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Motivation: What is an algebraic
structure?

The purpose of this introductory chapter is to motivate the content of the module and
specifically to consider the question “What is algebra?” To attempt to answer this question,
we shall list various examples that will be typical algebraic structures. Algebra could then
be viewed as the study of mathematical structures of the type we present here.

Perhaps previously you have seen the word “algebra” most commonly used in the context
of polynomials. Indeed, you may have done a number of things with polynomials, for
example:

• We might view a polynomial as a function f : R → R and then perform differentiation,
integration and perhaps sketch the graph.

• We might solve polynomial equations. This could be achieved by factorizing the
polynomial.

• We perform algebraic operations where we add and/or multiply polynomials.

This first of these tasks is not typical of the study of algebra. Although calculus can
sometimes turn up in algebra, it is not central to the topic. The other two types of task,
however, are directly related to the sort of thing that we do in algebra. Indeed, these two
tasks are linked since to factorize a polynomial is to express it as a product of polynomials
of smaller degree. A general description of what we study in algebra is algebraic operations
such as the addition and multiplication that can be performed with polynomials.

Other examples of structures where such algebraic operations occur include:

• The set of n×nmatrices with entries that are real numbers. We can add and multiply
such matrices to produce further matrices of the same size.

• The set TX of functions f : X → X from a fixed set X to itself. We can compose
two such functions to produce another function in TX :

(f ◦ g)(x) = f(g(x)).

Composition is consequently an operation on the set TX of all functions X → X.

• We can add, multiply and subtract integers.

• We can add, multiply and subtract real numbers. We can divide two real numbers
only when we divide by a non-zero real number.
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Motivation

Some of these examples might not seem the sort of thing that you were expecting to
appear in the topic of “algebra” but they give some idea what the study of abstract algebra is
concerned with. We wish to study structures that possess operations that behave a bit like
addition or multiplication and then understand common themes that arise. By doing this
in reasonable generality, the hope is that these common themes will become transparent
(and this course — and those that follow — is intended to reveal these themes).

We will finish this introductory chapter by making the core definition that will enable
us to formulate the key ideas of the course.

Definition 0.1 Let A be a set. A binary operation on A is a function

A×A→ A

defined on the set A×A = { (a, b) | a, b ∈ A } of pairs of points in A and that takes values
in A.

Although we have defined a binary operation as a function, we will usually use a
notation that suggests a similarity to addition or multiplication when denoting a binary
operation. Thus, one example is that we might write a ∗ b to denote the image of a
pair (a, b) under a binary operation. Other common notations are to use multiplicative
notation where we write ab for the effect of combining a and b under the given binary
operation and additive notation where we use the notation a+ b. We shall view a binary
operation as a way to combine two elements of the set A so as to result in another element
of A (possibly one of the original two back again).

Example 0.2 The following defines a binary operation on the set R of real numbers:

a ∗ b = 0 for all a, b ∈ R.

This is a binary operation on R: It is not a very interesting binary operation.

We shall actually be interested in binary operations that have natural properties and
which arise in interesting examples. We shall meet examples of such operations and their
properties in our first main chapter.

2



Chapter 1

Rings and Fields

In this chapter, we shall introduce a type of algebraic structure that is studied in mathe-
matics, namely the ring. This type of structure is intended to reflect the behaviour that
one observes with numbers, polynomials, and matrices. These three types of mathematical
object have the following common properties:

• one can add objects of the same type, and

• one can multiply objects of the same type.

Thus in the definition of “ring” we shall refer to two binary operations and they will be
denoted to look like addition and multiplication.

As we observed in Example 0.2, it is possible to define binary operations that have
strange but not very useful behaviours. In the case of numbers, polynomials and matrices,
this bad behaviour is actually not what we observe with their addition and multiplication
operations. These operations all behave quite naturally. For example, we observe that

(a+ b) + c = a+ (b+ c)

(ab)c = a(bc)

a(b+ c) = ab+ ac

when a, b and c are real numbers. Moreover, similar formulae hold when we perform
addition and multiplication with polynomials or matrices.

The definition we now formulate reflects these observations:

Definition 1.1 A ring is a set R together with two binary operations

(a, b) 7→ a+ b and (a, b) 7→ ab,

that we shall call addition and multiplication, respectively, such that the following condi-
tions all hold:

A1: a+ b = b+ a for all a, b ∈ R,

A2: (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R,

A3: there is some element 0 ∈ R, called zero, such that 0 + a = a+ 0 = a for all a ∈ R,

A4: for every a ∈ R, there is some element −a ∈ R, called the negative of a, such that
a+ (−a) = (−a) + a = 0,

M2: (ab)c = a(bc) for all a, b, c ∈ R,

D: a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R.
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Chapter 1. Rings and Fields

Comments:

(i) The conditions listed above are often called the “axioms” of a ring. The labelling
that we give for them is not universally adhered to. It has been chosen to coincide
with that used in the module MT3505 Algebra: Rings and Fields. Note that A1–A4
are conditions relating only to the addition in a ring, while M2 refers only to the
multiplication. Condition D is consequently significant as it says something about
how addition and multiplication interact. If there were no condition involving both
operations then this type of algebraic structure would not be so interesting: We
would have two binary operations but they would not have any interaction with each
other.

(ii) Note that Condition A3 ensures that every ring contains at least one element, namely
the zero. Hence the underlying set R must be non-empty.

(iii) Usually we do not distinguish explicitly between an algebraic structure and its un-
derlying set R. Thus we shall say

“R is a ring”

to mean: R is a set upon which addition and multiplication operations are defined
such that Conditions A1–A4, M2 and D all hold.

(iv) Some textbooks (and some lecture notes) explicitly state two additional conditions

a+ b ∈ R for all a, b ∈ R

and

ab ∈ R for all a, b ∈ R.

Note, however, that to say “+ is a binary operation” is to say that

R×R→ R

(a, b) 7→ a+ b

is a function taking values in R. Thus the above two conditions are built into our
requirement that addition and multiplication are binary operations on the given set R
in Definition 1.1.

We have additional names that refer to the conditions appearing in Definition 1.1.
These are the following terms:

Definition 1.2 Let A be any set and ∗ be a binary operation on A.

(i) We say that the binary operation ∗ is commutative if

a ∗ b = b ∗ a for all a, b ∈ A.

(ii) We say that the binary operation ∗ is associative if

(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ A.
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Chapter 1. Rings and Fields

(iii) An identity for the binary operation ∗ is an element e ∈ A such that

e ∗ a = a ∗ e = a for all a ∈ A.

(iv) If there is an identity e for the binary operation ∗, then an inverse for a ∈ A is an
element b ∈ A such that

a ∗ b = b ∗ a = e.

Thus, a ring is a set endowed with two binary operations, addition and multiplication,
satisfying the following properties:

• addition is commutative and associative,

• there is an additive identity (called zero),

• every element has an additive inverse (its negative),

• multiplication is associative,

• the distributive laws (D) hold.

How to verify that a mathematical object is a ring:

• Say what the underlying set R is.

• Say what the addition and multiplication operations are and verify these actually
are binary operations: that is, check a+ b ∈ R and ab ∈ R for all a, b ∈ R.

• Verify Conditions A1–A4, M2 and D. In the case of A3 and A4, this will usually
involving stating explicitly what the zero and what the negatives are.

Example 1.3 The set Z of all integers forms a ring under the usual addition and multi-
plication operations. The verification is as follows:

• The sum of two integers is always an integer and the product of two integers is again
always an integer.

• Conditions A1, A2, M2 and D are standard properties of the usual arithmetic oper-
ations.

• 0 ∈ Z is an integer and it satisfies the requirement that 0 + a = a + 0 = a for all
a ∈ Z appearing in Condition A3.

• If a ∈ Z, then −a is also an integer and this satisfies a + (−a) = (−a) + a = 0, so
Condition A4 holds.

Hence the set Z of integers is indeed a ring under the usual addition and multiplication
operations.

This example illustrates how one verifies many easy examples are rings: namely those
with which we are essentially familiar from the arithmetic we learnt to perform when we
were much younger. In these cases, Conditions A1–A4, M2 and D are usually things that
we have relied upon for years and so it feels perhaps unusual to actually make explicit
reference to them. In the same vein, we record some other easy examples:
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Chapter 1. Rings and Fields

Example 1.4 (i) The set Q of rational numbers is a ring under the usual addition and
multiplication operations.

(ii) The set R of real numbers is a ring under the usual addition and multiplication
operations.

(iii) The set C of complex numbers is a ring under the usual addition and multiplication
operations.

The important point to note at this stage is that these are not the only examples. The
reason to introduce the term “ring” is because it covers both the familiar examples of Z, Q,
R and C, but also many other less familiar examples. Additional examples of rings are
presented later in this chapter.

Basic consequences of the axioms

The fact that the addition in a ring is both associative and commutative means that we
can manipulate sums of elements in the same way that we are familiar with. For example,
if R is a ring and a1, a2, . . . , an are elements of R, then the sum

a1 + a2 + · · ·+ an (1.1)

should in theory be provided together with some bracketing since according to the definition
+ can only be applied to a pair of elements at a time. However, the fact that addition is
associative means that any two choices of bracketing actually yields the same answer as
we can use the Associative Law A2 repeatedly to convert one to the other. This fact, in
its general form, is given below as Theorem 1.5. A consequence is that we can safely omit
the brackets in an expression such as (1.1) and we shall usually choose to do so.

Similarly the fact that addition is commutative means that we can rearrange the terms
in the above sum (1.1). Consequently, it makes sense to write

n∑
i=1

ai

for the above sum as it does not matter the order in which we sum the terms nor how this
sum is bracketed. We are permitted to manipulate these sums in the way with which we
are familiar since Conditions A1 and A2 hold and in the examples that follow we shall do
so.

For the record, we state the following theorem. The standard methods of proof is
to proceed by induction on n. This is, however, omitted here since it is not the most
enlightening of arguments and, apart from its use, does not give that much insight into
algebra.

Theorem 1.5 (Generalized Associative Law) Let A be a set and ∗ be an associative
binary operation on A. If a1, a2, . . . , an are elements of A, then the element

a1 ∗ a2 ∗ · · · ∗ an

is uniquely determined irrespective of how this expression is bracketed.
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Chapter 1. Rings and Fields

Matrix rings

Definition 1.6 Let R be any ring and n be a positive integer. An n×n matrix over R is
an array consisting of n rows and n columns whose entries are selected from the ring R:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


where aij ∈ R for all i and j. We shall abbreviate this by writing A = [aij ] to indicate
that the (i, j)th entry of A is the element aij .

We define Mn(R) to be the set of all n × n matrices over R and define addition and
multiplication of matrices as follows: If A = [aij ] and B = [bij ] are n× n matrices over R,
then

A+B = [aij + bij ]

AB = [cij ]

where

cij =
n∑

k=1

aikbkj .

We call Mn(R) a matrix ring over R.

So to add two n × n matrices A and B, we simply add the corresponding entries of
each matrix. To multiply A and B, the (i, j)th entry is equal to the sum of the values
obtained when we multiply each entry of the ith row of A by the corresponding jth column
of B. Both operations will be familiar to students from their previous studies (arising, for
example, in MT1002 Mathematics and MT2501 Linear Mathematics).

We have called Mn(R) a “matrix ring” and so one should actually verify that this is
justified; that is, that the collection of n× n matrices with entries from R is indeed a ring
in the sense of Definition 1.1. The full verification appears in these lecture notes, but some
steps will be omitted in the lectures.

Theorem 1.7 Let R be a ring and n be a positive integer. Then the matrix ring Mn(R)
is indeed a ring with respect to the addition and multiplication given in Definition 1.6.

Proof: Our definition of addition and multiplication of two n×n matrices involves adding
and multiplying entries to insert into new matrices. The results are always matrices
in Mn(R) and so addition and multiplication are binary operations on the set of n × n
matrices over R. We must verify that the Conditions A1–A4, M2 and D in the definition
of a ring. [To save time, some of these will be omitted during lectures.]

Let A = [aij ], B = [bij ] and C = [cij ] be arbitrary n× n matrices over R.

A1: By definition,

A+B = [aij + bij ] and B +A = [bij + aij ];

that is, the (i, j)th entry of A+B is aij + bij and that of B+A is bij +aij . However,
here we are adding elements of the original ring R and we know that aij+bij = bij+aij
since R itself satisfies Condition A1. Hence the entries of A+B and B + A are the
same, so A+B = B +A.
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Chapter 1. Rings and Fields

A2: This is similar. We know that R is a ring so satisfies Condition A2, so a+ (b+ c) =
(a+ b)+ c for all a, b, c ∈ R. We apply this in the following calculation to the (i, j)th
entry of the matrix arising:

(A+B) + C =
(
[aij ] + [bij ]

)
+ [cij ]

= [aij + bij ] + [cij ]

= [(aij + bij) + cij ]

= [aij + (bij + cij)]

= [aij ] + [bij + cij ]

= [aij ] +
(
[bij ] + [cij ]

)
= A+ (B + C).

Hence Condition A2 holds in Mn(R).

A3: Let 0 denote the n × n matrix all of whose entries are 0 (the zero of the ring R).
Since 0 + a = a+ 0 = a for all a ∈ R, we now calculate

0+A = 0+ [aij ]

= [0 + aij ]

= [aij ] = A

and similarly A+ 0 = A. Hence 0 is a zero in Mn(R).

A4: Let us write −A for the matrix whose entries are the negatives of the entries of A;
that is, −A = [−aij ]. Then

A+ (−A) = [aij ] + [−aij ] = [aij + (−aij)] = [0] = 0.

Similarly (−A) +A = 0. This shows Condition A4 holds in Mn(R).

M2: We shall denote the (i, j)th entry of the product AB by (AB)ij . Recall this is given
by the formula

(AB)ij =

n∑
k=1

aikbkj .

Similar formulae will be used for the (i, j)th entry of other products of matrices.
Consequently, the (i, j)th entry of the product (AB)C is:

(
(AB)C

)
ij
=

n∑
k=1

(AB)ikckj

=

n∑
k=1

( n∑
ℓ=1

aiℓbℓk

)
ckj

=
n∑

k=1

n∑
ℓ=1

(aiℓbℓk)ckj (since Condition D holds in the ring R)

=
n∑

k=1

n∑
ℓ=1

aiℓ(bℓkckj) (since multiplication is associative in R (M2))

=

n∑
ℓ=1

n∑
k=1

aiℓ(bℓkckj)

8



Chapter 1. Rings and Fields

=
n∑

ℓ=1

aiℓ

( n∑
k=1

bℓkckj

)
(again using the distributive law (D) in R)

=
n∑

ℓ=1

aiℓ(BC)ℓj

=
(
A(BC)

)
ij
.

It follows that (AB)C = A(BC) since their entries are the same; that is, multiplica-
tion is associative in Mn(R).

D: Finally we establish that the distributive law holds in Mn(R). The (i, j)th entry
of A(B + C) is

n∑
k=1

aik(bkj + ckj) =

n∑
k=1

(aikbkj + aikckj) (as the distributive law holds in R)

=

n∑
k=1

aikbkj +

n∑
k=1

aikckj (using A1 and A2 for addition in R)

= (AB)ij + (AC)ij ;

that is, this equals the (i, j)th entry of AB + AC. We conclude that A(B + C) =
AB +AC, as required.

These calculations demonstrate that the matrix ring Mn(R) is indeed a ring. □

Note that we have explicitly depended upon the fact that R is a ring (each axiom was
used at some point, often multiple times, within the arguments) when demonstrating that
the matrix ring over R is also a ring. We have established Theorem 1.7 over an arbitrary
ring R, which means that we know that all of

Mn(Z), Mn(Q), Mn(R), Mn(C)

are all themselves examples of rings. We could have dealt with each of these matrix rings
individually, but by establishing the proposition for an arbitrary ring R means that we have
got them all in one go. It also means that if R is a more complicated, much less familiar
ring that we find at some point in the future, then the matrix ring Mn(R) is definitely also
a ring without us having to repeat the work of Theorem 1.7 again.

We can make another comment about the axioms of a ring in Definition 1.1. Note that
we have not assumed that multiplication is commutative in the definition. Indeed, if we
consider multiplying 2× 2 matrices, say over Z, then, for example:(

1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)
(
1 0
1 1

)(
1 1
0 1

)
=

(
1 1
1 2

)
that is, (

1 1
0 1

)(
1 0
1 1

)
̸=
(
1 0
1 1

)(
1 1
0 1

)
.

Hence matrix multiplication is not, in general, commutative.
We give a special name to rings where the multiplication is commutative:

9



Chapter 1. Rings and Fields

Definition 1.8 A commutative ring R is a ring that satisfies the additional condition:

M1: ab = ba for all a, b ∈ R.

Example 1.9 (i) We know that multiplication in our familiar number systems is com-
mutative. Thus, Z, Q, R and C are examples of commutative rings.

(ii) The above calculation shows that the matrix rings M2(Z), M2(Q), M2(R) and M2(C)
are not commutative rings. The same idea shows that, for n ⩾ 2, none of the matrix
rings Mn(Z), Mn(Q), Mn(R) and Mn(C) are commutative rings.

Polynomial rings

Definition 1.10 Let R be any ring. A polynomial over R is an expression of the form

f(X) = a0 + a1X + a2X
2 + · · ·+ anX

n

where n is a non-negative integer (n ⩾ 0) and a0, a1, . . . , an ∈ R. The symbol X is called
an indeterminate. If f(X) ̸= 0 (that is, not all coefficients are 0) and we choose the
expression for f(X) so that an ̸= 0, then we say that f(X) has degree n.

