School of Mathematics and Statistics

MT2505 Abstract Algebra

Problem Sheet VI: Permutations and Symmetric Groups

- 1. For each of the following functions, determine whether it is injective, surjective, and/or bijective.
 - (a) $f: \mathbb{R} \setminus \{ n\pi/2 \mid n \in \mathbb{Z} \} \to \mathbb{R}$ given by $xf = \tan x$;
 - (b) $f: \mathbb{R} \to [-1, 1]$ given by $xf = \sin x$;
 - (c) $f: \mathbb{R} \to \mathbb{R}$ given by $xf = x^3$;
 - (d) $f: \mathbb{R} \to \mathbb{R}$ given by xf = 3x + 5;
 - (e) $f: [0, \infty) \to \mathbb{R}$ given by $xf = \sqrt{x}$.
- 2. For the following sets and proposed binary operation, determine whether or not this defines a group. For each, provide either a proof or an explanation of why this does not define a group.
 - (a) The four functions $\{e, f, g, h\}$ from $\mathbb{R} \setminus \{0\}$ to itself given by

 $\begin{array}{ll} e\colon x\mapsto x & f\colon x\mapsto -x \\ g\colon x\mapsto 1/x & h\colon x\mapsto -1/x \end{array}$

under composition of functions.

- (b) The set of all functions $X \to X$ (for some fixed set X with |X| > 2) under composition of functions.
- 3. Show that the symmetric groups S_1 and S_2 of degrees 1 and 2 (respectively) are abelian.
- 4. Let $(i_1 \ i_2 \ \dots \ i_r)$ be an arbitrary *r*-cycle in the symmetric group S_n of degree *n*. Determine the inverse of this permutation.
- 5. Consider the following permutations:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 5 & 8 & 4 & 6 & 3 & 2 & 1 \end{pmatrix} \quad \text{and} \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 5 & 2 & 7 & 8 & 3 & 4 & 1 \end{pmatrix}$$

- (a) Write σ and τ as products of disjoint cycles.
- (b) Calculate the products $\sigma\tau$, $\tau\sigma$ and τ^{-1} . Express your answers as products of disjoint cycles.

- 6. Write the following permutations as products of disjoint cycles:
 - (a) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 3 & 6 & 7 & 5 & 4 & 2 \end{pmatrix};$ (b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 7 & 2 & 4 & 6 & 5 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 1 & 3 & 7 & 5 & 6 \end{pmatrix};$ (c) (1 & 2 & 3) (2 & 3 & 4);(d) (1 & 2) (2 & 3) (1 & 2) (2 & 3);(e) $(1 & 3 & 5 & 2) ((2 & 4 & 7) (1 & 6 & 2))^{-1};$ (f) $(2 & 4) (1 & 3 & 6) (3 & 7) ((1 & 5) (2 & 6 & 4))^{-1}.$
- 7. Consider the following permutations from the symmetric group of degree 10 given in tworow notation:

$\sigma =$	$\begin{pmatrix} 1\\ 3 \end{pmatrix}$	$\frac{2}{7}$	$\frac{3}{5}$	$\frac{4}{9}$	$5\\10$	$\begin{array}{c} 6 \\ 1 \end{array}$	7 4	8 8	9 2	$\begin{pmatrix} 10 \\ 6 \end{pmatrix}$
$\tau =$	$\begin{pmatrix} 1\\ 5 \end{pmatrix}$	$2 \\ 10$	$\frac{3}{3}$	$\frac{4}{8}$	$5 \\ 1$	$\frac{6}{2}$	7 9	$\frac{8}{7}$	9 6	$\begin{pmatrix} 10 \\ 4 \end{pmatrix}$

- (a) Write σ and τ as products of disjoint cycles.
- (b) Calculate the products $\sigma^{-1}\tau\sigma$ and $\tau^{-1}\sigma\tau$. Give your answers as products of disjoint cycles.
- 8. Two permutations σ and τ in the symmetric group S_n are said to be *conjugate* in this group if there exists some $\rho \in S_n$ such that $\rho^{-1}\sigma\rho = \tau$. [This concept will be used significantly in a later chapter of the notes.]
 - (a) Let $\sigma = (i_1 \ i_2 \ \dots \ i_r)$ be an *r*-cycle in S_n and $\rho \in S_n$. Show that $\rho^{-1} \sigma \rho$ is the *r*-cycle

$$(i_1\rho \ i_2\rho \ldots i_r\rho).$$

[Hint: Consider how the product $\rho^{-1}\sigma\rho$ moves points of the form $i_j\rho$ and how it moves points not of this form.]

- (b) Find $\rho^{-1} (1 5 2 4) \rho$ where $\rho = (1 3)(2 5)$.
- (c) Show that two permutations are conjugate in S_n if and only if they have the same disjoint cycle structure (that is, they have the same number of cycles of any length in their decomposition into disjoint cycles).

Hint: Compare
$$\rho^{-1}\sigma_1\sigma_2\ldots\sigma_k\rho$$
 and $(\rho^{-1}\sigma_1\rho)(\rho^{-1}\sigma_2\rho)\ldots(\rho^{-1}\sigma_k\rho)$.

- (d) Find a permutation $\rho \in S_5$ such that $\rho^{-1}(1\ 2)(3\ 4\ 5)\rho = (3\ 4)(1\ 5\ 2)$.
- 9. For each of the symmetric groups S_4 , S_5 , S_6 and S_7 , determine how many elements contain a 4-cycle when expressed as a product of disjoint cycles.