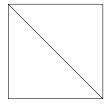
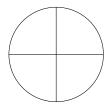
School of Mathematics and Statistics

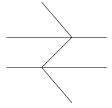
MT2505 Abstract Algebra

Problem Sheet VII: Isometries and Dihedral Groups

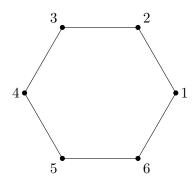
- 1. (a) Show that if f and g are isometries of \mathbb{R}^2 , then the composite fg and the inverse f^{-1} are also isometries.
 - (b) Show that the set $\text{Isom}(\mathbb{R}^2)$ of isometries of \mathbb{R}^2 is a group under the operation of composition.
- 2. For each of the following figures X, describe all isometries of X and construct the Cayley table of the isometry group Isom(X):







3. The dihedral group D_{12} of order 12 consists of all isometries of the regular hexagon. Label the vertices of the hexagon with the integers 1, 2, 3, 4, 5 and 6:



Each isometry f of the hexagon determines a permutation of $\{1, 2, 3, 4, 5, 6\}$: this permutation maps i to j if the isometry f moves the vertex labelled i to the vertex labelled j.

List all twelve isometries of the regular hexagon. For each isometry, write down the corresponding permutation of $\{1, 2, 3, 4, 5, 6\}$ and express it as a product of disjoint cycles.

- 4. Let n be an integer with $n \ge 3$ and consider the dihedral group D_{2n} of order 2n consisting of all isometries of the regular polygon with n sides. Let ρ denote a rotation about the centre through an angle of $2\pi/n$ and let σ denote a fixed reflection about a valid axis.
 - Fix integers $r, s \in \mathbb{Z}$ and let $\alpha = \rho^r \sigma$ and $\beta = \rho^s \sigma$. (These are two of the reflections of the polygon.)
 - (a) Suppose that $g = g_1 g_2 \dots g_k$ is a product such that $g_1, g_2, \dots, g_k \in \{\alpha, \beta\}$. Show that g is a rotation if and only if k is even. Furthermore, if k is even, show that g is a power of ρ^{r-s} . [Hint: It may help to calculate the product $\alpha\beta$ and to use the formula $\sigma\rho = \rho^{-1}\sigma$.]
 - (b) Show that every element of D_{2n} can be written as a product involving α and β only if and only if $\gcd(r-s,n)=1$.