We shall view two polynomials with indeterminate X as the same if they have the same
coefficients, but one issue does arise. We wish to view the polynomials

a0 + a1X + a2X
2 + · · ·+ anX

n

and

a0 + a1X + a2X
2 + · · ·+ anX

n + 0Xn+1 + · · ·+ 0XN

as being the same; that is, padding with lots of terms with 0 as coefficient should not make
any difference. Consequently, suppose that

f(X) = a0 + a1X + a2X
2 + · · ·+ anX

n

g(X) = b0 + b1X + b2X
2 + · · ·+ bmX

m

are two polynomials with indeterminate X and coefficients from the same ring R. Then
we say f(X) and g(X) are equal (that is, f(X) = g(X)) if ak = bk for all k except that
additionally one polynomial has further terms all with 0 as coefficient.

This issue about padding using terms with 0 coefficients is one of the main complications
when working with polynomials. Allenby’s textbook [1] gets round this issue by treating
polynomials as infinite sequences where from some point all subsequent entries are 0. (Thus
he works with the sequence of coefficients in a polynomial, rather than the polynomial
itself.) This is mathematically quite clean, but it feels we have moved some distance from
the intuitive idea behind polynomials. Here we shall follow the usual route of working with
polynomials as defined above as this fits with our already existing experience. One needs
to keep track of “padding with 0 coefficient terms,” but hopefully this will not prove to be
too much of an obstacle for understanding.

To simplify notation, we shall often write

f(X) =
∑

akX
k

10



Chapter 1. Rings and Fields

to denote the polynomial f(X) = a0 + a1X + · · ·+ anX
n. This notation always denotes a

finite sum with the understanding that any terms with 0 as coefficient can be inserted or
omitted without changing the element.

Having discussed what is meant by polynomials, let us now perform algebra with them.

Definition 1.11 Let R be a ring. The polynomial ring with indeterminate X over R
is denoted by R[X] and is the set of all polynomials in X with coefficients in R and is
endowed with the following binary operations: If f(X) =

∑
akX

k and g(X) =
∑
bkX

k,
we define

Addition: f(X) + g(X) =
∑

(ak + bk)X
k;

Multiplication: f(X) g(X) =
∑
ckX

k, where

ck = a0bk + a1bk−1 + · · ·+ akb0 =
k∑

i=0

aibk−i.

The formula for addition of polynomials is relatively straightforward: we are simply
adding the coefficients of corresponding terms in each polynomial. To motivate the formula
for multiplication, observe that if we multiply two bracketed expressions

(a0 + a1X + · · ·+ amX
m)(b0 + b1X + · · ·+ bnX

n) (1.2)

then the coefficient in front of Xk in the product will be

ck = a0bk + a1bk−1 + · · ·+ akb0.

Note here that we are implicitly making use of the potential to pad the polynomials
f(X) and g(X) with terms having 0 coefficient to make the above formulae make sense.
For example, if f(X) has degree m and g(X) has degree n, then in the product in (1.2),
the coefficient cm+n is actually given by

cm+n = ambn

since ai = 0 for i > m and bj = 0 for j > n in the product.
We have called R[X] a “polynomial ring.” As before, one should therefore verify that

it is indeed a ring. However, polynomials will arise only rarely in this module so although
the full details appear in the lecture notes, they will be omitted in the lectures.

Theorem 1.12 Let R be a ring. Then the polynomial ring R[X] is indeed a ring with
respect to the addition and multiplication given in Definition 1.11.

Proof: [This proof will be omitted during lectures.] Our definition of addition and mul-
tiplication specifies the coefficients as being built from adding and multiplying coefficients
from the ingredients. Thus our addition and multiplication are binary operations on the
set of polynomials over R. We must verify that the Conditions A1–A4, M2 and D in the
definition of a ring.

Let f(X) =
∑
akX

k, g(X) =
∑
bkX

k and h(X) =
∑
ckX

k be arbitrary polynomials
in the indeterminate X over the ring R.

11



Chapter 1. Rings and Fields

A1: We use the fact that addition is commutative in the ring R: a + b = b + a for all
a, b ∈ R. We apply this to the coefficients appearing in the following calculation:

f(X) + g(X) =
∑

akX
k +

∑
bkX

k

=
∑

(ak + bk)X
k

=
∑

(bk + ak)X
k

= g(X) + f(X)

This verifies that addition is commutative in R[X].

A2: We use the fact that addition is associative in the ring R: (a+b)+c = a+(b+c) for
all a, b, c ∈ R. We apply this to the coefficients appearing in the following calculation:(

f(X) + g(X)
)
+ h(X) =

(∑
akX

k +
∑

bkX
k

)
+
∑

ckX
k

=
∑

(ak + bk)X
k +

∑
ckX

k

=
∑(

(ak + bk) + ck
)
Xk

=
∑(

ak + (bk + ck)
)
Xk

=
∑

akX
k +

∑
(bk + ck)X

k

=
∑

akX
k +

(∑
bkX

k +
∑

ckX
k

)
= f(X) +

(
g(X) + h(X)

)
This verifies that addition is associative in R[X].

A3: We shall duplicate use of notation by also writing 0 for the polynomial with a single
term, namely the constant term with coefficient 0. Since we can pad with any number
of terms with 0 as coefficient, this is also equal to

0 = 0 + 0X + 0X2 + · · ·+ 0Xn

for any choice of n ⩾ 0. Then, for f(X) as above,

0 + f(X) =
∑

0Xk +
∑

aiX
k

=
∑

(0 + ak)X
k

=
∑

akX
k = f(X).

Similarly f(X) + 0 = f(X). This shows that this polynomial 0 is a zero in R[X].

A4: Given f(X) as above, we write −f(X) for the polynomial whose coefficients are −ak:

−f(X) =
∑

(−ak)Xk.

Then

f(X) +
(
−f(X)

)
=
∑

akX
k +

∑
(−ak)Xk

=
∑(

ak + (−ak)
)
Xk

12



Chapter 1. Rings and Fields

=
∑

0Xk = 0

(the zero polynomial appearing in our verification of A3). Similarly
(
−f(X)

)
+

f(X) = 0. This shows Condition A4 holds in R[X].

M2: To verify associativity of the multiplication in R[X] is a bit cumbersome. We can
simplify the argument a little by observing that the formula for multiplication is

f(X)g(X) =
∑
m

( ∑
(i, j) with
i+j=m

aibj

)
Xm;

that is, the Xm-coefficient is the sum of all products aibj where i + j = m. The
calculation is then as follows:

(
f(X)g(X)

)
h(X) =

(∑
i

aiX
i

)(∑
j

bjX
j

)(∑
k

ckX
k

)

=

(∑
m

( ∑
(i, j) with
i+j=m

aibj

)
Xm

)(∑
k

ckX
k

)

=
∑
n

(
n∑

m=0

( ∑
(i, j) with
i+j=m

aibj

)
cn−m

)
Xn

=
∑
n

( ∑
(i, j, k) with
i+j+k=n

aibjck

)
Xn

(using associativity and distributivity of multiplication in R)

=
∑
n

(
n∑

i=0

ai

( ∑
(j, k) with
j+k=n−i

bjck

))
Xn

=

(∑
i

aiX
i

)(∑
m

( ∑
(j, k) with
j+k=m

bjck

)
Xm

)

=

(∑
i

aiX
i

)(∑
j

bjX
j

)(∑
k

ckX
k

)
= f(X)

(
g(X)h(X)

)
.

This shows that Condition M2 holds in R[X].

D: Finally we demonstrate that the distributive law holds in R[X] (and this is more
straightforward):

f(X)
(
g(X) + h(X)

)
=

(∑
i

aiX
i

)(∑
j

bjX
j

)
+

(∑
k

ckX
k

)
=

(∑
i

aiX
i

)(∑
j

(bj + cj)X
j

)

13
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=
∑
i

( i∑
k=0

ak(bi−k + ci−k)

)
Xi

=
∑
i

( i∑
k=0

(akbi−k + akci−k)

)
Xi

=
∑
i

( i∑
k=0

akbi−k

)
Xi +

∑
i

( i∑
k=0

akci−k

)
Xi

=

(∑
i

aiX
i

)(∑
j

bjX
j

)
+

(∑
i

aiX
i

)(∑
j

cjX
j

)
= f(X)g(X) + f(X)h(X).

This shows that the polynomial ring R[X] is indeed a ring, as claimed. □

As observed with matrix rings, it now follows that the sets of polynomials with integer,
rational, real and complex coefficients (that is, Z[X], Q[X], R[X] and C[X]) are rings
under the addition and multiplication we have defined.

Fields

We have commented earlier that division in the real numbers R can only be permitted
when we do not attempt to divide by 0. Consequently, division is not a binary operation
on R. There is a way to place division as a concept within the algebraic framework that
we are presenting. This is usually done in the context of what is known as a field:

Definition 1.13 A field is a commutative ring F (that is, it has addition and multipli-
cation defined upon it such that Conditions A1–A4, M1, M2 and D all hold) with two
additional properties:

M3: there is an element 1 ∈ F with 1 ̸= 0 such that 1a = a1 = a for all a ∈ F ;

M4: for every a ∈ F with a ̸= 0, there is some element a−1 ∈ F such that aa−1 = a−1a =
1.

Thus a field is a commutative ring that has a multiplicative identity 1 with 1 ̸= 0 and
such that every non-zero element has a multiplicative inverse. The majority of students
taking this module will have already met the term “field”, either having taken the module
MT2501 Linear Mathematics or be taking that in parallel with this one.

Example 1.14 (i) From our familiarity with number systems, we know that Conditions
M3 and M4 hold in the rational numbers Q, real numbers R and complex numbers C.
Consequently, Q, R and C are our typical examples of fields.

(ii) If a is any integer, then 2a is an even number and so, in particular, 2a ̸= 1 for all
a ∈ Z. Hence there is no multiplicative inverse for 2 in Z and we conclude that the
ring of integers Z is not a field.

14



Chapter 1. Rings and Fields

Subrings

This is only a brief introduction to the topic of rings. They are considered in much more
detail in the Honours module MT3505 Algebra: Rings & Fields. The last thing we mention
is the concept of a subring :

Definition 1.15 Let R be a ring and S be a subset of R that forms a ring under the same
operation as defined on R. We then say that S is a subring of R.

Example 1.16 (i) The ring of integers Z is a subring of Q, which in turn is a subring
of R, which in turn is a subring of C. They are subsets (Z ⊆ Q ⊆ R ⊆ C) and the
operations are the same: addition and multiplication of numbers.

(ii) For a fixed n, we have the following chain of subrings of matrix rings:

Mn(Z) ⊆ Mn(Q) ⊆ Mn(R) ⊆ Mn(C).

(iii) For a fixed indeterminate X, the following polynomial rings are subrings of each
other:

Z[X] ⊆ Q[X] ⊆ R[X] ⊆ C[X].

In later chapters, we shall introduce another type of algebraic structure, the group, and
then explore in detail what we mean by a subgroup. For a fuller study of rings, the same
thing should be done, but that is a topic for another module, namely MT3505.

15





Chapter 2

Greatest Common Divisors and the
Euclidean Algorithm

The material we present in this chapter concerns certain properties of the integers. It
can, however, be placed in a more general setting: There is a special type of ring called
a Euclidean domain where the same behaviour occurs. The study of Euclidean domains
is found in a later module (see MT3505 Algebra: Rings & Fields), but here we present
sufficient information concerning division of integers for what we shall need later in this
one. Some of this material may well have been encountered before (for example, in the
module MT1003 Pure & Applied Mathematics or in your studies before arriving at St
Andrews). Sufficient information will be included here to ensure that everyone taking the
module has access to what is used later.

Definition 2.1 Let a, b ∈ Z.

(i) We say that a divides b if b = ac for some c ∈ Z. We also then say that a is a divisor
of b. We write a | b to indicate that a divides b.

(ii) Suppose that at least one of a and b is non-zero. The greatest common divisor of
a and b is the largest integer d which divides both a and b. We write gcd(a, b) to
denote the greatest common divisor of a and b.

(iii) If it is the case that gcd(a, b) = 1, then we say that a and b are coprime.

Comments:

(i) The symbol a | b is a statement about the way that a and b are related. It is not
equal to a number and the “value” it takes is either “True” or “False.” In particular,
note that a | b is not the same thing as the quotient a/b. The latter is a fraction,
that is, an element of the rationals Q, while a | b is “True” when a is a divisor of b
and is “False” when it is not.

(ii) Note that 0 = a × 0 for all integers a. Therefore every integer divides 0. This is
why we assume that at least one of a and b is non-zero when defining the greatest
common divisor since there is no largest divisor of 0. However, if a is any non-zero
integer, then any divisor d of a satisfies d ⩽ |a|. Hence there is a greatest common
divisor of a and b when a and b are not both zero.

17
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(iii) The divisors of b and −b coincide, since if b = ac, then −b = a(−c). Similarly if
a divides b, then so does −a. Consequently,

gcd(−a, b) = gcd(a,−b) = gcd(a, b)

whenever a and b are not both zero. In view of this, we shall work entirely with
positive integers in this chapter.

(iv) For small integers, it is possible to calculate the greatest common divisor simply
by listing the divisors of the two integers concerned and selecting the largest. For
example,

gcd(2, 5) = 1

gcd(3, 9) = 3

gcd(15, 20) = 5.

(v) In particular, 2 and 5 are coprime integers. When a and b are coprime integers, it
means that the only positive divisor of a and b is 1.

The following is a key observation about the greatest common divisor of two integers.
It will be used at various points during this module and, in particular, it is a key idea that
will enable us to construct a particular finite field (see Theorem 4.10 below).

Theorem 2.2 (Bézout’s Identity1) Let a and b be integers, at least one of which is
non-zero. Then the greatest common divisor of a and b is the smallest positive integer d
that can be written in the form

d = ua+ vb

for some integers u, v ∈ Z.

Corollary 2.3 If a and b are coprime integers, then there exist integers u, v ∈ Z such that
ua+ vb = 1.

Proof: Let d = gcd(a, b) (which we have observed is defined because a and b are not both
zero). There do exist positive integers in the given form and so we can define d1 to be the
smallest positive integer such that d1 = ua + vb for some u, v ∈ Z. We shall show that
d = d1.

On the one hand, since d divides both a and b, we can write a = q1d and b = q2d, so

d1 = (uq1 + vq2)d

is a multiple of d. Hence d1 ⩾ d.
On the other hand, let us divide a by d1 to yield a quotient and a remainder: a = qd1+r

where 0 ⩽ r < d1. Then

r = a− qd1 = a− q(ua+ vb) = (1− qu)a+ (−qv)b.

Hence r can be written in the same form as d1. Since d1 is the smallest positive integer
that can be written in this form, it must be the case that r = 0. Therefore d1 divides a.
Applying the same argument to b, we deduce that d1 divides b also. Finally, as d is the
greatest common divisor of a and b, we conclude d1 ⩽ d.

Hence d = d1, which establishes the theorem. The corollary follows immediately since,
by definition, d = 1 when a and b are coprime. □

1Named after the French mathematician Étienne Bézout (1730–1783).
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The above proof indicates a process that can be used to calculate the greatest common
divisor of two positive integers a and b. It is particularly useful when a and b are relatively
large and we cannot immediately spot the divisors of the two integers, or when we wish to
determine the Bézout coefficients u and v appearing in the theorem (and this is something
that we shall often intend to do).

Algorithm 2.4 (Euclidean Algorithm)

Input: Two integers a and b with a ⩾ b > 0.

Output: The greatest common divisor gcd(a, b).

Method:

• Step 1: Define a1 = a and b1 = b.
Divide a1 by b1 to find quotient and remainder:

a1 = q1b1 + r1 where 0 ⩽ r1 < b1.

• Step n: Define an = bn−1 and bn = rn−1 arising from the previous step.
Divide an by bn to find quotient and remainder:

an = qnbn + rn where 0 ⩽ rn < bn.

• Repeat until rk = 0.
• The last non-zero remainder rk−1 is gcd(a, b).

Example 2.5 Compute the greatest common divisor of 76 and 92.

We shall present a more challenging example towards the end of the chapter. There we
shall employ a more convenient way to present the calculation. In the following solution,
we shall merely follow the steps in Algorithm, relying on the fact that the numbers involved
are relatively small.

Solution: We apply the steps of the Euclidean Algorithm:

Step 1: Take a1 = a = 92 and b1 = b = 76. Then 92 = 1× 76 + 16, so r1 = 16.

Step 2: Take a2 = b1 = 76 and b2 = r1 = 16. Then 76 = 4× 16 + 12, so r2 = 12.

Step 3: Take a3 = b2 = 16 and b3 = r2 = 12. Then 16 = 1× 12 + 4, so r3 = 4.

Step 4: Take a4 = b3 = 12 and b4 = r3 = 4. Then 12 = 3× 4 + 0, so r4 = 0.

We have completed the application of the Euclidean Algorithm, so
gcd(76, 92) = gcd(b, a) = r3 = 4. □

Proof that the Euclidean Algorithm Works: Since at each stage bn = rn−1 <
bn−1, the sequence of integers bn ⩾ 0 must eventually reach 0. Hence the Euclidean
Algorithm will stop after a finite number of steps.

Furthermore, if a = qb + r with a ̸= 0, then gcd(a, b) = gcd(b, r) (see Question 2 on
Problem Sheet II). Hence

gcd(a, b) = gcd(a1, b1) = gcd(a2, b2) = · · · = gcd(ak, bk)

and, since ak = qkbk as rk = 0, we deduce

gcd(a, b) = gcd(ak, bk) = bk = rk−1,

as claimed. □
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The Extended Euclidean Algorithm

We finish our discussion of the Euclidean Algorithm by demonstrating a method to present
the calculations that also keeps track of the Bézout coefficients u and v from Theorem 2.2
directly. In this process, we implement exactly the same steps as in Algorithm 2.4 but the
presentation is more compact and we express each term arising in the form ua+ vb.

