School of Mathematics and Statistics

MT2505 Abstract Algebra

Problem Sheet IV: Congruences and Modular Arithmetic

1. Let m be an integer with m > 1. Suppose that a and b are integers with $a \equiv b \pmod{m}$. Show that

$$a^n \equiv b^n \pmod{m}$$

for all natural numbers n.

2. Using congruence modulo 10, determine the last digit of the following numbers (when expressed in the usual base 10 notation):

 8^2 , 8^3 , 8^4 , 8^5 , 8^{1000} , $2^{82,589,933} - 1$

(The last is the largest known prime currently known prime according to https://primes.utm.edu/largest.html.)

- 3. Is $\mathbb{Z}/20\mathbb{Z}$ a field under the operations of modular arithmetic? Justify your answer.
- 4. (a) Find the multiplicative inverses of the elements 4, 5 and 6 in F₁₁.
 (b) Solve the equation 4x ≡ 9 (mod 11).
- 5. Let m be a positive integer with m > 1. Show that $a \in \mathbb{Z}/m\mathbb{Z}$ has a multiplicative inverse if and only if gcd(a, m) = 1.

Deduce that if a and b are positive integers with a, b > 1, then a has a multiplicative inverse modulo b if and only if b has a multiplicative inverse modulo a.

[Hint: If c is a multiplicative inverse for a modulo m, interpret what $ac \equiv 1 \pmod{m}$ means and consider what you can conclude about common divisors of a and m.]

 Find the multiplicative inverse of 25 modulo 77 (that is, the inverse of 25 as an element of the ring Z/77Z).

Solve the equation $25x \equiv 7 \pmod{77}$.

- (a) Determine which elements of Z/9Z have a multiplicative inverse and calculate their inverses.
 - (b) Find all solutions in $\mathbb{Z}/9\mathbb{Z}$ of the following equations or show that no solutions exist:

(i) $5x - 1 \equiv 0 \pmod{9}$, (ii) $3x + 7 \equiv 0 \pmod{9}$, (iii) $x(x+3) \equiv 0 \pmod{9}$