School of Mathematics and Statistics MT3501 Linear Mathematics 2 Problem Sheet I: Vector spaces

1. Let $\mathcal{F}_{\mathbb{R}}$ denote the set of all functions $f: \mathbb{R} \to \mathbb{R}$. Show that $\mathcal{F}_{\mathbb{R}}$ is a vector space over \mathbb{R} under the operations given by

$$
(f+g)(x) = f(x) + g(x) \quad \text{for } x \in \mathbb{R}
$$

and, for $\alpha \in \mathbb{R}$,

$$
(\alpha f)(x) = \alpha \cdot f(x) \quad \text{for } x \in \mathbb{R}.
$$

- 2. Let F be a field and let $M_n(F)$ denote the set of all $n \times n$ matrices over F.
	- (a) Show that $M_n(F)$ is a vector space over F with respect to the usual addition of matrices and where scalar multiplication is given by

$$
\alpha \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix} = \begin{pmatrix} \alpha x_{11} & \alpha x_{12} & \cdots & \alpha x_{1n} \\ \alpha x_{21} & \alpha x_{22} & \cdots & \alpha x_{2n} \\ \vdots & & \vdots & & \vdots \\ \alpha x_{n1} & \alpha x_{n2} & \cdots & \alpha x_{nn} \end{pmatrix}
$$

for $\alpha \in F$ and $[x_{ij}] \in M_n(F)$. What is the zero vector in this vector space?

- (b) Let W consist of the set of *symmetric* matrices in $M_n(F)$. (A matrix $[x_{ij}]$ is symmetric if $x_{ij} = x_{ji}$ for all i and j.) Show that W is a subspace of $M_n(F)$.
- (c) Fix a matrix A in $M_n(F)$ and let

$$
V = \{ X \in M_n(F) \mid AX = XA \}.
$$

Show that V is a subspace of $M_n(F)$.

- (d) Let Z be the set of matrices in $M_n(F)$ of zero determinant. If $n > 1$, show that Z is not a subspace of $M_n(F)$.
- (e) Take $F = \mathbb{R}$ and let I be the set of matrices B in $M_n(\mathbb{R})$ satisfying $B^2 = B$. Show that I is not a subspace of $M_n(\mathbb{R})$.
- 3. Consider the vector space $\mathbb{R}[x]$ of polynomials over the real numbers. Determine whether the following subsets are subspaces of $\mathbb{R}[x]$:
	- (a) $\{ f(x) | f(1) = 0 \},\$
	- (b) $\{f(x) \mid \text{the constant term of } f(x) \text{ is } 0 \},\$
	- (c) $\{f(x) | f(x)$ is a polynomial of degree precisely 3,
	- (d) $\{f(x) | f(x)$ is a polynomial of degree at most 3,
	- (e) $\{f(x) | f(x)$ is a polynomial of even degree $\}$.

4. Let W_1 and W_2 be the following subspaces of the space $\mathbb{R}[x]$ of polynomials over the real numbers:

$$
W_1 = \{ f(x) | f(1) = 0 \}
$$
 and $W_2 = \{ f(x) | f(2) = 0 \}.$

Give a simple description of $W_1 \cap W_2$. Show that every element of $\mathbb{R}[x]$ can be written in the form

$$
f(x) = g_1(x) + g_2(x)
$$

where $g_1(x) \in W_1$ and $g_2(x) \in W_2$. Is this decomposition unique?

5. Show that

$$
W = \left\{ \left(\begin{array}{c} x + y - z \\ y - x + z \\ 2x \end{array} \right) \middle| \ x, y, z \in R \right\}
$$

is a subspace of \mathbb{R}^3 . Show that

$$
\mathscr{A} = \left\{ \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\}
$$

is a spanning set for W. Is $\mathscr A$ linearly independent? Determine the dimension of W and hence whether or not $W = \mathbb{R}^3$.

6. Let V be a vector space and let W_1 and W_2 be finite-dimensional subspaces of V. If \mathscr{B}_1 and \mathscr{B}_2 are bases for W_1 and W_2 , respectively, show that $\mathscr{B}_1 \cup \mathscr{B}_2$ is a spanning set for $W_1 + W_2$.