The process is as follows. First create a table including the value of a and b that we
are working with:

a = . . .
. . . = b

where the two dotted entries are replaced by the numbers with which we are actually
working. Having performed some stages in the calculation, we shall be in the situation
where the bottom line of the table will either have an empty space in the left- or right-hand
column. The entry above the empty space will express some integer in the form ua + vb
and the other entry in the bottom line will express some integer in the form u′a+ v′b; that
is, the table will have the form:

...
...

ua+ vb = x
...
y = u′a+ v′b

(Here the symbols x, y, u, v, u′ and v′ will be replaced by specific integers and perhaps
the left- and right-hand columns will be interchanged.) The next stage is to divide x by y
to find a quotient q. Multiply everything in the filled right-hand entry by q, write this in
the empty left-hand entry and then subtract to express the remainder r = x − qy in the
form u′′a+ v′′b:

...
...

ua + vb = x
...

qu′a + qv′b = qy y = u′a+ v′b
(u− qu′)a+ (v − qv′)b = r

We now repeat these steps until we reach remainder 0. The Euclidean Algorithm then
tells us that the last non-zero remainder is the greatest common divisor d of the original
a and b and we can read off its expression as d = ua+ vb from the table.

We shall illustrate this process by computing the greatest common divisor of a particular
pair of positive integers.

Example 2.6 In this example, we start with a = 1232 and b = 546. We then construct
the following table. (This is done by using the steps described above, but it is probably
most easily understood by watching it live during the lecture!)

a = 1232
2b = 1092 546 = b

a− 2b = 140 420 = 3a− 6b
−3a+ 7b = 126 126 = −3a+ 7b
4a− 9b = 14 126

0

The last non-zero remainder is 14 and hence

gcd(1232, 546) = 14 = 4a− 9b.
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(There was no need to express 126 in the form u′a+ v′b at the last stage of the above
calculation since this would not be used in a future step.)
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Chapter 3

Equivalence Relations

In this chapter, we shall introduce some terminology that can be found throughout math-
ematics. This will be used during this module but also in many of the Honours modules
that follow.

Definition 3.1 Let A be a set. A relation on A is some rule, that we shall denote by a ∼ b
here, that specifies when two elements a and b are related under the rule.

Example 3.2 We have actually met lots of examples of relations already:

(i) “Divides,” denoted |, is a relation on the set Z of integers. In Definition 2.1, we
defined a | b when a divides b (that is, when b = ac for some c ∈ Z).

(ii) “Less than,” denoted <, is a relation on the set Z (as well as on Q and on R). We
write a < b when a is less than b.

(iii) If A is any set, “equals,” denoted =, is a relation on A. Here a = b when a and b are
the same element.

(iv) If A is any set, the universal relation is defined by a ∼ b for all choices of a and b
in A.

Note that a relation is, as we defined, just a rule that says that two elements a and b in
some set. It does not take a value in the set, but rather, if anything, take the value “True”
or “False.” We shall usually write a ∼ b when the rule is True (that is, when a and b satisfy
the rule) and we write a ≁ b when the rule is False (that is, when a and b do not satisfy
the rule). Thus, for the examples of relations that we have just listed the following hold:

(i) 2 | 4, 6 | 120, 3 ∤ 8, 4 ∤ 2.

(ii) 2 < 4, 6 < 120, 8 ≮ 3, 4 ≮ 2.

(iii) For equals (=) on the set Z, 2 = 2, 4 = 4, 2 ̸= 4, 4 ̸= 2.

(iv) For the universal relation on the set Z, 2 ∼ 4, 6 ∼ 120, 8 ∼ 3, 4 ∼ 2. Indeed for
the universal relation on any set, there are no examples of a and b with a ≁ b.

One method that could be used to specify a relation ∼ on a set A is to simply list all
the pairs (a, b) of elements from A that satisfy a ∼ b. This means that every relation can
be defined by specifying a subset R of the set A×A of all pairs of elements:

R = { (a, b) | a ∼ b }
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With this definition of R, the following holds:

a ∼ b if and only if (a, b) ∈ R.

Many textbooks formally define a relation as being any subset of A × A. Via the above
formula, this is equivalent to the one given in Definition 3.1.

Many different types of relation occur in mathematics. For example, one important
type of relation is called a partial order. In this chapter, we will concentrate on what is
known as an equivalence relation. Such a relation satisfies three specific properties:

Definition 3.3 Let ∼ be a relation defined on a set A.

(i) We say that ∼ is reflexive (R) if a ∼ a holds for all a ∈ A.

(ii) We say that ∼ is symmetric when the following condition holds:

S: if a ∼ b holds from some a, b ∈ A, then also b ∼ a holds.

(iii) We say that ∼ is transitive when the following condition holds:

T: if a ∼ b and b ∼ c both hold for some a, b, c ∈ A, then also a ∼ c holds.

(iv) We say that ∼ is an equivalence relation if it is reflexive, symmetric and transitive.

Thus an equivalence relation is one that satisfies all three of the conditions (R), (S)
and (T) hold.

Comment: Note that both the symmetry (S) and transitivity (T) conditions are state-
ments of the form “if . . . then . . . ”. To verify that a particular relation ∼ is symmetric, the
argument should have roughly the following structure:

Let a and b be elements of the set A and assume that they satisfy the con-
dition a ∼ b. Then use whatever mathematics you have access to and (most
likely) explicit reference to the fact that you know a ∼ b to then deduce also
that b ∼ a.

A common error that is observed in some students’ work is to present an argument that
finishes with the statement along the lines of “. . . so a ∼ b and b ∼ a.” This is not correct
and fails to adequately reflect the “if . . . then . . . ” nature of the symmetry (S) condition.

Example 3.4 (i) Consider the relation | (“divides”) on the integers. If a ∈ Z, then
a = 1× a, which shows that a | a. Hence | is reflexive (R).

Suppose a, b, c ∈ Z and that a | b and b | c. The first of these tells us that b = ax for
some x ∈ Z, while the second tells us that c = by for some y ∈ Z. Then

c = (ax)y = a(xy)

which tells us that a | c. Hence | is transitive (T).

However, | is not symmetric. To see this condition fails, we simply have to find a
choice of a, b ∈ Z such that a | b but for which b ∤ a. For example, we know that 2 | 4
but 4 ∤ 2 (since 4 = 2× 2 but there is no integer x satisfying 2 = 4x).

In particular, | is not an equivalence relation. (In fact, “divides” is an example of the
type of relation called a partial order.)
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(ii) Let A be any set and consider the relation = (“equals”). If a is any element of A,
then a = a holds (since that is what equals means!) and hence = is reflexive (R).

If a, b ∈ A are such that a = b, then a and b are the same element of A (we just
haven’t happened to have labelled them with the letter) and so b = a. Thus = is
symmetric (S).

If a, b, c ∈ A are such that a = b and b = c, then it must be that a = c also (as all
three are the same element). This shows that = is transitive (T).

Hence “equals” is an equivalence relation. (Indeed, the concept of equivalence relation
can be viewed as a generalization of the concept of “equals.” One should interpret any
particular equivalence relation ∼ as saying that something about a and b is the same
when they are related under ∼. In the case of “equals,” everything about a and b is
the same when a = b.)

(iii) Let ∼ be the universal relation on the set A. Then a ∼ b for all a, b ∈ A.

Now if a is any element of A, then a ∼ a (as every pair of elements of A is related).
Hence ∼ is reflexive (R).

Let a, b ∈ A and suppose a ∼ b. (This assumption actually tells us nothing beyond
the fact that a and b are elements of A.) It then follows that b ∼ a (since every pair
of elements are related under ∼). Hence ∼ is symmetric (S).

Let a, b, c ∈ A and suppose a ∼ b and b ∼ c. Then a ∼ c (because every pair of
elements are related under ∼). Hence ∼ is transitive (T).

This shows that the universal relation ∼ on a set A is an equivalence relation.

(iv) Define a relation ∼ on the set of integers Z by the following rule:

a ∼ b if b− a is an even number. (3.1)

Thus 3 ∼ 7 because 7−3 = 4 is even. On the other hand, 4 ≁ 1 because 1−4 = −3 is
odd, not even. We shall show that ∼ is an equivalence relation on Z. (We shall
generalize this example in the next chapter.)

(R): If a ∈ Z, then a − a = 0, which is even. Hence a ∼ a for all a ∈ Z. Thus ∼ is
reflexive.

(S): Let a, b ∈ Z and suppose that a ∼ b. This means that b−a is even, say b−a = 2x
for some integer x. Then a − b = −(b − a) = 2(−x) is also even, which shows that
b ∼ a. Hence ∼ is symmetric.

(T): Let a, b, c ∈ Z and suppose that a ∼ b and b ∼ c. This means that both
b − a and c − b are even, say b − a = 2x and c − b = 2y for some integers x and y.
Then

c− a = (c− b) + (b− a) = 2y + 2x = 2(x+ y)

is even and hence a ∼ c. Hence ∼ is transitive.

Thus the relation ∼ defined by (3.1) is an equivalence relation.

(v) Let A = { (a, b) | a, b ∈ Z, b ̸= 0 }, the set of ordered pairs of integers of which the
second is always non-zero. Define a relation on A by the following rule:

(a, b) ∼ (c, d) if ad = bc. (3.2)

We shall show that ∼ is an equivalence relation on A.
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(R): Let (a, b) ∈ A. Then ab = ba, so (a, b) ∼ (a, b) according to the rule (3.2).
Hence ∼ is reflexive.

(S): Let (a, b), (c, d) ∈ A and suppose (a, b) ∼ (c, d). This means that ad = bc.
Since multiplication in the integers is commutative, it follows cb = da and hence
(c, d) ∼ (a, b). It follows that ∼ is symmetric.

(T): Let (a, b), (c, d), (e, f) ∈ A and suppose that (a, b) ∼ (c, d) and (c, d) ∼ (e, f).
These mean that ad = bc and cf = de. Now

afd = (ad)f = (bc)f = b(cf) = b(de) = bed.

However, d is non-zero, by assumption, and therefore we can divide by it and conclude
af = be. Hence (a, b) ∼ (e, f). This shows that ∼ is transitive.

Therefore ∼, as defined in (3.2), is indeed an equivalence relation on A.

This set of examples gives us some indication that we might expect to see equivalence
relations appear in many places in mathematics. We have met two relatively trivial ex-
amples (“equals” and the universal relation), but we have two further examples. One will
be generalized further in the next chapter, while the final example (Example 3.4(v)) has a
link to how one might view rational numbers. Note that under this relation ∼

(a, b) ∼ (c, d) ⇐⇒ ad = bc ⇐⇒ a

b
=
c

d
.

Hence this last equivalence relation is about the different ways one might express a rational
number as the quotient of a pair of integers.

We shall now develop further the theory about equivalence relations so that we can use
this technology in future mathematics.

Definition 3.5 Let ∼ be an equivalence relation on a set A. If a is an element of A, the
equivalence class of a (with respect to ∼) is

[a] = { b ∈ A | a ∼ b } ;

that is, [a] is the subset of A consisting of all elements that are related to a under ∼.

Note: Note that [a] denotes a particular set, even though the main part of this symbol
is a lowercase letter (which is what we usually use for elements of a set).

The basic properties of equivalence classes are the following:

Theorem 3.6 Let ∼ be an equivalence relation on a set A. Then

(i) a ∈ [a] for every a ∈ A;

(ii) A is the union of all the equivalence classes of ∼;

(iii) if a, b ∈ A, then either [a] = [b] or [a] ∩ [b] = ∅.

Part (iii) of the theorem says that two equivalence classes (for the given equivalence
relation ∼) are either equal or are disjoint; that is, distinct equivalence classes are disjoint;
i.e., have no elements in common.
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Proof: (i) Let a ∈ A. Since ∼ is reflexive, we know that a ∼ a. This tells us that a ∈ [a].
(ii) Every element of A lies in at least one equivalence class by part (i). Hence A is the

union of the equivalence classes.
(iii) Let a, b ∈ A and suppose that [a] ∩ [b] ̸= ∅. This means that there is at least one

element, say c, belonging to both [a] and [b]. By definition then

a ∼ c and b ∼ c.

Now use the fact that ∼ is symmetric to deduce that c ∼ b. Then since a ∼ c and c ∼ b,
we deduce that a ∼ b by the transitivity of ∼. Symmetry of ∼ then also implies b ∼ a.

We shall now use this observation to deduce that [a] = [b]. We do this by showing that
every element of [a] is also an element of [y] and vice versa.

First let x ∈ [a]. This means that a ∼ x. We then can apply transitivity of ∼ to the
pair of observations b ∼ a and a ∼ x to deduce b ∼ x. Hence x ∈ [b]. Thus every element
of [a] is also in [b]; that is, [a] ⊆ [b].

Conversely let x ∈ [b], so that b ∼ x. We have already noted a ∼ b and so transitivity
of ∼ implies that a ∼ x. Hence x ∈ [a]. We have now shown that every element of [b] is
also in [a]; that is, [b] ⊆ [a].

In conclusion, we have shown that if [a] ∩ [b] ̸= ∅, then [a] = [b]. This means that any
pair of equivalence classes either satisfy [a] = [b] or [a] ∩ [b] = ∅. □

We record two sets of observations about what we have observed. This first follows
immediately since part (ii) of the theorem says that the set is the union of the equivalence
classes and part (iii) says that distinct equivalence classes are disjoint:

Corollary 3.7 Let ∼ be an equivalence relation on a set A. Then A is the disjoint union
of the equivalnce classes of ∼. □

Corollary 3.8 Let ∼ be an equivalence relation on a set A and let a, b ∈ A. Then

(i) [a] = [b] if and only if a ∼ b;

(ii) [a] ∩ [b] = ∅ if and only if a ≁ b.

Proof: (i) If [a] = [b], then b ∈ [b] = [a] by part (i) of Theorem 3.6. Hence a ∼ b by
definition of [a].

Conversely if a ∼ b, then b lies in [a] while it also lies in [b] by part (i) of Theorem 3.6.
Then b ∈ [a] ∩ [b] and so [a] = [b] by part (iii) of the Theorem.

(ii) This follows by use of part (iii) of Theorem 3.6. Indeed

a ≁ b ⇐⇒ [a] ̸= [b] ⇐⇒ [a] ∩ [b] = ∅

by what we have already established. □

We have another name for the situation where a set is expressed as a disjoint union of
a collection of subsets:

Definition 3.9 Let A be a set and let P = {Bi | i ∈ I } be a collection of non-empty
subsets of A. (We would usually call I an index set. It can be any suitable choice to index
the members of P. Common choices include the positive integers N or all integers Z or
some other infinite set if there are infinitely many subsets in P, or I = {1, 2, . . . , n} if there
are finitely many — specifically n — subsets in P.)

If the following conditions hold:
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(i) A is the union of the subsets in P, A =
⋃

i∈I Bi, and

(ii) any two distinct members of P are disjoint, Bi ∩Bj = ∅ for i ̸= j,

then we say that P is a partition of A.

We have observed in Corollary 3.7 that if ∼ is an equivalence relation on a set A, then
the collection of equivalence classes forms a partition on A. In fact, equivalence relations
are essentially the same thing as partitions, since given any partition P we can define an
equivalence relation whose equivalence classes are precisely the subsets in P.

Theorem 3.10 Let P = {Bi | i ∈ I } be a partition of the set A. Define a relation ∼
on the set A by a ∼ b when a and b lie in the same part Bi of the partition. Then ∼ is
an equivalence relation on A and the equivalence classes of ∼ are the subsets Bi in the
partition P.

The proof of this proposition is reasonably straightforward and is left to an exercise on
a problem sheet.

We finish this chapter by examining the equivalence classes for the equivalence relations
appearing in Example 3.4.

Example 3.11 (i) Let A be any set and consider equals (=). We observed in Exam-
ple 3.4(ii) that = is an equivalence relation on A. Observe that

b ∈ [a] ⇐⇒ a = b

and hence [a] = {a}, the singleton set that has just one element, namely a itself.

(ii) Let A be any set and let ∼ denote the universal relation. Then a ∼ b for all a, b ∈ A
and therefore b ∈ [a] for all b ∈ A. Hence there is just one equivalence class, namely,

[a] = A for any choice of a ∈ A.

(iii) Now consider the equivalence relation ∼ on Z from Example 3.4(iv); that is,

a ∼ b if a− b is an even number.

Note that 0 ∼ b for all even integers b, that 1 ∼ c for all odd integers c, and that
0 ≁ 1. Hence there are two equivalence classes: [0] consists of all even integers and
[1] consists of all odd integers.

(iv) Finally consider the equivalence relation ∼ on the set A = { (a, b) | a, b ∈ Z, b ̸= 0 }
from Example 3.4(v) given by

(a, b) ∼ (c, d) if ad = bc.

Recall that (a, b) ∼ (c, d) if and only if a/b = c/d, so each equivalence class corre-
sponds to all the pairs (a, b) such that a/b evaluates to the same rational number.
The equivalence classes are therefore parametrized by rational numbers q ∈ Q. If
q = m/n where m,n ∈ Z with n ̸= 0, then

Xq =
[
(m,n)

]
= { (a, b) ∈ A | a/b = q } .
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Chapter 4

Congruences and Modular
Arithmetic

In this chapter we shall be considering a specific example of an equivalence relation on the
set of integers. The positive integer m > 1 that appears in the following definition will be
fixed throughout the chapter, but in various examples we will use specific choices for this
parameter.

Definition 4.1 Let m be an integer with m > 1. We say that two integers a and b are
congruent modulo m if b− a is divisible by m. We write a ≡ b (mod m) when this holds.

Thus a ≡ b (mod m) means that b− a = mq for some integer q ∈ Z. When m = 2, we
note that a ≡ b (mod 2) when b−a is even. Thus the relation when m = 2 is precisely the
equivalence relation defined in Example 3.4(iv). This chapter is consequently concerned
with a generalization of that example.

Example 4.2 (i) Observe

4 ≡ 31 (mod 9),

−11 ≡ 34 (mod 9),

20 ̸≡ 100 (mod 9).

(ii) Note a ≡ 0 (mod m) if and only if m | a.

