School of Mathematics and Statistics MT3501 Linear Mathematics 2 Problem Sheet II: Linear transformations

1. Define a function $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ by

$$T\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}x+3y-z\\x+2y-2z\\-x+4z\end{pmatrix}.$$

- (a) Show that T is a linear transformation.
- (b) Determine the kernel of T and find a basis for ker T. [Hint: Solving T(v) = 0 will correspond to solving a set of simultaneous linear equations.]
- (c) Show that

im
$$T =$$
Span $\left(\begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 3\\2\\0 \end{pmatrix}, \begin{pmatrix} -1\\-2\\4 \end{pmatrix} \right).$

Hence find a basis for $\operatorname{im} T$.

- (d) Verify the Rank-Nullity Theorem holds for this specific example.
- 2. Define a linear transformation $T \colon \mathbb{R}^4 \to \mathbb{R}^3$ by

$$T(\mathbf{e}_1) = \mathbf{y}_1 = \begin{pmatrix} 1\\ -2\\ 3 \end{pmatrix}, \qquad T(\mathbf{e}_2) = \mathbf{y}_2 = \begin{pmatrix} -3\\ 0\\ 9 \end{pmatrix},$$
$$T(\mathbf{e}_3) = \mathbf{y}_3 = \begin{pmatrix} -2\\ 1\\ 3 \end{pmatrix}, \qquad T(\mathbf{e}_4) = \mathbf{y}_4 = \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix},$$

where $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ is the standard basis for \mathbb{R}^4 .

- (a) Find a subset of $\{y_1, y_2, y_3, y_4\}$ that is a basis for the image of T.
- (b) Find a basis for the kernel of T.
- (c) Hence determine the rank and nullity of T.

- 3. Let V and W be finite-dimensional vector spaces over a field F. An *isomorphism* between V and W is a linear transformation $T: V \to W$ which is invertible (that is, there is an inverse, i.e., a linear transformation $S: W \to V$ such that ST = I and TS = I are the identity maps). We say that V and W are *isomorphic*, written $V \cong W$, if there exists an isomorphism $V \to W$.
 - (a) Show that a linear transformation $T: V \to W$ is injective (that is, T(u) = T(v) implies u = v) if and only if ker $T = \{\mathbf{0}\}$.
 - (b) Show that a linear transformation $T: V \to W$ is an isomorphism if and only if it is bijective (that is, both injective and surjective (which means im T = W)).
 - (c) If $\mathscr{B} = \{v_1, v_2, \dots, v_n\}$ is a basis for V and $\mathscr{C} = \{w_1, w_2, \dots, w_n\}$ is a basis for W, show that the unique linear transformation $T: V \to W$ given by $T(v_i) = w_i$, for i = 1, $2, \dots, n$, is an isomorphism. Deduce that $V \cong W$ if and only if dim $V = \dim W$.
- 4. Let V be a finite-dimensional vector space and $T: V \to V$ be a linear map. Show that the following conditions on T are equivalent:
 - (a) ker $T = \{0\};$
 - (b) $\operatorname{im} T = V;$
 - (c) T is invertible.

[Hint: Use the Rank-Nullity Theorem.]

5. Let $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ be the linear mapping whose matrix with respect to the standard basis for \mathbb{R}^2 is

$$A = \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix};$$

that is, $T(\boldsymbol{v}) = A\boldsymbol{v}$ for all $\boldsymbol{v} \in \mathbb{R}^2$.

(a) Show that

$$\mathscr{B} = \left\{ \begin{pmatrix} 3\\-1 \end{pmatrix}, \begin{pmatrix} -5\\2 \end{pmatrix} \right\}$$

is a basis for \mathbb{R}^2 .

- (b) Calculate the matrix $\operatorname{Mat}_{\mathscr{B},\mathscr{B}}(T)$ of T with respect to the basis \mathscr{B} .
- 6. Define the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$T\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}x+2y+2z\\-3x+4y-2z\\-2y\end{pmatrix}.$$

- (a) Find the matrix of T with respect to the standard basis for \mathbb{R}^3 .
- (b) Show that

$$\mathscr{B} = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\2 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix} \right\}$$

is a basis for \mathbb{R}^3 .

(c) Find the matrix of T with respect to the basis \mathscr{B} .

7. Let U, V and W be vector spaces over the field F. If $T: U \to V$ and $S: V \to W$ are linear transformations, show that the composition

$$ST \colon U \to W$$
$$u \mapsto S(Tu)$$

is also a linear transformation.

Let \mathscr{A}, \mathscr{B} and \mathscr{C} be bases for U, V and W, respectively. Show that

$$\operatorname{Mat}_{\mathscr{A},\mathscr{C}}(ST) = \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(S) \cdot \operatorname{Mat}_{\mathscr{A},\mathscr{B}}(T).$$

8. The purpose of this question is to establish the change of basis formula (Theorem 2.12 in the lecture notes) in a more elegant manner using the formula established in the previous question.

