School of Mathematics and Statistics

MT2505 Abstract Algebra

Problem Sheet I: Binary Operations; Rings and Fields

1. Let $\mathbb{Z}[\sqrt{2}] = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Z} \}$ be the set of all real numbers of the form $a + b\sqrt{2}$ where $a, b \in \mathbb{Z}$.

Show that $\mathbb{Z}[\sqrt{2}]$ is a ring under the usual addition and multiplication of real numbers.

[Don't forget to check that addition and multiplication is a binary operation on $\mathbb{Z}[\sqrt{2}]$. Checking the conditions to be a ring should then be very quick!]

- 2. Let $R = \{ a/b \mid a, b \in \mathbb{Z}, b \text{ is odd } \}$, the set of rational numbers that can be expressed with odd denominator. Show that R is a ring under the usual addition and multiplication of rational numbers.
- 3. Let $P = \{x \in \mathbb{Z} \mid x \ge 0\}$, the set of non-negative integers. Is P a ring under the usual addition and multiplication of integers?
- 4. (a) Let

$$R_1 = \left\{ \left(\begin{matrix} a & b \\ 0 & d \end{matrix} \right) \middle| a, b, d \in \mathbb{R} \right\},\$$

the set of 2×2 real matrices with (2, 1)-entry equal to 0. Show that R_1 is a ring under the usual addition and multiplication of matrices.

(b) Let

$$R_2 = \left\{ \left. \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \right| a \in \mathbb{R} \right\}.$$

Is R_2 a ring under the usual addition and multiplication of matrices?

5. Let n be a positive integer with n > 2. Show that the matrix ring $M_n(\mathbb{Z})$ is not a commutative ring.

[We handled n = 2 in lectures.]

6. Let X be any set and define $\mathscr{P}(X)$ to be the set of all subsets of X (including the empty set as one of these subsets). We call $\mathscr{P}(X)$ the *power set* of X.

Define the following operations on $\mathscr{P}(X)$:

$$A + B = (A \cup B) \setminus (A \cap B)$$
 and $A \cdot B = A \cap B$

for subsets $A, B \subseteq X$. Show that $\mathscr{P}(X)$ is a ring under this definition of addition and multiplication.

[Hint: To verify the ring axioms, it might help to draw Venn diagrams.]

7. Let $\mathbb{Q}[\sqrt{2}] = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \}$ be the set of all real numbers of the form $a + b\sqrt{2}$ where $a, b \in \mathbb{Q}$.

Show that $\mathbb{Q}[\sqrt{2}]$ is a field under the usual addition and multiplication of real numbers.

[Hint: First show it is a ring. When you come to find multiplicative inverse, you wish to calculate $1/(a + b\sqrt{2})$ when $a, b \in \mathbb{Q}$. It might help you to remember what you do when dividing by complex numbers.]

8. **Definition:** Let * be a binary operation on a set A. A *left identity* for * is an element $e \in A$ such that e * a = a for all $a \in A$. A *right identity* for * is an element $f \in A$ such that a * f = a for all $a \in A$.

Consequently, an identity for * (as given in Definition 1.2) is an element that is *both* a left identity and a right identity.

(a) Let A be any set and define a binary operation * on A by

a * b = a for all $a, b \in A$.

Show that * is associative.

Show that every element of A is a right identity for *.

If |A| > 1, show that no element of A is a left identity.

(b) Let A be any set and let * be any binary operation on A. Suppose that e be a left identity for * and f be a right identity for *. Show that e = f. [Hint: Consider e * f.] Deduce that e is then an identity (i.e., two-sided identity) for *.