(iii) Two positive integers are congruent modulo 10 if and only if they have the same final
digit (when expressed in base 10 as usual).

Theorem 4.3 Congruence modulo m is an equivalence relation on Z.

Proof: We need to verify the three conditions for an equivalence relation from Defini-
tion 3.3. When expressed for congruence, these conditions are:

(R) a ≡ a (mod m) for all a ∈ Z;

(S) if a ≡ b (mod m) for some a, b ∈ Z, then also b ≡ a (mod m);

(T) if a ≡ b (mod m) and b ≡ c (mod m) for some a, b, c ∈ Z, then also a ≡ c (mod m).
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We now verify that each of these conditions holds.
(R) Let a ∈ Z. Then a− a = 0 = 0×m, so m | (a− a) and hence a ≡ a (mod m).
(S) Let a, b ∈ Z and suppose a ≡ b (mod m). This means thatm | (b−a), so b−a = mq

for some q ∈ Z. Then a − b = −(b − a) = −mq = m(−q) and so m | (a − b) also. Hence
b ≡ a (mod m). This shows that congruence modulo m is symmetric.

(T) Let a, b, c ∈ Z and suppose a ≡ b (mod m) and b ≡ c (mod m). This means that
m divides both b−a and c− b. Therefore there exist integers q and r such that b−a = mq
and c− b = mr. Then

c− a = (c− b) + (b− a) = mr +mq = m(q + r)

and so m | (c − a). Hence a ≡ c (mod m). This shows that congruence modulo m is
transitive.

In conclusion, congruence modulo m is indeed an equivalence relation on Z. □

Since congruence modulo m is an equivalence relation on Z, we know (by Corollary 3.7)
that the integers Z is partitioned into the resulting equivalence classes. We shall discuss
these later in the chapter. Before we do that, however, we shall make some observations
about how congruences interact with arithmetic operations on Z.

Theorem 4.4 (Congruence Arithmetic) Let m be an integer with m > 1. Let a, b, c
and d be integers. Then:

(i) If a ≡ b (mod m) and c ≡ d (mod m), then

a+ c ≡ b+ d (mod m)
ac ≡ bd (mod m).

(ii) If a ≡ b (mod m), then

a+ c ≡ b+ c (mod m)
ac ≡ bc (mod m).

Proof: (i) Suppose a ≡ b (mod m) and c ≡ d (mod m). This means that m | (b − a)
and m | (d− c). Hence there are integers q and r such that

b− a = mq and d− c = mr.

Now

(b+ d)− (a+ c) = (b− a) + (d− c)

= mq +mr

= m(q + r)

which shows that m divides (b+ d)− (a+ c); that is,

a+ c ≡ b+ d (mod m).

Also

bd− ac = bd− bc+ bc− ac

= b(d− c) + (b− a)c
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= bmr +mqc

= m(br + qc)

which shows that m divides bd− ac; that is,

ac ≡ bd (mod m).

(ii) Suppose a ≡ b (mod m) and let c ∈ Z. Since congruence modulom is, in particular,
reflexive, certainly c ≡ c (mod m). Hence we can take d = c in part (i) to give

a+ c ≡ b+ c (mod m)
ac ≡ bc (mod m),

as required. □

We shall now perform a construction that is rather common in mathematics. Here we
take an already existing mathematical structure and define an associated structure upon
the set of equivalence classes of some equivalence relation. The latter is termed a “quotient
structure” and examples of this are indeed found throughout mathematics. It will happen
occur once more towards the end of this lecture course.

To be precise, what we shall do here is the following:

• Start with the ring structure on the set of integers Z (defined by the usual addition
and multiplication, as we observed in Example 1.3).

• Let m > 1 be a positive integer and consider congruence modulo m (as given in
Definition 4.1).

• Observe that we can define an addition and multiplication on the set of equivalence
classes. We shall rely heavily upon Theorem 4.4 to do this.

• Observe that the conditions to be a ring are inherited.

We begin by identifying the equivalence classes for the congruence relation.

Theorem 4.5 Let m be an integer with m > 1. The equivalence relation “congruent
modulo m” has precisely m equivalence classes, namely

[r] = { km+ r | k ∈ Z }

for r = 0, 1, . . . , m− 1.

We shall refer these equivalence classes as the congruence classes modulo m.

Proof: First fix an integer r with 0 ⩽ r < m. Observe that if a is an arbitrary integer,
then

a ∈ [r] ⇐⇒ r ≡ a (mod m)

⇐⇒ m | (a− r)

⇐⇒ a− r = km for some k ∈ Z
⇐⇒ a = km+ r for some k ∈ Z.

Thus we have identified the elements in the equivalence class [r]:

[r] = { km+ r | k ∈ Z } .
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We have shown that the equivalence classes have the claimed form. We still need to
show that the collection [0], [1], . . . , [m− 1] are all the equivalence classes and that they
are distinct.

If a ∈ Z, divide a by m and obtain some remainder:

a = qm+ r where 0 ⩽ r < m.

Then a ≡ r (mod m) and so a ∈ [r]. This shows that every integer in Z lies in one of the
equivalence classes

[0], [1], . . . , [m− 1]. (4.1)

This means that this list includes all the equivalence classes.
Finally suppose [r] = [s] where 0 ⩽ r, s < m. This means that r ≡ s (mod m), so

m divides r − s. However −m < r − s < m by the choice of r and s, this forces r − s = 0;
that is, r = s. Hence the equivalence classes listed in (4.1) are distinct.

In conclusion, there are precisely m congruence classes and they have the form specified
in the statement. □

We now know that there are m equivalence classes for the relation ≡ (mod m). We
want to define arithmetic operations on the set of congruence classes. We shall achieve
this by making use of the arithmetic operation on the integers and applying them to the
representatives of the congruence classes.

Consequently, if a and b are integers, we define

[a] + [b] = [a+ b]

[a] · [b] = [ab].

There is an issue here: We have defined the operations in terms of “representatives” for
the equivalence classes; that is, we have picked elements in each of the two equivalence
classes and defined the operation in terms of these choices. However, it is possible to choose
different representatives and we want to show that resulting equivalence classes is the same
irrespective of the choice. Indeed, if a is any integer, Theorem 4.5 describes the congruence
class [a] and, in particular, tells us there are infinitely many elements in this class. As we
know congruence classes are either disjoint or equal (by Theorem 3.6), then [a] = [c] for all
choices of c in the congruence class [a]. We need to verify that our definitions of addition
and multiplication does not give a different answer if replace the element a by a different
element in the same congruence class. The term that is used throughout mathematics is
that we shall show our operations are “well-defined.”

Lemma 4.6 Let m be an integer with m > 1. Then there are well-defined addition and
multiplication operations on the set of congruence classes modulo m given by

[a] + [b] = [a+ b] and [a] · [b] = [ab].

Proof: Let a, b, c and d be integers. Suppose that a and c are chosen from the same
congruence class and that b and d are chosen from the same congruence class (possibly a
different class). This means that

a ≡ c (mod m) and b ≡ d (mod m).

Theorem 4.4(i) tells us that

a+ b ≡ c+ d (mod m) and ab ≡ cd (mod m),
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so
[a+ b] = [c+ d] and [ab] = [cd].

Hence if [a] = [c] and [b] = [d], then

[a] + [b] = [c] + [d] and [a] · [b] = [c] · [d].

This shows that the addition and multiplication is well-defined : it does not depend upon
our choice of representatives from each of the equivalence classes. □

Theorem 4.7 Let m be an integer with m > 1. Then the set R = {[0], [1], . . . , [m−1]} of
congruence classes modulo m is a commutative ring under the addition and multiplication
defined by

[a] + [b] = [a+ b] and [a] · [b] = [ab].

Proof: We have shown in Lemma 4.6 that these operations do define addition and multi-
plication on the set R of equivalence classes. It remains to show that the conditions to be
a ring hold. Let a, b and c be arbitrary integers, so [a], [b] and [c] are arbitrary elements
of R.

A1: Observe
[a] + [b] = [a+ b] = [b+ a] = [b] + [a]

(using the fact that A1 holds in Z). Hence Condition A1 holds in R with our given
addition.

A2: Observe

[a] +
(
[b] + [c]

)
= [a] + [b+ c] = [a+ (b+ c)]

= [(a+ b) + c] = [a+ b] + [c] =
(
[a] + [b]

)
+ [c],

so Condition A2 holds in R with our given addition.

A3: Observe
[0] + [a] = [0 + a] = [a] and [a] + [0] = [a+ 0] = [a].

This holds for all choice of a and hence [0] is the zero for the addition operation on R.

A4: Given our arbitrary element a ∈ Z, we can consider the equivalence class [−a] of its
negative. We observe

[a] + [−a] = [a+ (−a)] = [0] and [−a] + [a] = [(−a) + a] = [0].

Hence Condition A4 holds in R.

M1: Observe
[a] · [b] = [ab] = [ba] = [b] · [a]

using the fact that (M1) holds in Z. Hence multiplication is commutative in R.

M2: Similarly

[a] ·
(
[b] · [c]

)
= [a] · [bc] = [a(bc)] = [(ab)c] = [ab] · [c] =

(
[a] · [b]

)
· [c],

so multiplication is associative in R.

D: Finally

[a] ·
(
[b] + [c]

)
= [a] · [b+ c] = [a(b+ c)]

= [ab+ ac] = [ab] + [ac] = [a] · [b] + [a] · [c].

This checks all conditions required for a commutative ring. □
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Comment: Observe that verification of the Conditions A1–A4, M1, M2 and D for a
commutative ring were actually quite straightforward. These are inherited somewhat di-
rectly from the fact the same conditions hold in the original ring Z of integers. The most
difficult step in verifying the above theorem is actually Lemma 4.6 where we established
that addition and multiplication on the set of congruence classes is well-defined. In future
similar situations, establishing that operations on equivalence classes are well-defined will
usually be the most important and difficult step.

Definition 4.8 We shall write Z/mZ for the ring consisting of the congruence classes
modulo m under the addition and multiplication in the above theorem. (Another common
notation is Zm and this is found in many texts.)

We normally simplify the notation and omit the brackets around the elements of Z/mZ.
Although strictly speaking they are equivalence classes of integers, we usually denote the
m elements of Z/mZ by

0, 1, . . . , m− 1.

We then also use ≡ (mod m) as the “equals” in this ring. For example, if m = 6, we
would denote the addition in Z/6Z by writing

3 + 5 ≡ 2 (mod 6).

Similar notation can be used to denote the multiplication in such rings.
We shall now give further examples of the results of performing the addition and mul-

tiplication in these rings for the values m = 4 and m = 5. In this example, we shall use
what is called a Cayley table or addition/multiplication table. In the case of the addition
table, we place a+ b in the entry occurring in the row with label a and in the column with
label b. The analogous convention is used for the multiplication table.

Example 4.9 (i) In the first example, we take m = 4. The addition and multiplication
tables are then:

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

× 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

(ii) Now we do the same thing for m = 5. The addition and multiplication tables are
then:

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Note two properties that we observe in the above examples, specifically within the
multiplication tables. Property M3 holds in both Z/4Z and Z/5Z:

1a = a1 = a for all a;

that is, 1 is a multiplicative identity. Property M4 (existence of multiplicative inverses)
does not hold in Z/4Z: there does not exist any choice of a such that 2a ≡ 1 (mod 4).
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However, since 1 occurs in all except the first row and in all except the first column of
the multiplicative table of Z/5Z, we conclude that every non-zero element of Z/5Z has a
multiplicative inverse. Indeed:

1−1 = 1, 2−1 = 3, 3−1 = 2, 4−1 = 4

The crucial thing that distinguishes between the two examples is that 5 is a prime number,
whereas 4 is not. More generally, we shall finish this chapter with the following observation:

Theorem 4.10 Let p be any prime number. Then Z/pZ is a field.

Recall that a prime number is a positive integer p > 1 whose only positive divisors are
1 and p. When p is prime, we shall often write Fp for the field Z/pZ.

Proof: Let p be a prime number and F = Z/pZ, the ring of congruence classes modulo p.
We know by Theorem 4.7 that F is a commutative ring under addition and multiplication
performed modulo p. According to Definition 1.13, we must verify that Conditions M3
(existence of a multiplicative identity) and M4 (existence of multiplicative inverses) hold
in F .

M3: If a ∈ {0, 1, 2, . . . , p−1}, then a1 = 1a = a. Hence 1 is a multiplicative identity in F ;
that is, Condition M3 holds in F .

M4: Now let a be an integer that represents a non-zero element of F . Thus a ̸≡ 0 (mod p),
so p does not divide a. Consider now the greatest common divisor of the integers
a and p. The only positive divisors of p are 1 and p, but p does not divide a, and
hence gcd(a, p) = 1; that is, a and p are coprime. Theorem 2.2 tells us there are
integers u and v with ua+ vp = 1. Hence

ua ≡ 1 (mod p).

This shows that u is a multiplicative inverse for a in F . Hence Condition M4 holds
in F .

In conclusion, F is indeed a field. □

As a comment, one place that fields occur is in the study of linear mathematics. You
will recall from the module MT2501 that one of the primary objects of study is the vector
space and that every vector space occurs over some field. In MT2501, the typical examples
of fields that were used were the real numbers R and the complex numbers C. However,
one could study vector spaces over the rational numbers Q and also over the field Fp

of congruence classes modulo p for any prime p. Thus, we could consider vector spaces
over F2, F3, F5, F7, . . . . The case of the field F2 of two elements is particularly important
in discrete mathematics, coding theory, theoretical computing, etc.

We finish the chapter by discussing solution of congruence equations. The natural place
to consider these is in the ring Z/mZ of congruence classes. Indeed, if x satisfies ax ≡ b
(mod m) and y ≡ x (mod m), then Theorem 4.4 tells us that ay ≡ ax ≡ b (mod m).
Hence solutions to the equation ax ≡ b (mod m) consist of entire congruence classes and
so we really are solving the equation in Z/mZ. We shall illustrate such solutions in the
following example.
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Example 4.11 Determine all the solutions (if any) in the ring Z/49Z of the following
equations:

(i) 4x ≡ 9 (mod 49);

(ii) 7x ≡ 0 (mod 49);

(iii) 7x ≡ 9 (mod 49).

In this example, we are deliberately working in a ring Z/mZ where m is not prime. In
the case of a finite field Fp = Z/pZ, the solution to part (i) will adapt (and there will be
no examples arising in the form of parts (ii) and (iii)).

Solution: (i) Note here that 4 is coprime to 49: The divisors of 49 are 1, 7 and 49, so
gcd(4, 49) = 1. Indeed, we shall apply the Extended Euclidean Algorithm with a = 49 and
b = 4:

a = 49
12b = 48 4 = b

a− 12b = 1 4
0

Hence the Bézout coefficients are u = 1 and v = −12:

1× 49− 12× 4 = 1.

We reduce this equation modulo 49:

−12× 4 ≡ 1 (mod 49);

that is,
37× 4 ≡ 1 (mod 49)

and so 37 is a multiplicative inverse for 4 in Z/49Z. We now turn to the equation under
consideration:

4x ≡ 9 (mod 49)

Multiply both sides by 37:

x ≡ 37× 4x ≡ 37× 9 = 333 ≡ 39 (mod 49)

(The last step is achieved by determining the remainder when one divides 333 by 49.)
Hence the given solution has a unique solution in Z/49Z:

x ≡ 39 (mod 49)

(ii) Note that 7x ≡ 0 (mod 49) if and only if 49 divides 7x; that is, 7x = 49q for some
q ∈ Z. Thus x = 7q for some q ∈ Z. Hence the solutions of 7x ≡ 0 (mod 49) are

x = 0, 7, 14, 21, 28, 35, 42.

In particular, there are seven solutions to the equation in Z/49Z.
(iii) Suppose x is a solution of 7x ≡ 9 (mod 49). Then 7 also divides 7x− 9, so 7x ≡ 9

(mod 7). Hence
2 ≡ 9 ≡ 7x ≡ 0 (mod 7),

which is a contradiction. Hence the equation 7x ≡ 9 (mod 49) has no solutions. □
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Chapter 5

Groups

So far we have met two of the major types of algebraic structure: rings and fields (and
fields are just rings with additional properties). We shall now turn to the main topic of
the module, namely the algebraic structure called a group. We shall be studying this for
the rest of the course. We begin with the definition:

Definition 5.1 A group is a set G together with a binary operation

(x, y) 7→ xy

(usually denoted, as here, by multiplication) such that the following conditions hold:

(i) (xy)z = x(yz) for all x, y, z ∈ G;

(ii) there is some element 1 ∈ G, called the identity, such that 1x = x1 = x for all x ∈ G;

(iii) for every x ∈ G, there is some element x−1 ∈ G, called the inverse of x, such that
xx−1 = x−1x = 1.

For a general group, we shall use the notation of Definition 5.1, namely writing the
binary operation as multiplication. In specific examples, we shall use notation appropriate
for the example. One possible alternative choice of notation might be addition x+ y (see,
for example, Example 5.4 below). The three conditions (i)–(iii) appearing in the definition
are often called the “axioms of a group.” As with rings, we shall simply say “G is a group”
to mean that G is a set with a binary operation defined upon it so that the above conditions
hold. Consequently, we often do not distinguish explicitly between a group and the set
upon which the group structure is defined.

As with the multiplication in a ring, note that we have not assumed the binary operation
in a group is commutative. Groups where the operation is commutative are very special
and they are given the following name:

Definition 5.2 Let G be a group. We say that G is abelian1 if

xy = yx for all x, y ∈ G.

An additional piece of terminology that we introduce at this point is the “order” of a
group so that we can use it as we present our first examples.

Definition 5.3 The order of a group G is the number of elements in the group. It is
denoted by |G|.

1This concept is named after the Norwegian mathematician Niels Henrik Abel (1802–1829).
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We begin with some examples that arise immediately from what we have already done.