Let V be a finite-dimensional vector space and let \mathscr{B} and \mathscr{C} be bases for V. Let $T: V \to V$ be a linear map.

- (a) Show that the change of basis matrix P obtained by writing each vector in \mathscr{C} in terms of the basis \mathscr{B} is equal to the matrix $\operatorname{Mat}_{\mathscr{C},\mathscr{B}}(I)$ of the identity map $I: V \to V$ with respect to these bases.
- (b) Deduce, using the formula in Question 7, that $\operatorname{Mat}_{\mathscr{B},\mathscr{C}}(I) = \operatorname{Mat}_{\mathscr{C},\mathscr{B}}(I)^{-1}$.
- (c) Use the formula in Question 7 to show that

$$\operatorname{Mat}_{\mathscr{C},\mathscr{C}}(T) = \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(I) \cdot \operatorname{Mat}_{\mathscr{B},\mathscr{B}}(T) \cdot \operatorname{Mat}_{\mathscr{C},\mathscr{B}}(I).$$

Deduce that

$$\operatorname{Mat}_{\mathscr{C},\mathscr{C}}(T) = P^{-1} \cdot \operatorname{Mat}_{\mathscr{B},\mathscr{B}}(T) \cdot P.$$

9. (a) Let F be a field and A be an $m \times n$ matrix. Show that A defines a linear transformation $F^n \to F^m$ by

$$\boldsymbol{v} \mapsto A \boldsymbol{v} \qquad \text{for } \boldsymbol{v} \in F^n.$$

Show that the matrix of this linear transformation with respect to the standard bases of F^n and F^m is given by Mat(A) = A.

(b) Now consider any linear transformation $T: F^n \to F^m$. Show that

$$T(\boldsymbol{v}) = A\boldsymbol{v}$$
 for all $\boldsymbol{v} \in F^n$,

where A is the matrix of T with respect to the standard bases for F^n and F^m . [Thus, every linear transformation from F^n to F^m is given by matrix multiplication.]

10. Let V and W be vector spaces over the field F. Recall that, if S and T are linear transformations and $\alpha \in F$ then we have defined linear maps S + T and αT by

$$(S+T)(v) = S(v) + T(v)$$
 and $(\alpha T)(v) = \alpha \cdot T(v)$

for $v \in V$. (See Definition 2.14 and Lemma 2.15.)

Show that $\mathcal{L}(V, W)$, the set of all linear maps $V \to W$, is itself a vector space over F with the above addition and scalar multiplication.

- 11. Let V and W be finite-dimensional vector spaces over the field F having bases $\mathscr{B} = \{v_1, v_2, \ldots, v_n\}$ and $\mathscr{C} = \{w_1, w_2, \ldots, w_m\}$, respectively.
 - (a) Let $S, T: V \to W$ be linear maps and $\alpha \in F$. Show that

$$\operatorname{Mat}_{\mathscr{B},\mathscr{C}}(S+T) = \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(S) + \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(T)$$

and

$$\operatorname{Mat}_{\mathscr{B},\mathscr{C}}(\alpha T) = \alpha \cdot \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(T).$$

- (b) Show that $T \mapsto \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(T)$ defines an isomorphism from $\mathcal{L}(V,W)$ to the vector space $\operatorname{M}_{m \times n}(F)$ of $m \times n$ matrices over F.
- (c) Deduce that dim $\mathcal{L}(V, W) = mn$.
- 12. Let V be a finite-dimensional vector space over a field F with basis $\mathscr{B} = \{v_1, v_2, \dots, v_n\}$. Define a linear map $f_i \colon V \to F$ by

$$f_i(v_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Show that $\{f_1, f_2, \ldots, f_n\}$ is a basis for the dual space V^* .

13. A linear transformation $T: V \to V$ is said to be *nilpotent* of *index* k if T^k is the zero map but T^{k-1} is not.

Suppose that V is a vector space of dimension n and the linear transformation $T: V \to V$ is nilpotent of index n. Choose a vector v such that $T^{n-1}(v) \neq \mathbf{0}$. Show that

$$\mathscr{B} = \{v, T(v), T^2(v), \dots, T^{n-1}(v)\}$$

is a basis for V. [Hint: Show that it is linearly independent. Consider an expression of the form $\sum_{i=0}^{n-1} \alpha_i T^i(v) = \mathbf{0}$ and apply a suitable power of T.]

Write down the matrix of T with respect to \mathscr{B} .

Now consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ whose matrix with respect to the standard basis is

$$A = \begin{pmatrix} 0 & 0 & 2 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}.$$

Show that T is nilpotent of index 3. Find a basis with respect to which T has matrix

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$