School of Mathematics and Statistics

MT2505 Abstract Algebra

Problem Sheet III: Equivalence Relations

 The relation < ("less than") on the integers Z is not an equivalence relation. Which of the three conditions (reflexive, symmetric, and transitive) does this relation satisfy and which does it not satisfy?

[Justify your answer by providing proofs for those that it satisfies and examples to demonstrate which conditions it does not satisfy.]

2. Define a relation \sim on \mathbb{R}^2 by

$$(x_1, y_1) \sim (x_2, y_2)$$
 when $|x_1| + |y_1| = |x_2| + |y_2|$.

Show that this relation \sim is an equivalence relation on \mathbb{R}^2 .

If $(x, y) \in \mathbb{R}^2$, describe the equivalence class of the point (x, y) geometrically.

3. Let A and B be sets and let $f: A \to B$ be any function. Define a relation \sim on the set A by the rule

$$a \sim b$$
 when $f(a) = f(b)$

for elements $a, b \in A$.

Show that \sim is an equivalence relation on A.

Take the specific example of $A = B = \mathbb{R}$ and the function f defined by $f(x) = x^2$. For the equivalence relation \sim defined as above, what are the equivalence classes?

- 4. Let A be a set and $\mathcal{P} = \{ B_i \mid i \in I \}$ be a partition of A. Define a relation \sim on A by $a \sim b$ if and only if a and b lie in the same part B_i .
 - (a) Show that \sim is an equivalence relation on A.
 - (b) If $a \in A$, show that $[a] = B_i$, where B_i is the part to which a belongs.
- 5. Let A be a set and suppose that \sim_1 and \sim_2 are equivalence relations on A. Define a new relation \sim on A by the rule

 $a \sim b$ when both $a \sim_1 b$ and $a \sim_2 b$.

Show that \sim is also an equivalence relation on A.

If $a \in A$, how is the equivalence class of a under the relation \sim determined by the equivalence classes of the same point using the relations \sim_1 and \sim_2 ?