Example 5.4 (i) Let R be any ring. Then Conditions A1–A4 tell us that if we just use
the addition on R, then the conditions for an abelian group hold. Thus (R,+), the
set R equipped with the addition + as its binary operation, is an abelian group.

(ii) In particular, the set of integers Z is an abelian group under addition. Equally, the
set of rationals Q, the set of real numbers R and the set of complex numbers C are
all groups under addition. These are examples of infinite groups.

(iii) Let m be an integer with m > 1. Theorem 4.7 tells us that Z/mZ = {0, 1, . . . ,m−1}
forms a ring when we use addition and multiplication modulo m. Consequently, this
set together with addition performed modulo m is also an abelian group. It has
order m: |Z/mZ| = m.

In conclusion, any example of a ring gives us an example of an abelian group by simply
forgetting the multiplication. However, there are lots of examples of groups that do not
arise in this way. If we find an example of a group that is not abelian, then we know it does
not come from the addition of a ring. We shall construct our first example using matrices.

Example 5.5 Consider the set of 2 × 2 matrices over the real numbers with non-zero
determinant

GL2(R) =
{(

a b
c d

) ∣∣∣∣ a, b, c, d ∈ R, ad− bc ̸= 0

}
.

Recall that if A =

(
a b
c d

)
is a 2× 2 matrix then

detA = ad− bc.

There are two properties of determinant that we shall use:

• det(AB) = (detA)(detB) for all square matrices A and B of the same size over the
same field, and

• if A =

(
a b
c d

)
has detA ̸= 0, then

A−1 =
1

ad− bc

(
d −b
−c a

)
has the property that

AA−1 = A−1A = I =

(
1 0
0 1

)
.

Now if A,B ∈ GL2(R), then

det(AB) = (detA)(detB) ̸= 0,

so AB ∈ GL2(R). Hence matrix multiplication defines a binary operation on GL2(R).
We now verify the group axioms:

(i) We have already shown that matrix multiplication is associative: We verified Condi-
tion M2 holds in the ring M2(R) in Theorem 1.7. In particular, if A, B and C are
2× 2 matrices over R with non-zero determinant then

(AB)C = A(BC).
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(ii) Consider the 2× 2 identity matrix

I =

(
1 0
0 1

)
.

Note det I = 1, so I ∈ GL2(R). This has the property that, for A =

(
a b
c d

)
,

IA =

(
1 0
0 1

)(
a b
c d

)
=

(
a b
c d

)
= A

and

AI =

(
a b
c d

)(
1 0
0 1

)
=

(
a b
c d

)
= A.

Hence I is an identity for matrix multiplication on GL2(R).

(iii) Let A ∈ GL2(R). Then detA ̸= 0, so we can construct the inverse matrix A−1 that
has the property

AA−1 = A−1A = I.

Note
(detA)(detA−1) = det I = 1,

so detA−1 = 1/detA ̸= 0. This shows that A−1 ∈ GL2(R) and we have shown that
every A ∈ GL2(R) has an inverse.

This shows that GL2(R) is a group.
Moreover (

1 1
0 1

)
,

(
1 0
1 1

)
∈ GL2(R)

(since both have determinant 1) and we have already calculated that(
1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)
̸=
(
1 1
1 2

)
=

(
1 0
1 1

)
,

(
1 1
0 1

)
.

Hence this is an example of a non-abelian group.

Let us place this example in context by making the following definition.

Definition 5.6 Let F be a field and n be a positive integer. We define GLn(F ) to be the
set of all n× n matrices over the field F that have non-zero determinant,

GLn(F ) = {A ∈ Mn(F ) | detA ̸= 0 } ,

together with matrix multiplication as binary operation. We call GLn(F ) the general linear
group of degree n over F .

A very similar argument to Example 5.5 shows that GLn(F ) is a group and that it is
non-abelian if n ⩾ 2. Associativity of the matrix multiplication comes from Theorem 1.7.
The main step remaining in verifying that GLn(F ) is a group is to remember that if A is
an n × n matrix with detA ̸= 0 then A has an inverse. (This does not depend on n = 2:
it just happens to be easier to write down the formula for the inverse when n = 2.)

We showed that we can construct additive groups from a ring. In the case of a field,
we can also construct a group from the multiplication.
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Lemma 5.7 (Multiplicative group of a field) Let F be a field. The set of non-zero
elements in F is an abelian group under the multiplication of F .

We write F ∗ = F \{0} for the non-zero elements of the field F viewed as a group under
multiplication. It is called the multiplicative group of F .

Proof: We attempt to define a binary operation on F ∗ = F \{0} using the multiplication
of the field:

(x, y) 7→ xy.

Suppose xy = 0 for some x, y ∈ F ∗. Multiply by the multiplicative inverse x−1 of x:

y = x−1xy = x−10 = 0.

This contradicts the assumption that x and y are non-zero. Hence xy ̸= 0 for all x, y ∈ F ∗,
so multiplication does define a binary operation on the set of non-zero elements of the
field F .

The multiplication is associative (since F satisfies Condition M2). The multiplicative
identity 1 provided by Condition M3 for a field is the identity element for this binary
operation and Condition M4 guarantees that each element of F ∗ has an inverse under mul-
tiplication. Finally a field is, in particular, a commutative ring and hence F ∗ is abelian. □

In particular, Q∗, R∗ and C∗ are infinite abelian groups under multiplication and, for
each prime p, the set F∗

p of non-zero members of the finite field Fp is an abelian group of
order p− 1.

Cayley tables

One way that we can specify the binary operation in a finite group is via its multiplication
table (also called its Cayley2 table). We used these earlier in Example 4.9.

If G is a finite group, then we construct a table whose rows and columns are labelled
by the elements of G. The entry in row x and column y is the element xy.

Example 5.8 (Trivial Group) Consider the set {1} containing a single element and
with the only possible Cayley table:

1

1 1

This defines a binary operation on the set and it is immediate that this is a group. Asso-
ciativity is merely observed in the equation (11)1 = 1 = 1(11), while 1 is an identity and
its own inverse. This is the trivial group.

In particular, we now have a group of order 1, while Z/mZ as a group under addition
has order m for each m > 1. Hence we have at least one group of each possible finite order.

Example 5.9 (Klein 4-group) Consider the table

e a b c

e e a b c
a a e c b
b b c e a
c c b a e

(5.1)

2Named after the British mathematician Arthur Cayley (1821–1895).
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In fact this defines a group. (It is not automatic that a multiplication table defines a group:
one needs to check whether or not the axioms of a group hold.)

Let G = {e, a, b, c}.

Binary operation: Since only e, a, b and c occur in the table, it is the case that xy ∈ G
for all choices of x and y from G. Hence the table does define a binary operation
on G.

Associativity: This is not easy to check from the table. We would need to check that

(xy)z = x(yz)

for all 43 = 64 choices of x, y and z from G. For example,

(aa)b = eb = b

a(ab) = ac = b.

By a bit of ingenuity one can significantly reduce the number of checks required,
but we shall leave associativity of the multiplication till later. In general, deter-
mining associativity for the multiplication given by an arbitrary Cayley table is not
straightforward. Consequently such tables are not quite so useful as one might hope.

Identity: This can be read off the first row and first column of the table. Observe ee = e,
ea = ae = a, eb = be = b and ec = ce = c. So e is the identity element for the
binary operation in the Table (5.1).

Inverses: We can find inverses by seeking the occurrence of the identity element e in the
entries in the table. Observe ee = e, aa = e, bb = e and cc = e. Hence e−1 = e,
a−1 = a, b−1 = b and c−1 = c are the inverses.

This shows (except for the deferral of verifying associativity) that the Table (5.1) endows
G = {e, a, b, c} with the structure of a group. Note also that xy = yx for all x, y ∈ G
since the (x, y)- and (y, x)-entries are the same in the Table (5.1). Therefore the group
constructed is abelian. This is visibly an example of a group of order 4.

Definition 5.10 The group given in Example 5.9 is called the Klein 4-group. In this set
of lecture notes, it will be denoted by V4 (though many sources denote it by K4).

So V4 = {e, a, b, c} with multiplication as given in Table (5.1). The choice of notation is
split in the literature: many sources use K4 and many use V4, so the lecturer is choosing his
preference. To finish for now our work with this group, we shall illustrate one reasonably
easy way to verify associativity:

Lemma 5.11 The binary operation in the Klein 4-group V4 is associative.

The method of proof here is to observe that the multiplication is essentially the same
as a binary operation that we already know is associative.

Proof: Consider the following 2× 2 matrices over R:

I =

(
1 0
0 1

)
, A =

(
−1 0
0 1

)
, B =

(
1 0
0 −1

)
, C =

(
−1 0
0 −1

)
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We shall construct the multiplication table for these four elements:

I A B C

I I A B C
A A I C B
B B C I A
C C B A I

This has exactly the same shape as the multiplication table for the Klein 4-group (Ta-
ble (5.1)). We know that matrix multiplication is associative, so

(XY )Z = X(Y Z)

for all X,Y ∈ {I, A,B,C}. Hence the multiplication given in the table just given is
associative and so the same must hold for the Table (5.1), which has the same pattern of
entries. Hence we conclude

(xy)z = x(yz) for all x, y, z ∈ V4;

that is, multiplication is associative in V4. □

Non-examples

So far we have encountered several examples of groups and seen how we show a particular
set with given binary operation is indeed a group. One might start to wonder whether
basically everything is a group (in which case it would not be that interesting a concept),
so here we give some examples that are not groups.

Example 5.12 Consider the set of integers Z and consider subtraction as a binary oper-
ation on Z:

(a, b) 7→ a− b.

This is a binary operation on Z because a − b ∈ Z for all integers a and b. However,
subtraction is not associative:

(4− 2)− 1 = 2− 1 = 1

4− (2− 1) = 4− 1 = 3

So (a− b)− c = a− (b− c) is not true for all a, b, c ∈ Z. Hence the set of integers is not a
group under the binary operation of subtraction.

Example 5.13 Let E = { 2a | a ∈ Z } be the set of even integers and consider multiplica-
tion as a binary operation on E. Note that the product of two even integers is still even, so
multiplication is a binary operation on E. In this case, associativity is ok: multiplication
of integers is already known to be associative.

Suppose e ∈ E is an identity for multiplication, so ex = xe = x for all x ∈ E. In
particular,

2e = 2.

Therefore e = 1, which is a contradiction because 1 /∈ E. Hence E is not a group under
multiplication because there is no identity element in E.
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Example 5.14 Consider the set of real numbers R and consider multiplication as a binary
operation on R:

(x, y) 7→ xy

We already know that multiplication is an associative binary operation on R and that 1 is
an identity for this operation:

1x = x1 = x for all x ∈ R.

In this case, the problem is with inverses: the real number 0 has no multiplicative inverse.
Indeed, 0y = y0 = 0 for all y ∈ R, so there is no choice of y such that these products
equal 1. Hence R is not a group under multiplication.

One might raise an objection to the previous example. Perhaps there is another choice
of identity element for which we can find inverses for all elements. This is, however, not
the case. If there is an identity for a binary operation, then it is unique, so there cannot
be such a choice of alternative identity element.

Basic properties of groups

To address what we had just discussed, let us start by observing that identities are unique.

Lemma 5.15 Let ∗ be a binary operation on a set A. If there is an identity for ∗, then it
is unique.

Proof: Suppose that e and f are both identities for ∗. Then they satisfy

ea = ae = a and fa = af = a

for all a ∈ A. In particular, substituting a = f in the first gives

ef = f

and subsituting a = e in the second gives

ef = e.

Hence e = f . This shows that the identity, if it exists, is unique. □

This now completes the justification of Example 5.14. Having shown 1 is an identity
for the multiplication in R, we know it is the only choice of identity and there is therefore
no multiplicative inverse for 0 in the real numbers R.

The following summarizes the basic properties of the various elements appearing in the
definition of a group. They will be used throughout the course.

Theorem 5.16 Let G be a group. Then

(i) the identity element 1 of G is unique;

(ii) the inverse of each element x ∈ G is unique;

(iii) (x−1)−1 = x for all x ∈ G;
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(iv) (xy)−1 = y−1x−1 for all x, y ∈ G. More generally, if x1, x2, . . . , xn ∈ G, then

(x1x2 . . . xn)
−1 = x−1

n . . . x−1
2 x−1

1 .

Proof: (i) This was established (in greater generality) in Lemma 5.15.
(ii) Let x ∈ G and suppose that a, b ∈ G are elements have the property required to be

an inverse for x:
xa = ax = 1 and xb = bx = 1.

We calculate the product axb using two choices of bracketing:

(ax)b = 1b = b

and

a(xb) = a1 = a.

Associativity of the binary operation tells us these products are equal. Hence a = b. This
shows that x has a unique inverse that henceforth we denote by x−1.

(iii) The equations x−1x = xx−1 = 1 tells us that x has the property of being an inverse
for x−1. (It is what we multiply x−1 by in order to produce the identity 1.) Part (ii) tells
us that x must be the unique inverse of x−1:

(x−1)−1 = x.

(iv) Observe

(xy)(y−1x−1) = x(yy−1)x−1 = x1x−1 = xx−1 = 1

and

(y−1x−1)(xy) = y−1(x−1x)y = y−11y = y−1y = 1.

Hence y−1x−1 is an element that has the property of being an inverse for xy. Part (ii) tells
us that it is the unique inverse of xy:

(xy)−1 = y−1x−1. (5.2)

We now prove the formula

(x1x2 . . . xn)
−1 = x−1

n . . . x−1
2 x−1

1

by induction on n. It is trivially true when n = 1: It then merely says x−1
1 = x−1

1 . Suppose
that the formula holds for n− 1:

(x1x2 . . . xn−1)
−1 = x−1

n−1 . . . x
−1
2 x−1

1 .

Take x = x1x2 . . . xn−1 and y = xn in Equation (5.2). We then determine

(x1x2 . . . xn)
−1 = (xy)−1

= y−1x−1 by Equation (5.2)

= x−1
n (x1x2 . . . xn−1)

−1

= x−1
n x−1

n−1 . . . x
−1
2 x−1

1 by the inductive hypothesis.

This establishes the claimed formula by induction. □
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There are two main observations that we can make using the above basic properties,
the first relating to solutions of equations in a group and the second relating to the shape
of group multiplication tables.

Lemma 5.17 (Solution of equations) Let G be a group.

(i) Let a, b, x ∈ G. Then

Right cancellativity: if ax = bx, then a = b;

Left cancellativity: if xa = xb, then a = b.

(ii) Let a, b ∈ G. The equations

ax = b and ya = b

have unique solutions in G, namely x = a−1b and y = ba−1, respectively.

Proof: (i) We verify only right cancellativity in lectures. The proofs are similar, but are
both presented in these notes.

Right cancellativity: Suppose ax = bx. Multiply on the right by x−1:

(ax)x−1 = (bx)x−1

Hence, by associativity,

a(xx−1) = b(xx−1);

that is, by the definition of inverses,

a1 = b1;

so, by the definition of the identity, we conclude

a = b.

Left cancellativity: This is similar. Suppose xa = xb. Multiply on the left by x−1 to
give x−1(xa) = x−1(xb). Hence, by associativity, (x−1x)a = (x−1x)b; that is, 1a = 1b,
which implies a = b.

(ii) Similarly we shall only establish the solution of the second of the equations in
lectures, but both are presented here in these notes.

For the second equation, note that (ba−1)a = b(a−1a) = b1 = b, so y = ba−1 is a
solution of the equation ya = b. Furthermore, if y is any solution of this equation then
ya = b and multiplying on the right by a−1 gives

(ya)a−1 = ba−1

so, by associativity,

y(aa−1) = ba−1;

that is,

y1 = ba−1
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and so

y = ba−1.

Hence y = ba−1 is the unique solution to ya = b.
For the first equation, observe a(a−1b) = (aa−1)b = 1b = b, so x = a−1b is a solution

of ax = b. Conversely, if x is any solution then ax = b, so a−1(ax) = a−1b; that is,
(a−1a)x = a−1b. We deduce 1x = a−1b and hence x = a−1b. This shows that x = a−1b is
the unique solution of the equation ax = b. □

The last part of this lemma illustrates how we manipulate formulae involving elements
of a group. If we have a formula such as

ya = b

then multiplying on the right by a−1 produces

y = ba−1

and has the effect of moving a from the left-hand side of the equation to the right-hand
side.

Corollary 5.18 (Form of Cayley tables) Let G be a group. Then every element of G
occurs precisely once in each row and precisely once in each column of the Cayley table
of G.

Proof: In lectures, we shall just show that each element occurs precisely once in each
row. The arguments are similar and that for columns is given in these notes.

Fix an element g ∈ G. Then g occurs in row a of the Cayley table (that is, the row
labelled with the element a) when there exists some x ∈ G satisfying

ax = g.

Lemma 5.17(ii) tells us this equation has a unique solution, namely x = a−1g. Hence
g occurs precisely once in row a namely in the (a, a−1g)-entry of the table.

Similarly, g occurs in column b of the Cayley table when there exists x satisfying xb = g.
Lemma 5.17(ii) says this equation has a unique solution, namely x = gb−1. We conclude
that g occurs precisely once in column b namely in the (gb−1, b)-entry. □

Powers of elements

The axioms of a group enable us to define what we mean by powers of its elements:

Definition 5.19 Let G be a group, x be an element of G and n be any integer. We define
the power xn as follows:

(i) xn is the product xx . . . x of n copies of the element x if n is a positive integer;

(ii) x0 = 1, the identity element of G;

(iii) xn is the product x−1x−1 . . . x−1 of |n| copies of the inverse of x if n is negative.
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We are using the fact that the binary operation in the group is associative when making
this definition. This means that the product xx . . . x of n copies of x is uniquely defined
and it does not depend upon choice of bracketing. With the above definition, the standard
properties of powers all hold in a group:

Theorem 5.20 (Power Laws) Let G be a group, x be an element of G and m and n be
integers. Then

xmxn = xm+n and (xm)n = xmn.

