^4 \qquad (x-3)^2(x-5)^2.$

[Hint: How can the dimension of the vector space be deduced from knowledge of the characteristic polynomial?]

- 2. Determine all possible Jordan normal forms for a linear transformation $T: V \to V$ whose characteristic polynomial is $c_T(x) = (x-2)^3(x-5)^2$.
- 3. Determine all possible Jordan normal forms for a 5×5 matrix whose minimum polynomial is $(x-3)^2$.
- 4. For each of the following matrices A of real numbers, determine a Jordan normal form of A:

(i)
$$\begin{pmatrix} 3 & -4 & 0 \\ 0 & -1 & 0 \\ 0 & 6 & 2 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ 0 & 1 & 0 \end{pmatrix}$ (iii) $\begin{pmatrix} 5 & 2 & 2 \\ 2 & 2 & -4 \\ 2 & -4 & 2 \end{pmatrix}$
(iv) $\begin{pmatrix} 3 & 4 & 4 \\ 1 & 3 & 0 \\ -2 & -4 & -1 \end{pmatrix}$ (v) $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ -1 & 0 & 3 \end{pmatrix}$ (vi) $\begin{pmatrix} -2 & -3 & 0 \\ 3 & 4 & 0 \\ 6 & 6 & 1 \end{pmatrix}$

[Hint: These matrices appeared on Problem Sheet IV!]

5. For each matrix A appearing in Question 4, find an invertible matrix P such that $P^{-1}AP$ is in Jordan normal form. 6. Show that the matrix of real numbers

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

is not diagonalisable. Find a Jordan normal form J of A and an invertible matrix P such that $P^{-1}AP = J$.

7. For each of the following matrices A, determine a Jordan normal form of A and find an invertible matrix P such that $P^{-1}AP$ is in Jordan normal form.

(i)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -6 & -1 & 1 & 0 \\ -4 & 0 & -1 & 0 \\ 13 & 0 & 6 & 1 \end{pmatrix}$$
 (ii) $\begin{pmatrix} -14 & 1 & 0 & 14 \\ -6 & 0 & 0 & 6 \\ 6 & -3 & -3 & -6 \\ -11 & 1 & 0 & 11 \end{pmatrix}$
(iii) $\begin{pmatrix} -2 & 1 & 0 & -9 \\ 0 & 1 & 0 & 0 \\ 2 & 1 & 1 & 7 \\ 1 & 0 & 0 & 4 \end{pmatrix}$ (iv) $\begin{pmatrix} -4 & 0 & 2 & -4 \\ -2 & -2 & 3 & -4 \\ 0 & 0 & -2 & 0 \\ 1 & 0 & -1 & 0 \end{pmatrix}$
(v) $\begin{pmatrix} -3 & 2 & \frac{1}{2} & -2 \\ 0 & 0 & 0 & 1 \\ 0 & -3 & -3 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ (vi) $\begin{pmatrix} -2 & 2 & 0 & -6 \\ -2 & 3 & 0 & -3 \\ -2 & 1 & 2 & -3 \\ 2 & -1 & 0 & 5 \end{pmatrix}$

8. (a) Let λ be a real number. Solve the following system of differential equations:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \lambda x + y$$
$$\frac{\mathrm{d}y}{\mathrm{d}t} = \lambda y$$

[This part does not involve any linear mathematics, but it is intended to prepare you for the second part.]

(b) Solve the following system of differential equations:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 9x + 4y$$
$$\frac{\mathrm{d}y}{\mathrm{d}t} = -25x - 11y$$

[Hint: Find the Jordan normal form of the matrix $A = \begin{pmatrix} 9 & 4 \\ -25 & -11 \end{pmatrix}$.]