School of Mathematics and Statistics

MT2505 Abstract Algebra

Problem Sheet X: Homomorphisms, normal subgroups, and quotient groups

- 1. Which of the following functions ϕ are homomorphisms? In each case, justify your answer.
 - (a) The function ϕ from the additive group \mathbb{R} of real numbers to itself given by $x\phi = x/2$.
 - (b) The function ϕ from the additive group \mathbb{Z} of integers to itself given by $x\phi = x^2 x$.
 - (c) The function ϕ from the multiplicative group \mathbb{R}^* of non-zero real numbers to the additive group \mathbb{R} of real numbers given by $x\phi = \log|x|$.
- 2. Let G be any group and fix $g \in G$. Define the function $\tau: G \to G$ by $x\tau = g^{-1}xg$.
 - (a) Show that τ is a homomorphism.
 - (b) Show that τ is bijective.
- 3. Let G be the set of matrices of the form

$$\left\{ \left. \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \right| a, b, c \in \mathbb{Z} \right\}.$$

- (a) Show that G is a group under matrix multiplication.
- (b) Determine whether or not G is an abelian group.
- (c) Show that the function $\phi: G \to \mathbb{Z}$ given by

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \phi = a + c$$

is a homomorphism from G to the additive group \mathbb{Z} of integers.

- (d) Determine the kernel of ϕ . Is this kernel abelian?
- 4. Consider the groups of congruence classes with multiplicative inverses modulo 8 and modulo 16:

$$U_8 = \{1, 3, 5, 7\}$$
$$U_{16} = \{1, 3, 5, 7, 9, 11, 13, 15\}$$

Consider the function $\phi: U_{16} \to U_8$ given by

$$x\phi = x \pmod{8}$$

(that is, $1\phi = 1, \ldots, 7\phi = 7, 9\phi = 1, 11\phi = 3, \ldots$).

Show that ϕ is a homomorphism. Is ϕ surjective? Determine the kernel of ϕ .

Construct an injective homomorphism $\psi: U_8 \to U_{16}$.

- 5. Let G and H be groups and let $\phi: G \to H$ be a surjective homomorphism.
 - (a) Show that if G is abelian, then H is also abelian.
 - (b) Show that if G is cyclic, then H is also cyclic.
 - (c) If H is abelian, is it necessarily the case that G is also abelian? Give a proof or a counterexample as appropriate.
 - (d) If H is cyclic, is it necessarily the case that G is also cyclic? Give a proof or a counterexample as appropriate.
- 6. (a) Let $H = \langle (1\ 2\ 3\ 4\ 5\ 6) \rangle$ be the cyclic subgroup of S_6 generated by the given 6-cycle. Show that H is isomorphic to the additive group $\mathbb{Z}/6\mathbb{Z}$ of congruence classes modulo 6.
 - (b) Let U_{14} denote the group of congruence classes that have a multiplicative inverse modulo 14.
 - i. List the elements of U_{14} .
 - ii. Show that U_{14} is a cyclic group.
 - iii. Is U_{14} isomorphic to the group H in part (a)?
 - (c) Let U_{16} denote the group of congruence classes that have a multiplicative inverse modulo 16.
 - i. Show that U_{16} is not a cyclic group.
 - ii. Is U_{16} isomorphic to the group H in part (a)?
 - (d) Let $\mathbb{R}^+ = \{ x \in \mathbb{R} \mid x > 0 \}$. Show that the function $f : \mathbb{R} \to \mathbb{R}^+$ given by $xf = e^x$ is a bijection.

[You may use the fact that e^x is a strictly increasing function of x.]

- (e) Show that the additive group \mathbb{R} of real numbers is isomorphic to the set \mathbb{R}^+ of positive real numbers viewed as a group under multiplication.
- 7. For each of the following pairs of groups (as defined in the course) determine whether or not they are isomorphic:
 - (a) the multiplicative group \mathbb{F}_7^* and the additive group $\mathbb{Z}/6\mathbb{Z}$;
 - (b) the group of isometries of a (non-square) rectangle and the Klein 4-group V_4 ;
 - (c) the symmetric group S_3 and the additive group $\mathbb{Z}/6\mathbb{Z}$;
 - (d) the symmetric group S_3 and the dihedral group D_6 ;
 - (e) the alternating group A_4 and the dihedral group D_{12} .
- 8. Let G be a group. For each of the following statements, either prove the statement or provide a counterexample showing that in general the statement is not true:
 - (a) If M and N are normal subgroups of G, then the intersection $M \cap N$ is a normal subgroup of G.
 - (b) If M and N are normal subgroups of G, then the union $M \cup N$ is a normal subgroup of G.
 - (c) If M and N are subgroups of G such that N is a normal subgroup of G and M is a normal subgroup of N, then M is a normal subgroup of G.

9. Let G be a group and N be a normal subgroup. Define a function $\pi: G \to G/N$ from G to the quotient group G/N by

$$\pi\colon x\mapsto Nx.$$

Show that π is a homomorphism.

Is π surjective? Determine the kernel of π .

[This homomorphism is called the *natural homomorphism* from G to the quotient group.]

10. Let G be a group and N be a subgroup of G of index 2. Show that N is a normal subgroup of G.

[Hint: What are the left cosets and right cosets of N in G?]

- 11. Let G be an abelian group.
 - (a) Show that every subgroup of G is normal in G.
 - (b) Let F be the set of elements of G of finite order. Show that F is a subgroup of G.
 - (c) Show that every non-identity element of the quotient group G/F has infinite order.
- 12. Consider the group

$$U_{16} = \{1, 3, 5, 7, 9, 11, 13, 15\}$$

of congruence classes modulo 16 with multiplicative inverses. The subgroup $H = \langle 15 \rangle$ is a normal subgroup since U_{16} is abelian.

- (a) Calculate the cosets of H in U_{16} .
- (b) Determine the Cayley table of the quotient group U_{16}/H .