We omit the proof. When m and n are positive integers, the formulae are actually
quite easy to establish. For example,

xmxn = xx . . . x︸ ︷︷ ︸
m times

xx . . . x︸ ︷︷ ︸
n times

= xm+n

since this is a product of m + n copies of x. To prove Theorem 5.20 in general needs a
detailed case analysis of when m, n and m+ n are positive or negative. This is relatively
complicated, though each step within it is straightforward. It is for this reason that we
choose to omit the proof.

Use of additive notation

In some situations it is appropriate to use addition (+) to denote the binary operation
on a group. For example, in the case of the integers under addition, or more generally
the additive group of any ring, it would be confusing to use another notation to denote
the operation and so we will use addition at that point. To maintain consistency, when
addition is used for the binary operation on a group we shall also use the following:

• the identity element will be written as 0,

• the inverse of an element x will be written as −x,

• instead of using powers, we shall write nx for x+ x+ · · ·+ x (n times) when n > 0
and a similar adjustment using multiples instead of powers when n ⩽ 0.

The power laws then become

mx+ nx = (m+ n)x and m(nx) = (mn)x

for m,n ∈ Z and x an element in an additively written group.
Finally, it should be noted that addition is usually only used for certain abelian groups,

namely those for which the binary operation is normally written as +.
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Permutations and Symmetric Groups

In this chapter, we shall present one of the most important examples of a group. It is much
closer to being a typical example than those met in the previous chapter (for a start, this
type of group is generally not abelian) and it also occurs throughout the study of groups.
The elements of a symmetric group are special types of functions. Consequently we begin
by discussing some properties of functions.

Functions

Notation: In this module we shall follow a common practice in algebra of writing func-
tions on the right. If f : X → Y is a function from a setX to a set Y , instead of writing f(x)
for the image of x ∈ X under f (as is usual elsewhere in mathematics) we shall write

xf

for the image of x under f .

Definition 6.1 Let f : X → Y and g : Y → Z be functions from X to Y and from Y to Z
(respectively). The composite of f and g is the function fg : X → Z defined by

x fg = (xf)g for each x ∈ X.

Thus fg is the function that results from first applying f and then applying g. The
definition of the composite indicates what we gain by our convention of writing functions
on the right: fg means first apply f and then apply g, and the multiple composite

f1f2 . . . fn

means first apply the function f1, then apply f2, then f3, etc. This contrasts with the
convention of writing functions on the left where

f1 ◦ f2 ◦ · · · ◦ fn

would mean first apply fn, then fn−1, etc. Consequently, the advantage of choosing to write
function on the right is that we can read the composite of a collection of functions from left
to right rather than in reverse. This will make various calculations more straightforward
in what follows.

To describe the elements of symmetric groups, we need the following terminology. This
is used throughout mathematics and students are recommended to become very familiar
with these terms.
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Definition 6.2 Let f : X → Y be a function.

(i) We say that f is injective (or one-one) if, for any x, y ∈ X,

xf = yf implies x = y.

(ii) We say that f is surjective (or onto) if for every y ∈ Y there exists some x ∈ X with
xf = y.

(iii) We say that f is bijective (or invertible) if it is both injective and surjective.

Thus, f : X → Y being injective means that distinct elements of X are mapped to
distinct elements of Y ; that is, if x1, x2 ∈ X then

x1 ̸= x2 implies x1f ̸= x2f.

In the case of f being surjective this states that every element of Y is the image of some
element of X under f . Putting these together, we see that if f is bijective then this means
that every element of Y is the image of some element of X and, moreover, this element
of X is unique.

We shall, in a moment, explain why “invertible” is an alternative name for bijective
functions, but first we illustrate these concepts with a few examples.

Example 6.3 (i) Recall that Z/2Z is the ring of congruence classes modulo 2, so con-
sists of two elements 0 and 1. Define a function f : Z → Z/2Z by

xf =

{
0 if x is even,
1 if x is odd.

This function f is surjective because there are elements mapping to both elements
of Z/2Z; indeed, 0f = 0 and 1f = 1. It is not injective because, for example,
2f = 0f = 0.

(ii) Define a function g : Z → Z by

xg = 2x for each x ∈ Z.

We shall first observe that g is injective. Indeed, let x, y ∈ Z and suppose xg = yg.
This means that 2x = 2y which forces x = y (by dividing by 2).

This function g is not surjective: there does not exist any x ∈ Z such that xg = 1.

(iii) The function h : Z → Z defined by xh = −x for each x ∈ Z is bijective.

Indeed, if xh = yh, then −x = −y and negating gives x = y, so h is injective. If
y ∈ Z is arbitrary, then (−y)h = −(−y) = y, so h is surjective.

(iv) Finally, note that whether or not a function is injective or surjective depends on the
choice of domain as well as the formula that defines it. For example, consider the
function f1 : Z → Z given by

xf1 = x+ 1.

This is surjective, for if y ∈ Z is arbitrary, then (y − 1)f1 = (y − 1) + 1 = y.

On the other hand, if f2 : N → N (where N = {1, 2, . . . }) is defined by the same
formula

xf2 = x+ 1,

then this function is not surjective. There does not exist any x ∈ N with xf2 = 1.
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Theorem 6.4 Let f : X → Y be a function. Then f is bijective if and only if there is a
function f−1 : Y → X such that

ff−1 = idX and f−1f = idY

(the identity maps on X and Y , respectively).

The function f−1 appearing in this theorem is called the inverse of f . The theorem
justifies the use of the term “invertible”: a function f is invertible if and only if it has an
inverse.

Proof: Suppose that f is bijective. If y ∈ Y , there exists some element x = xy in X such
that xf = y. Moreover, this x is unique because f is injective. Define f−1 : Y → X by
yf−1 = x; that is, f−1 maps each y ∈ Y to the unique choice of x ∈ X with xf = y. Then

yf−1f = xf = y,

so f−1f = idY (that is, this composition is given by y 7→ y).
If x ∈ X, then set y = xf . Then the unique element of X that maps to this y is x, so

yf−1 = x according to the above definition of f−1. Hence

xff−1 = yf−1 = x.

Hence ff−1 = idX . We have verified that this function f−1 satisfies the required equations.
Conversely, suppose such a function f−1 exists. Let x1, x2 ∈ X and suppose x1f = x2f .

Apply f−1 to both sides of this equation:

x1ff
−1 = x2ff

−1;

that is,
x1 = x2

since ff−1 is the identity map on X. Hence f is injective. Now let y ∈ Y . Define
x = yf−1 ∈ X. Then

xf = yf−1f = y

(since f−1f is the identity map on Y ). Hence f is surjective. This shows that if f has an
inverse, then it is bijective. □

Symmetric groups

Now that the word “inverse” has arisen, we can introduce the groups that we are interested
in here.

Definition 6.5 Let X be a set.

(i) A permutation of X is any bijective function σ : X → X.

(ii) The symmetric group on X, denoted Sym(X), is the set of all permutations of X
with composition as the binary operation.

So the elements of the symmetric group Sym(X) are the invertible functions from X to
itself and if σ and τ are elements of Sym(X), their “product” is the composite στ defined
as in Definition 6.1. We should start by verifying that we do indeed have a group:
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Theorem 6.6 Let X be a set. Then the symmetric group Sym(X) is a group.

Proof: The first thing we need to do is verify that composition does define a binary
operation; that is, show that if σ and τ are permutations of X, then so is the composite.

Let σ, τ ∈ Sym(X). The composite στ is a function X → X. Let x, y ∈ X and suppose
that xστ = yστ ; that is,

(xσ)τ = (yσ)τ.

Hence we deduce

xσ = yσ,

since τ is injective, and then

x = y

since σ is injective. This shows that στ is injective.
Now let y ∈ X be arbitrary. Since τ is surjective, there exists z ∈ X with zτ = y.

Then as σ is surjective, there exists x ∈ X with xσ = z. Then

xστ = zτ = y.

This shows that στ is surjective. In conclusion, if σ and τ are bijective, then so is στ .
Hence composition does define a binary operation on Sym(X).

We now need to verify the axioms of a group.

Associativity: Let ρ, σ and τ be permutations of X. We shall show that (ρσ)τ = ρ(στ)
by showing that they have the same effect on any x ∈ X. Indeed

x
(
(ρσ)τ

)
=
(
x(ρσ)

)
τ =

(
(xρ)σ

)
τ

and

x
(
ρ(στ)

)
= (xρ)(στ) =

(
(xρ)σ

)
τ ;

that is, both choices of bracketing produce functions that mean first apply ρ, then σ, and
then τ . Hence

(ρσ)τ = ρ(στ) for all ρ, σ, τ ∈ Sym(X).

This shows that composition is an associative binary operation on Sym(X).

Identity: Let us write ε for the identity map X → X; that is,

xε = x for all x ∈ X.

Then ε is a bijective map (easy checks!). Indeed, εε = ε (= idX), so even Theorem 6.4
says ε is bijective with inverse equal to itself. This is the identity element in Sym(X): if
σ ∈ Sym(X) then, for any x ∈ X,

x(εσ) = (xε)σ = xσ

and

x(σε) = (xσ)ε = xσ.

So εσ = σε = σ for all σ ∈ Sym(X), as required.
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Inverses: We use Theorem 6.4. If σ ∈ Sym(X), then there is an inverse σ−1 : X → X
with the property that

σσ−1 = σ−1σ = ε.

This formula also tells us that σ−1 ∈ Sym(X) (that is, is bijective) since it is invertible
with σ as its inverse. (Alternatively, it is not too hard to check that if σ is bijective with
inverse σ−1, then σ−1 is also bijective.)

In conclusion, Sym(X) is a group with respect to the binary operation of composition. □

If one looks carefully at the proof of the above theorem, one will see that the following
observations hold:

Proposition 6.7 Let f : W → X, g : X → Y and h : Y → Z be functions. Then

(i) (fg)h = f(gh);

(ii) if f and g are injective, then the composite fg is injective;

(iii) if f and g are surjective, then the composite fg is surjective. □

Here we are simply noting that (i) verifying that composition is associative in Theo-
rem 6.6 did not depend upon the functions being bijective, (ii) verifying that the composite
of two injective functions is injective does not depend upon surjectivity, and (iii) similarly
for surjectivity.

Symmetric groups of finite degree

The set X appearing in Theorem 6.6 can be anything that suits. For example, we could
consider Sym(N) or Sym(R), both of which are rather complicated groups. In this module,
we shall concentrate our effort on the case when X is finite. This leads us to make the
following definition.

Definition 6.8 Let n be a positive integer and take X = {1, 2, . . . , n} (a set with n el-
ements). We shall write Sn for the symmetric group Sym(X) and call it the symmetric
group of degree n.

The integer n will be fixed and we shall write X = {1, 2, . . . , n} throughout the rest
of the chapter. If σ ∈ Sn, that is, σ is a permutation of X (a bijection X → X), we
sometimes use two-row notation to denote σ. In this notation, we write

σ =

(
1 2 3 . . . n
1σ 2σ 3σ . . . nσ

)
where we write the numbers 1, 2, . . . , n in the first row and then, in the second row, we
write the image kσ of k under the function σ beneath the value k. Thus(

1 2 3 4
2 4 3 1

)
denotes the permutation of {1, 2, 3, 4} which maps 1 to 2, 2 to 4, 3 to 3 and finally 4 to 1.

Theorem 6.9 Let n be a positive integer. The symmetric group Sn of degree n is a group
of order n!.
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Proof: The fact that Sn is a group follows immediately from Theorem 6.6. (It is just a
special case of that theorem when we take X = {1, 2, . . . , n}.) Consider a function X → X
written in two-row notation:

σ =

(
1 2 3 . . . n
1σ 2σ 3σ . . . nσ

)
Now this σ is a bijection precisely when the values 1σ, 2σ, . . . , nσ are distinct and include
all values from X. Provide we do list all the n elements from X in the second row, we do
define a permutation of X. We could choose 1σ to be any element of X (and so there are
n choices). Then having made this first choice, we can choose 2σ to be any element of X
except the value 1σ (and so there are n− 1 choices). Similarly there are then n− 2 choices
for 3σ, and so on. In conclusion, the number of different permutations in Sn is

n(n− 1)(n− 2) · · · 2 · 1;

that is,
|Sn| = n!. □

We can calculate the composite of two permutations σ and τ using the two-row notation.
For example, to perform the following calculation of the composite of two permutations(

1 2 3 4 5
5 2 4 1 3

)(
1 2 3 4 5
3 5 2 4 1

)
= ?

all we need to do is calculate the effect of applying the first permutation to an element x
from X and then apply the second. (Recall that στ means first apply σ then apply τ
because we are writing functions on the right.) In the above case, the first permutation
maps 1 7→ 5 and then the second maps 5 7→ 1. The composite has the effect of doing the
first and then the second, so results in 1 7→ 1. Thus, the entry below 1 in the composite is
also 1. We can calculate the effect of the composite on the other points in X as follows:

2 7→ 2 7→ 5, 3 7→ 4 7→ 4, 4 7→ 1 7→ 3, 5 7→ 3 7→ 2

Hence (
1 2 3 4 5
5 2 4 1 3

)(
1 2 3 4 5
3 5 2 4 1

)
=

(
1 2 3 4 5
1 5 4 3 2

)
.

Note that this composite is a permutation of X = {1, 2, 3, 4, 5}: the entries in the second
row are the elements of X, each occurring precisely once. This is totally unsurprising:
In the proof of Theorem 6.6 we showed that the composite of two permutations is again
another permutation and the above calculation is just a special case of that general fact.

Let us also calculate the composite of the above two permutations but in the reverse
order: (

1 2 3 4 5
3 5 2 4 1

)(
1 2 3 4 5
5 2 4 1 3

)
=

(
1 2 3 4 5
4 3 2 1 5

)
(since the effect of the product is 1 7→ 3 7→ 4, 2 7→ 5 7→ 3, 3 7→ 2 7→ 2, 4 7→ 4 7→ 1 and
5 7→ 1 7→ 5). Note that this is a different permutation to the one calculated above. Our
calculations therefore show that for these two permutations σ and τ :

στ ̸= τσ

These are two permutations from the symmetric group S5 of degree 5 and we have observed
that they do not commute. Hence S5 is a non-abelian group. In fact, this observation can
be made more generally:
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Theorem 6.10 Let n be a positive integer. Then Sn is abelian if and only if n = 1 or 2.

Proof: The verification that Sn is abelian when n = 1 or 2 is left as an exercise on the
problem sheet.

Suppose that n ⩾ 3. Consider the following two permutations from Sn:

σ =

(
1 2 3 4 . . . n
2 1 3 4 . . . n

)
and τ =

(
1 2 3 4 . . . n
1 3 2 4 . . . n

)
Note in particular that kσ = kτ = k for k ⩾ 4 and consequently kστ = kτσ = k for such k.
We calculate the effect of the products on the points 1, 2 and 3 directly:

στ =

(
1 2 3 4 . . . n
3 1 2 4 . . . n

)
τσ =

(
1 2 3 4 . . . n
2 3 1 4 . . . n

)
Hence στ ̸= τσ which is enough to show that Sn is non-abelian. □

Cycle notation

Although the two-row notation is relatively straightforward to understand, it is rather
inefficient and it is difficult to obtain insight into the actual behaviour of permutations
from it. If we were to list all 4! = 24 elements of S4 in two-row notation, then they would
look pretty much the same and we would get little understanding. It would be nice to
have a more useful way to denote permutations that gives us a bit more information. For
example, the permutation (

1 2 3 4
4 2 3 1

)
fixes 2 and 3 (that is, maps each back to themself) and swaps 1 and 4. We would like a
more efficient way to describe this element that makes this more transparent. The solution
is to use what is called cycle notation.

Definition 6.11 (i) Let i1, i2, . . . , ir be r distinct elements from X = {1, 2, . . . , n} (so
1 ⩽ r ⩽ n). The r-cycle (i1 i2 . . . ir) is the permutation in Sn which maps

i1 7→ i2, i2 7→ i3, . . . , ir−1 7→ ir, ir 7→ i1

and which fixes all other points in X. We also say that an r-cycle is a cycle of
length r.

(ii) Two cycles (i1 i2 . . . ir) and (j1 j2 . . . js) from Sn are called disjoint if the sets of
points involved are disjoint:

{i1, i2, . . . , ir} ∩ {j1, j2, . . . , js} = ∅

(iii) The term transposition is used for a cycle of length 2; that is, a permutation of the
form (i j) for some distinct pair of points i, j ∈ X.

This last term, the special name used for 2-cycle, refers to the behaviour that a tran-
position (i j) “transposes” the values i and j while fixing all other points in the set
X = {1, 2, . . . , n}.
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Example 6.12 (i) In the symmetric group S5 of degree 5:

(2 4 5) =

(
1 2 3 4 5
1 4 3 5 2

)
(ii) Consider the following element of the symmetric group S8 of degree 8:

σ =

(
1 2 3 4 5 6 7 8
3 1 6 4 7 2 5 8

)
We can see that

1σ = 3, 3σ = 6, 6σ = 2, 2σ = 1

while

5σ = 7, 7σ = 5

and

4σ = 4, 8σ = 8.

This means that σ has the effect of moving the elements of X = {1, 2, . . . , 8} in the
same way as the product of four cycles

(1 3 6 2) (4) (5 7) (8);

that is,
σ = (1 3 6 2) (4) (5 7) (8).

This expresses σ as a product of four disjoint cycles. To justify this equation — that
“equals” is the appropriate notation — we observe that the product of the cycles
appearing on the right-hand side has the same effect on each point of X as σ does.
Hence these functions are the same.

(iii) If k ∈ X = {1, 2, . . . , n}, then the 1-cycle (k) has the effect of mapping k to itself
and mapping all other elements of X also to themselves; that is, (k) = ε = idX (the
identity element from Sn). This means that all 1-cycles equal the identity.