Is $\mathscr{B}_1 \cup \mathscr{B}_2$ necessarily a basis for $W_1 + W_2$? Provide a counterexample if not.

7. Let V be a vector space and v and w be vectors in V. Show that $\text{Span}(v) = \text{Span}(w)$ if and only if $w = \alpha v$ for some non-zero scalar α .

8. Let

$$
\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \qquad \mathbf{v}_2 = \begin{pmatrix} 4 \\ 8 \\ -4 \\ -3 \end{pmatrix}, \qquad \mathbf{v}_3 = \begin{pmatrix} 1 \\ -3 \\ 2 \\ 0 \end{pmatrix}, \\ \mathbf{v}_4 = \begin{pmatrix} 1 \\ 10 \\ -6 \\ -2 \end{pmatrix}, \qquad \mathbf{v}_5 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 1 \end{pmatrix}, \qquad \mathbf{v}_6 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 4 \end{pmatrix}
$$

be six vectors in the vector space \mathbb{R}^4 . Let $U = \text{Span}(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{v}_4)$ and $W = \text{Span}(\boldsymbol{v}_4, \boldsymbol{v}_5, \boldsymbol{v}_6)$. Determine dim U, dim W and dim $(U + W)$.

[Hint: Determine whether $\{v_1, v_2, v_3, v_4\}$ is linearly independent. If not, pass to a subset which also spans U. Similarly, for W and $U + W$, making use of the previous question to provide spanning set for the sum.]

9. Consider the following set $\mathscr A$ of vectors in $\mathbb R^3$ or $\mathbb R^4$ (respectively). Find a subset $\mathscr B$ of $\mathscr A$ that is a basis for the subspace $U = \text{Span}(\mathscr{A})$.

(a)
$$
\mathscr{A} = \left\{ \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} \right\}
$$

\n(b) $\mathscr{A} = \left\{ \begin{pmatrix} 0 \\ 2 \\ -3 \\ -3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} -7 \\ 3 \\ -1 \\ -15 \end{pmatrix} \right\}$

10. Let V be the subspace of the space $\mathbb{R}[x]$ of real polynomials spanned by the following polynomials:

$$
f_1(x) = x^3 + 2x^2 + 1
$$
, $f_2(x) = x^2 + 3x + 4$, $f_3(x) = 2x^3 - 12x - 2$.

Find a subset $\mathscr A$ of $\{f_1(x), f_2(x), f_3(x)\}\$ which is a basis for V and hence determine the dimension of V .

Find a basis \mathscr{B} for the subspace $\mathbb{R}[x]$ consisting of polynomials of degree at most 4 such that $\mathscr{A} \subseteq \mathscr{B}$. [That is, extend \mathscr{A} to a basis \mathscr{B} for the space of polynomials of degree at most 4.]

- 11. Let V be a finite-dimensional vector space and W be a subspace of V .
	- (a) Show that W is finite-dimensional and that dim $W \leq \dim V$.
	- (b) Show that $V = W$ if and only if dim $V = \dim W$.
- 12. Let V be a finite-dimensional vector space with subspaces U and W . Let

$$
\mathscr{A} = \{v_1, v_2, \dots, v_k\}
$$

be a basis for $U \cap W$. Extend $\mathscr A$ to a basis

$$
\mathscr{B}_1 = \{v_1, v_2, \ldots, v_k, u_{k+1}, \ldots, u_m\}
$$

for U and extend $\mathscr A$ to a basis

$$
\mathscr{B}_2 = \{v_1, v_2, \ldots, v_k, w_{k+1}, \ldots, w_n\}
$$

for W.

Show that the set

$$
\mathscr{B}_1 \cup \mathscr{B}_2 = \{v_1, v_2, \dots, v_k, u_{k+1}, \dots, u_m, w_{k+1}, \dots, w_n\}
$$

is a basis for $U + W$.

Deduce that

$$
\dim(U+W) = \dim U + \dim W - \dim(U \cap W).
$$