As a consequence, the calculation in (ii) can be simplified:

σ = (1 3 6 2) (5 7)

expressing σ ∈ S8 as a product of two disjoint cycles.

Another notation that many authors use is to write ( ) for the identity element. This
fits well with the cycle notation described above.

Lemma 6.13 Disjoint cycles commute; that is, if σ and τ are disjoint cycles in Sn then
στ = τσ.

Proof: Write σ = (i1 i2 . . . ir) and τ = (j1 j2 . . . js). Assume that σ and τ are disjoint:

{i1, i2, . . . , ir} ∩ {j1, j2, . . . , js} = ∅

Let x ∈ X = {1, 2, . . . , n}. There are three possibilities (since the cycles are disjoint) and
we consider them in turn:
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x = ik for some k: Then xσ = ik+1 (or i1 if k = r), so both x and xσ are fixed by τ .
Hence xστ = xσ and xτσ = xσ.

x = jk for some k: Then xτ is also in {j1, j2, . . . , js}, so x and xτ are fixed by σ. Hence
xστ = xτ = xτσ.

x is not in either cycle: Then x is fixed by both σ and τ , so xστ = xτ = x and
xτσ = xσ = x.

In conclusion, xστ = xτσ for all x ∈ X. This shows στ = τσ, as required. □

Theorem 6.14 Let n be a positive integer. Every permutation from Sn can be written
as a product of disjoint cycles.

Proof: Let σ ∈ Sn. Our first task is to construct the cycles that comprise σ. Define a
relation ∼ on the set X = {1, 2, . . . , n} by the rule that

x ∼ y when y = xσk for some k ∈ Z.

Thus, x is related to y when applying one of the permutations from the list

. . . , σ−2, σ−1, ε, σ, σ2, σ3, . . .

moves x to y. (Recall the convention that σ0 is the identity map ε = ( ).)

Claim: ∼ is an equivalence relation on X.

We verify the three conditions required of an equivalence relation.
(R) Let x ∈ X. Then xσ0 = xε = x by definition of the identity map, so x ∼ x. Hence

∼ is reflexive.
(S) Suppose x, y ∈ X satisfy x ∼ y. Therefore there exists some k ∈ Z such that

y = xσk. Apply σ−k, which is the inverse of σk: This yields x = yσ−k and therefore y ∼ x.
Hence ∼ is symmetric.

(T) Suppose x, y, z ∈ X satisfy x ∼ y and y ∼ z. Therefore there exist j, k ∈ Z such
that y = xσj and z = yσk. Then xσj+k = (xσj)σk = yσk = z, which shows that x ∼ z.
Hence ∼ is transitive.

Since ∼ is an equivalence relation, it now follows that X is the disjoint union of its
equivalence classes. Suppose

X = C1 ∪ C2 ∪ · · · ∪ Cm

is the expression of X as this disjoint union. Consider one of these equivalence classes Ci

(where 1 ⩽ i ⩽ m) and pick some element xi ∈ Ci. Consider the list of images of xi under
non-negative powers of σ:

xi, xiσ, xiσ
2, xiσ

3, . . . (6.1)

As our set X is finite, there must exist a smallest value r such that xiσr is a repeat of one
of the earlier values in the list. Suppose that

xiσ
r = xiσ

s

where 0 ⩽ s < r. Applying σ−s yields xiσr−s = xi. The fact that r is chosen to be the
smallest value indexing a repeat in the list (6.1) forces r − s = r and hence s = 0. Thus

xiσ
r = xi. (6.2)
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Claim: Ci = {xi, xiσ, xiσ2, . . . , xiσr−1}.

Let y ∈ Ci. Then y ∼ xi and so there exists k ∈ Z such that y = xσk. If we divide k
by r, we obtain a quotient and a remainder: k = qr + t where 0 ⩽ t < r. Then

y = xiσ
k = xi(σ

r)qσt = xiσ
t

by repeated use of the fact that xiσr = xi (which also implies xi(σr)−1 = xi by applying
the inverse). Hence y ∈ {xi, xiσ, xiσ2, . . . , xiσr−1}.

Conversely, each element of the form xiσ
j is related to xi under ∼ by definition of the

relation, so certainly belongs to Ci.

Now write ri instead of r for the value appearing in the above argument. This means
that for each i, this is the value such that

Ci = {xi, xiσ, xiσ2, . . . , xiσri−1}.

Now define

τ =

m∏
i=1

(xi xiσ xiσ
2 . . . xiσ

ri−1),

the product in order of the cycles obtained by taking the elements in the equivalence
class Ci together in each cycle for i = 1, 2, . . . , m. Note that the ith cycle contains
the elements from Ci and hence the permutation τ is a product of disjoint cycles because
Ci ∩ Cj = ∅ when i ̸= j.

Claim: σ = τ .

We prove these permutations are equal by showing that they have the same effect on
an element x ∈ X. Now since X is the union of the equivalence classes of ∼, we know
x ∈ Ci for some i and hence x = xiσ

t where 0 ⩽ t < ri. Now if t < ri − 1, then

xσ = (xiσ
t)σ = xiσ

t+1,

while if t = ri − 1, then
xσ = (xiσ

ri−1)σ = xiσ
ri = xi

(by Equation (6.2)).
In the case of the permutation τ , the cycles indexed by j, for j ̸= i, fix all the points

in Ci (since these cycles are disjoint). Hence the first i − 1 cycles comprising τ fix the
element x, the ith cycle then moves x in the same way as σ does (as just calculated), and
the remaining cycles comprising τ then fix this image. Thus

xτ = xσ.

This shows τ = σ. In conclusion, σ is indeed a product of disjoint cycles. □

Uniqueness of the decomposition: There are several obvious rearrangements that we
can perform to the decomposition into cycles that Theorem 6.14 provides. Firstly since
disjoint cycles commute (Lemma 6.13), we can rearrange the individual cycles within the
product. Secondly, if

τ = (i1 i2 i3 . . . ir)
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is one of the cycles that appears, we could start the cycle at any of its entries:

τ = (ik ik+1 . . . ir i1 . . . ik−1)

for all choices of k. (This rearrangement still produces a cycle that maps each im to the
next one.) Finally, any cycle of length 1 equals the identity and so it can be omitted from
the product.

In fact, the decomposition of a permutation σ into disjoint cycles is unique up to the
above possible changes. The method of proof is close to our proof of Theorem 6.14. One
should observe that the equivalence classes Ci appearing in the proof are determined by the
decomposition of σ into the disjoint cycles. The changes listed above arise by (i) changing
the numbering of the equivalence classes Ci, (ii) changing the choice of element xi from Ci,
and (iii) not including a cycle when |Ci| = 1. As the Ci are specified by the permutation σ,
it will follow (with a bit more work) that the decomposition into cycles is essentially unique.

Example 6.15 In this example, we shall express two permutations in S8 as products of
cycles and then in the third step show how multiplication (that is, composition) of these
two permutations can be calculated in terms of the cycle decomposition.

(i)

σ =

(
1 2 3 4 5 6 7 8
1 5 6 8 3 2 4 7

)
= (1) (2 5 3 6) (4 8 7)

= (2 5 3 6) (4 8 7)

(ii)

τ =

(
1 2 3 4 5 6 7 8
5 6 1 8 4 3 7 2

)
= (1 5 4 8 2 6 3) (7)

= (1 5 4 8 2 6 3)

(iii) We now calculate the product of σ and τ using the cycle notation by simply following
the image of each element of X = {1, 2, . . . , 8} in the product:

στ = (2 5 3 6) (4 8 7) (1 5 4 8 2 6 3)

= (1 5) (2 4) (3) (4) (6) (7 8)

= (1 5) (2 4) (7 8)

(iv) Observe
(1 2) (1 3) . . . (1 n) = (1 2 . . . n).

This is established by checking where each x ∈ {1, 2, . . . , n} is mapped to under the
product on the left-hand side. Indeed, the same argument then shows

(i1 i2) (i1 i3) . . . (i1 ir) = (i1 i2 . . . ir)

for any distinct i1, i2, . . . , ir ∈ X. This shows that every cycle can be expressed as a
product of transpositions.
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Theorem 6.16 Let n be a positive integer. Every permutation from Sn can be written
as a product of some transpositions.

Proof: Let σ ∈ Sn. By Theorem 6.14, σ = σ1σ2 . . . σm as a product of (disjoint) cycles.
Now use the calculation in Example 6.15(iv) to write each σi as a product of transposition.
Putting this together shows that σ is a product of transpositions. □

There are quite a few variations on this theme. We have already observed that every
permutation can be expressed as a product of cycles (Theorem 6.14) and also as a product
of transpositions (Theorem 6.16). The following are examples of these types of result:

Theorem 6.17 Let n be a positive integer. Every permutation from Sn can be written
as a product involving the transpositions (1 2), (2 3), . . . , (n−1 n).

Proof: In view of Theorem 6.16, it is sufficient to show that every transposition can
expressed as a product involving only transpositions from the set

A = {(1 2), (2 3), . . . , (n−1 n)}.

Accordingly, we shall establish the following claim:

Claim: The transposition (i i+k) can be expressed as a product of transpositions in A.

We prove this claim by induction on k. When k = 1, there is nothing to do since
(i i+1) ∈ A. Assume the result holds for some value k. Observe that, since the points i,
i+ k and i+ k + 1 are distinct, by direct calculation

(i+k i+k+1) (i i+k) (i+k i+k+1) = (i i+k+1).

Substituting the product involving transpositions from A that equals (i i+k) into the
left-hand side now yields the required formula for the next term (i i+k+1). Hence the
claim holds by induction.

In conclusion, every transposition (i j) can be expressed as a product involving only
those in A and this therefore also extends to every permutation in Sn using Theorem 6.16. □

Theorem 6.18 Let n be a positive integer. Every permutation from Sn can be written
as a product involving only the transposition (1 2) and the n-cycle (1 2 . . . n).

Proof: Observe that

(1 2 . . . n)−1 (i i+1) (1 2 . . . n) = (i+1 i+2) (6.3)

by direct calculation. First apply the left-hand side of (6.3) to i+ 1:

(i+ 1) (1 2 . . . n)−1 (i i+1) (1 2 . . . n) = i (i i+1) (1 2 . . . n)

= (i+ 1) (1 2 . . . n) = i+ 2

and similarly the product on the left-hand side of (6.3) moves i+2 to i+1. If k ̸= i+1, i+2,
then a similar argument shows the product fixes k. Hence the formula (6.3) holds.

Repeated application of this calculation shows that every transposition of the form
(i i+1) can be expressed as a product involving only (1 2) and (1 2 . . . n). Now using
Theorem 6.17 shows that we can build every permutation using these two transpositions. □
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Isometries

In Theorem 6.6, we showed that the set of all permutations of a set X forms a group
under composition. This, together with Proposition 6.7(i) (which says that composition
is always an associative operation), starts to indicate why groups are important objects
in mathematics. If, instead of just taking a set, X is any mathematical structure (say,
a polyhedron, or a vector space, or a ring, or a geometrical space, etc.) then the set of
bijective maps from X to itself that preserve the structure usually forms a group with
composition as the binary operation. There is still work to be done here to verify this
assertion, but associativity will follow from Proposition 6.7(i). The group concerned will
consist of some of the permutations of the setX (since we are dealing with certain bijections
X → X) and so occurs as a subset of the group Sym(X). Indeed, this actually provides
an example of what is called a subgroup, which is something that we will discuss later in
Chapter 8.

Consequently, groups arise throughout mathematics as the “symmetries” of other math-
ematical objects and the theory we develop in this module (and those that follow) is of
significance beyond algebra. In this chapter of the notes, we give examples of how groups
arise in certain geometrical settings.

Isometries of the plane and of subsets of the plane

Consider distance between points in the real plane R2. If v1 = (x1, y1) and v2 = (x2, y2),
then the distance between the two points is given by

|v1 − v2| =
√

(x2 − x1)2 − (y2 − y1)2.

In this chapter, we consider bijective functions R2 → R2 that preserve this distance.
Accordingly, we make the following definitions:

Definition 7.1 (i) An isometry of the real plane R2 is a bijective function f : R2 → R2

such that
|v1f − v2f | = |v1 − v2| for all v1,v2 ∈ R2.

(ii) The isometry group Isom(R2) is the collection of all isometries of R2 with composition
as binary operation.

Thus an isometry of R2 is an invertible map f with the property that the distance
between two points is always unchanged when we apply f . They are often also called
symmetries, but we choose not to use that term so as not to confuse with the terminology
used to refer to the symmetric group.

61



Chapter 7. Isometries

Example 7.2 The following are examples of isometries of the plane R2:

(i) a translation fa given, for fixed vector a, by v 7→ v + a;

(ii) a rotation about a given point by a given angle;

(iii) a reflection in a given line.

Theorem 7.3 (i) The set of isometries Isom(R2) of the plane is a group under compo-
sition.

(ii) Every isometry of R2 is one of: a translation, a rotation, a reflection, or the product
of a translation and a reflection.

The term glide-reflection is sometimes used for the composite of a translation and a
reflection.

We shall not present the proof of Theorem 7.3 in this course. To complete the proof
of (i), the following steps should be followed:

• Show that the composite of two isometries is again an isometry. Hence composition
is a binary operation on Isom(R2).

• Use Proposition 6.7(i) to conclude that composition is associative as a binary oper-
ation on Isom(R2).

• Observe that the identity map is certainly an isometry on R2.

• Show that if f is an isometry, then its inverse (which exists since by assumption f is
a bijection) is also an isometry.

These steps are not very difficult. The required arguments make explicit use of the def-
inition of an isometry (Definition 7.1). Part (ii) of the theorem, however, requires more
effort.

We can see that Isom(R2) is a rather large group. There are infinitely many choices of
translations, or rotations, or reflections. We can produce smaller groups that are easier to
describe by focusing on isometries that preserve a figure in the plane.

Definition 7.4 Let X be a figure in the plane. The set of isometries of R2 that map X to
itself is called the group of isometries of X and we shall denote it similarly by Isom(X):

Isom(X) =
{
f ∈ Isom(R2)

∣∣ Xf = X
}

Similarly to Theorem 7.3, one can check that the group of isometries of the figure X
is also a group. This is, however, most easily verified using the concept of a “subgroup,”
which is introduced in the next chapter. Accordingly, we leave the verification that the
group of isometries of X is a group to Problem Sheet VIII.

We shall illustrate various groups that arise in this form.

Example 7.5 Let T be an equilateral triangle (as shown in Figure 7.1). There are six
isometries of T :

Reflections: σa, σb and σc in the lines a, b and c, respectively;

62



Chapter 7. Isometries

A

B C

a

b
c

ρ2π/3

ρ4π/3

Figure 7.1: Isometries of an equilateral triangle

Rotations: ρ2π/3 and ρ4π/3 about the centre anticlockwise through angles of 2π/3 and
4π/3 radians (that is, 120◦ and 240◦), respectively;

Identity: the identity map 1.

It is a straightforward set of calculations to determine the Cayley table for the isometry
group of T :

1 ρ2π/3 ρ4π/3 σa σb σc
1 1 ρ2π/3 ρ4π/3 σa σb σc

ρ2π/3 ρ2π/3 ρ4π/3 1 σb σc σa

ρ4π/3 ρ4π/3 1 ρ2π/3 σc σa σb

σa σa σc σb 1 ρ4π/3 ρ2π/3
σb σb σa σc ρ2π/3 1 ρ4π/3
σc σc σb σa ρ4π/3 ρ2π/3 1

This calculation can be performed by keeping track of the images of the vertices A, B
and C when we apply one of these isometries followed by another. It can be abbreviated
by (i) recalling the defining property of the identity, (ii) observing that each reflection
squares to the identity, and (iii) using the fact that each element of the group occurs once
in each row and once in each column.

Example 7.6 An isoceles triangle has only two isometries: the identity transformation 1
and the reflection σ in the perpendicular bisector of the base of the triangle (see Figure 7.2).
The Cayley table for group of isometries of the isosceles triangle is easy to compute:

1 σ

1 1 σ
σ σ 1

Example 7.7 A scalene triangle (one where all the sides have different lengths) has only
one isometry: the identity function 1. The isometry group of a scalene triangle has order 1
and is trivial.
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σ

Figure 7.2: Isometries of an isoceles triangle

Example 7.8 There are infinitely many isometries of a circle: all the rotations about the
centre of the circle (through any angle) and all the reflections about lines that pass through
the centre of the circle.

Dihedral groups

We will now discuss an important example of the isometry group of a figure in the plane.

Definition 7.9 (Dihedral group) Let n be an integer satisfying n ⩾ 3. The dihedral
group D2n of order 2n is the isometry group of a regular polygon with n sides.

In particular, when n = 3, this definition defines the dihedral group D6 to be the isom-
etry group of an equilateral triangle T . Consequently, this group is the one we considered
in Example 7.5 and which we observed is indeed a group of order 6.

Notational comment: The choice of notation for dihedral groups is not consistent in
the literature. Some authors write Dn for the isometry group of a regular polygon with
n sides (and so these authors are viewing the subscript as indicating the value of the
parameter). Other authors use D2n, as these lecture notes do, and so use the subscript to
refer to the order of the group constructed.

The definition refers to the dihedral group D2n (consisting of the isometries of the
regular polygon with n sides) as having order 2n. We should verify that this is indeed the
case.

Theorem 7.10 Let n be an integer with n ⩾ 3. The regular polygon with n sides has
precisely 2n isometries:

(i) Rotations: the identity and n− 1 non-identity rotations about the centre;

(ii) Reflections: n reflections in axes through the centre.
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A1

A2

A3

An

Figure 7.3: Labelling the vertices of a regular polygon

Furthermore, if ρ denotes an anticlockwise rotation through an angle 2π/n and σ denotes
any of the reflections, then the elements of D2n are

ρk, ρkσ for k = 0, 1, . . . , n− 1.

Proof: From the diagram of the regular polygon with n sides, one can see that there
are n rotations and n reflections. This shows that |D2n| ⩾ 2n. The question is whether
there are any other isometries. Label the vertices of the regular polygon X with n sides
as A1, A2, . . . , An (see Figure 7.3). Let ϕ ∈ D2n be any isometry of X. Now ϕ must
map A1 to one of the vertices, say to Ai, and there are n possibilities for this choice. The
vertices A2 and An are initially adjacent to A1 and hence ϕ must map these two vertices
to the two vertices adjacent to Ai. There are at most 2 choices for which way round the
images lie. The remaining vertices now have their images uniquely specified: for example,
observe that if we follow a path from A1ϕ, through A2ϕ and then to the next vertex, then
this last vertex must be A3ϕ. Consequently there are at most 2n possibilities for ϕ; that
is, |D2n| ⩽ 2n.

We conclude |D2n| = 2n and, moreover, there are precisely n rotations and n reflections.
Furthermore, if ρ is an anticlockwise rotation through an angle of 2π/n, then ρk is an

anticlockwise rotation through an angle of 2kπ/n. Hence

1, ρ, ρ2, . . . , ρn−1

are the n distinct rotations of X. Note that they are not reflections since a reflection
will reverse the cyclical order of the vertex numbering. We now claim that, for a fixed
reflection σ, the elements

σ, ρσ, ρ2σ, . . . , ρn−1σ (7.1)

are the n reflections of X. Since D2n = Isom(X) is a group, they are certainly elements
of D2n.

If ρiσ = ρjσ with 0 ⩽ i, j ⩽ n− 1, then upon multiplying by σ−1, we would conclude
ρi = ρj which forces i = j (as the above rotations are distinct). If some ρiσ were a rotation
then ρiσ = ρj for some j and hence σ = ρj−i, which is a contradiction as σ is a reflection.
Hence the list (7.1) consists of distinct reflections and so is precisely the set of reflections.

We have now shown

D2n =
{
ρi, ρiσ

∣∣ i = 0, 1, . . . , n− 1
}
,

as required. □
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Note that ρn = 1, since if one successively rotates the n-sided regular polygon n times
through an angle of 2π/n then in total the angle is 2π and one is back where one started.
Similarly, applying a reflection twice returns to the start so

σ2 = 1

and, more generally,
(ρkσ)2 = 1 for all k.

Note that the first of these tells us that the inverse of ρ is given by

ρ−1 = ρn−1.

We can also verify, by direct calculation, that the following equation holds

σρ = ρn−1σ = ρ−1σ.

Using this formula, one can compute products involving the elements appearing in Theo-
rem 7.10 directly. For example,

(ρ2σ)(ρσ) = ρ2(σρ)σ = ρ2 ρ−1σσ = ρ.
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Subgroups

The previous chapters have introduced the concept of a group and given a variety of
examples of these objects. The remainder of the module will be concerned with developing
the study of groups. We shall be discussing what is often termed the “structure” of a group.
The first example of such structure, discussed in this chapter, is the “subgroup.” This is
where one group occurs within another group and is defined formally as follows:

Definition 8.1 Let G be a group. A subgroup of G is a subset H of G which is itself a
group under the binary operation of G. We write H ⩽ G to denote that H is a subgroup
of G.

Let us expand upon this definition to understand what it is actually saying. Suppose
that H is a subgroup of the group G. What this means is that we have two group G and H
with the properties that (i) all the elements of H are also elements of the group G, and
(ii) when we calculate the product xy of two elements x and y of H we get the same
answer when we calculate it within the group H and within the group G. The last point
is important: It is not enough to have two groups with one inside the other; it must also
be he case that the multiplications in the groups to be the same.

Example 8.2 As groups under addition, the group of integers Z is a subgroup of the
group of rational numbers Q, which in turn is a subgroup of the group of real numbers R,
which in turn is a subgroup of the group of complex numbers C. Indeed,

Z ⩽ Q ⩽ R ⩽ C

and any one of these is a subgroup of any that contains it. (Note here that the binary
operation is the same: It is addition.)

Example 8.3 Since the rational numbers Q form a field, the non-zero rational numbers
form a group Q∗ under multiplication. Certainly Q∗ is a subset of Q and the latter is a
group under addition. However, Q∗ is not a subgroup of Q, since the binary operations
are different in these two groups.

We are guaranteed some subgroups always exist in a group as the following shows:

Lemma 8.4 Let G be a group with identity element 1. Then {1} and G are subgroups
of G.
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Proof: Both {1} and G are certainly subsets of G. It then immediately follows that
G is a subgroup of itself (for it is a group and has the same multiplication as itself). The
multiplication in {1} is inherited from G:

1× 1 = 1

We need to observe that {1} is indeed a group under this operation. Associativity follows
trivially, 1 is the identity for this multiplication on {1} and 1−1 = 1. Hence {1} is a
subgroup of itself. □

The proof just given is actually more complicated than it needs to be. In fact, there
is a straightforward method to check whether a non-empty subset H of a group G is a
subgroup. Indeed, this will be the method that we use to check for subgroups in the
future.

Theorem 8.5 The following are equivalent for a subset H of a group G:

(i) H is a subgroup of G;

(ii) H is a non-empty subset of G such that xy ∈ H and x−1 ∈ H whenever x, y ∈ H.

This result is often phrased in the following way:

A subgroup of a group is a non-empty subset that is closed under multiplication
and inverses.

Proof: (i) ⇒ (ii): Suppose that H is a subgroup of G. Then H is a group, so it contains
an identity element for its operation and certainly then H is non-empty. Furthermore, if
x and y are elements of H, then the multiplication of x and y as elements of H coincides
with the value obtained when we multiply them as elements of G; that is, it equals the
product xy (as calculated in G) and so this product belongs to H. This shows

xy ∈ H for all x, y ∈ H.

Now there is some element e ∈ H that behaves as an identity element for the group H. In
particular, e2 = e (which is the same whether we calculate in H or in G) and multiplying
by the inverse of e as an element of G gives

e = e2e−1 = ee−1 = 1.

Thus the identity element of H coincides with that of G. In particular,

the identity element 1 of G belongs to the subgroup H.

Now if x ∈ H, then it has some inverse h ∈ H in the group H. Then xh = hx = 1 (since
we have just shown the identity element of H is the identity of G). Thus this inverse
of x as an element of H is also its inverse as an element of G. Uniqueness of inverses
(Theorem 5.16(ii)) tells us that h = x−1 (the inverse of x as calculated in G). Hence

x−1 ∈ H for all x ∈ H.

This completes this part of the proof.

(ii) ⇒ (i): Conversely suppose H is a non-empty subset of G such that xy, x−1 ∈ H for
all x, y ∈ H. (These are the product and inverse calculated in G. Indeed at this stage, we
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have not yet shown H is a group.) Then, in particular, the multiplication of G induces a
binary operation on H:

H ×H → H

(x, y) 7→ xy

(The hypothesis is used to ensure this operation does take values in H.) As the original
binary operation on G is associative, this is inherited by the multiplication on H:

(xy)z = x(yz) for all x, y, z ∈ H,

since this actually holds for all elements of G.
By assumption, H is non-empty, so it contains at least one element a. Then a−1 ∈ H

by hypothesis and then aa−1 ∈ H; that is, 1 ∈ H. This element satisfies 1x = x1 = x for
all x ∈ H (as this holds for all elements of G) and we conclude that 1 is also the identity
element for H.

Finally, if x ∈ H, then by hypothesis the element x−1 also belongs to H and satisfies
xx−1 = x−1x = 1. Thus H contains an inverse for each of its elements.

In conclusion, if (ii) holds, then H has the structure of a group under multiplication
inherited from that from G; that is, H is a subgroup of G. □

Before we discuss how to use this characterization of what it means to be a subgroup,
we shall record some observations made in the above proof:

Lemma 8.6 Let G be a group and H be a subgroup of G. Then

(i) H contains the identity element 1 of G, and

(ii) the inverse of an element x ∈ H is the same whether we consider it as belonging to
the group H or the group G. □

As a consequence, when we have a subgroup of a group, we can simply refer to “the
identity element” and to “inverses” without having to specify which of the two groups we
are working within since they are the same.

Example 8.7 Let us first illustrate how Theorem 8.5 can be used to establish what we
observed in Example 8.2 and Lemma 8.4.

(i) Consider the additive group of real numbers R and the subset of integers Z. Certainly
Z is a non-empty subset and if x, y ∈ Z then the sum x + y is an integer and the
negative −x is an integer. Hence the conditions of Theorem 8.5 tells us that Z is a
subgroup of R. Similar arguments apply to the other subgroups listed in Example 8.2.

(ii) If G is any group, then

• 1 × 1 = 1 and 1−1 = 1, so {1} is a subgroup of G by the conditions of Theo-
rem 8.5.

• Certainly xy, x−1 ∈ G for all x, y ∈ G, so G is a subgroup of itself.

Example 8.8 Recall that the collection of invertible n× n matrices over a field F forms
a group, which is called the general linear group GLn(F ). Consider the following subset

SLn(F ) = {A ∈ GLn(F ) | detA = 1 } ,
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the set of all n×n matrices over F with determinant 1. Observe that the identity matrix I
has determinant 1, so belongs to SLn(F ). In particular, SLn(F ) is a non-empty subset
of GLn(F ). Let A,B ∈ SLn(F ). Then

det(AB) = (detA)(detB) = 1× 1 = 1

so AB ∈ SLn(F ). Also since AA−1 = I, upon taking determinant we conclude

detA−1 =
det I

detA
=

1

1
= 1,

so A−1 ∈ SLn(F ). In conclusion, SLn(F ) satisfies the conditions of Theorem 8.5, so it is a
subgroup of GLn(F ). We call SLn(F ) the special linear group of degree n over F .

Example 8.9 Consider the following subset of the symmetric group S4 of degree 4:

H = { ( ), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3) }

(where we express the elements in terms of the cycle decomposition). We construct the
multiplication table of the elements of H:

( ) (1 2)(3 4) (1 3)(2 4) (1 4)(2 3)

( ) ( ) (1 2)(3 4) (1 3)(2 4) (1 4)(2 3)

(1 2)(3 4) (1 2)(3 4) ( ) (1 4)(2 3) (1 3)(2 4)

(1 3)(2 4) (1 3)(2 4) (1 4)(2 3) ( ) (1 2)(3 4)

(1 4)(2 3) (1 4)(2 3) (1 3)(2 4) (1 2)(3 4) ( )

The table shows that H is closed under products and inverses: Indeed, it shows x−1 = x ∈
H for all x ∈ H. Hence H is a subgroup of S4.

Cyclic subgroups

We shall now consider a particular type of subgroup that we can find in a group.

Definition 8.10 Let G be a group and x be an element of G. The cyclic subgroup of G
generated by x is the set

⟨x⟩ = {xm | m ∈ Z } ;
that is, ⟨x⟩ consists of all powers of x.

The group G is called cyclic when G = ⟨x⟩ for some x in G.

We justify the terminology:

Theorem 8.11 Let G be a group and x ∈ G. The cyclic subgroup ⟨x⟩ generated by x is
a subgroup of G.

Proof: Certainly x = x1 is an element of ⟨x⟩, so this is a non-empty subset of G. Let
xm, xn be two elements of ⟨x⟩. Then, by the power laws (Theorem 5.20),

xmxn = xm+n ∈ ⟨x⟩ and (xm)−1 = x−m ∈ ⟨x⟩.

Hence ⟨x⟩ is a subgroup of G. □

To aid us in describing the elements of cyclic subgroups, we shall introduce some further
terminology:

Definition 8.12 Let G be a group and x be an element of G. The order of x is the
smallest positive integer n such that xn = 1 if such n exists. If no such n exists, we say
that x has infinite order. We shall write o(x) for the order of x.
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Comment: Be aware that we are using the word “order” for two things. The order of a
group (or, indeed, a subgroup of a group) is the number of elements in that group. The
order of an element is different as specified in the above definition. We shall explain shortly
what the link is between these two apparent different uses of the same word.

Example 8.13 (i) Recall the dihedral group D2n of order 2n. It contains n rotations,
which are the powers of the rotation ρ defined in Theorem 7.10, and n reflections. If
σ is any reflection, then σ2 = 1. Hence o(σ) = 2. (Note σ1 ̸= 1 since σ is not the
identity.)

In the case of the basic rotation ρ, its powers

1, ρ, ρ2, . . . , ρn−1

are the distinct rotations in D2n while ρn = 1. Consequently o(ρ) = n.

(ii) Let σ = (1 2) (3 4 5) ∈ S5. We calculate the powers of σ:

σ2 = (3 5 4) σ5 = (1 2) (3 5 4)

σ3 = (1 2) σ6 = ( )

σ4 = (3 4 5)

Hence o(σ) = 6.

The following result gives more information about the order of an element and tells us
what it tells us.

Theorem 8.14 Let G be a group and x be an element of G.

(i) Suppose o(x) < ∞. Then, for any integer k, xk = 1 if and only if the order of x
divides k.

(ii) The number of elements in the cyclic subgroup ⟨x⟩ generated by x equals the order
o(x) of the element x.

We now have the link between “order” as applied to a subgroup and “order” as applied
to an element. The order of the subgroup generated by the element x is the same as the
order of the element x.

Proof: (i) Suppose o(x) divides k, so k = q · o(x) for some q ∈ Z. Then

xk = xq·o(x) = (xo(x))q = 1q = 1.

Conversely, suppose xk = 1. Divide k by o(x) to produce a quotient and remainder:

k = q · o(x) + r where 0 ⩽ r < o(x).

Then
1 = xk = xq o(x)+r = (xo(x))qxr = 1qxr = xr.

Note o(x) is, by definition, the smallest positive integer such that xo(x) = 1. Hence, since
r < o(x), it must be the case that r = 0. Thus k = q · o(x); that is, o(x) divides k.

(ii) Consider the set of powers of x:

⟨x⟩ = {xm | m ∈ Z }
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If the set of powers has repeats, say xm = xn for some m,n ∈ Z with m < n, then upon
multiplying by x−m we deduce

xn−m = xnx−m = xmx−m = x0 = 1.

This shows that there exists some power of x that equals the identity and hence x has
finite order. Consequently, if x has infinite order, then the powers of x are distinct and

|⟨x⟩| = ∞ = o(x).

Suppose now that o(x) < ∞. Let m be any integer and divide it by o(x) to give a
quotient and remainder:

m = q · o(x) + r where 0 ⩽ r < o(x).

Then
xm = xq o(x)+r = (xo(x))qxr = 1qxr = xr

so every power of x equals one of the following elements

1 = x0, x, x2, . . . , xo(x)−1.

Moreover these elements are distinct, since if xi = xj with 0 ⩽ i < j < o(x), then we
would conclude xj−i = 1. However this exponent satisfies 0 < j − i < o(x), contradicting
the definition of the order o(x). Thus

⟨x⟩ = {1, x, x2, . . . , xo(x)−1}

contains precisely o(x) many elements. □

We shall now improve on the observation made in Example 8.13(ii) by establishing the
order of an arbitrary permutation in the symmetric group Sn of degree n. This result also
indicates what we have gained by learning how to write a permutation as a product of
disjoint cycles.

Theorem 8.15 Let n be a positive integer.

(i) If σ is a cycle in Sn of length r, then o(σ) = r.

(ii) Let σ be an arbitrary permutation in Sn and suppose that σ = σ1σ2 . . . σk as a
product of disjoint cycles where the cycle σi has length ri. Then

o(σ) = lcm(r1, r2, . . . , rk),

the lowest common multiple of the lengths ri.

The lowest common multiple of r1, r2, . . . , rk is the smallest positive integer m that is
divisible by each one of r1, r2, . . . , rk.

Proof: (i) Suppose that σ = (i1 i2 . . . ir). Then

i1σ
r = i2σ

r−1 = i3σ
r−2 = · · · = irσ = i1

and similarly ikσ
r = ik for k = 2, 3, . . . , r. By definition, σ fixes all other points of

X = {1, 2, . . . , n} and we conclude that

xσr = x for all x ∈ X.
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Thus σr = ( ). On the other hand, if 1 ⩽ k < r then

i1σ
k = ik+1 ̸= i1,

so σk ̸= ( ). We conclude o(σ) = r, as claimed.
(ii) Let M = lcm(r1, r2, . . . , rk) where ri is the length of the cycle σi appearing in σ.

Then, in particular, ri = o(σi) divides M and so

σMi = ( )

using part (i) and Theorem 8.14(i). Now the cycles σi are disjoint and so they commute
by Lemma 6.13. Hence we may rearrange the terms in a product so

σM = (σ1σ2 . . . σk)
M

= σM1 σ
M
2 . . . σMk

= ( ).

Hence o(σ) ⩽M .
On the other hand, let N = o(σ). Then, again using the fact that disjoint cycles

commute
( ) = σN = (σ1σ2 . . . σk)

N = σN1 σ
N
2 . . . σNk .

Now if x is one of the points appearing in the cycle σj then x is fixed by all the other cycles
involved (as they are disjoint). Therefore

xσNj = xσN1 σ
N
2 . . . σNk = x.

As σNj fixes all points not occurring in the cycle σj , we now conclude

σNj = ( ).

Hence the order of σj divides N by Theorem 8.14(i); that is, rj divides N . This will be
true for all choices of j and consequently N is a common multiple of the rj . Therefore

M = lcm(r1, r2, . . . , rk) ⩽ N = o(σ).

These two inequalities now established then yield the claimed result. □

This theorem would immediately produce the observation made in Example 8.13(ii).
The permutation σ = (1 2) (3 4 5) in S5 has order 6 as it has two cycles of lengths 2 and 3,
respectively, and the lowest common multiple of these lengths is 6.

Example 8.16 (i) Consider the following permutation of S10:

σ =

(
1 2 3 4 5 6 7 8 9 10
4 5 3 8 10 9 1 7 6 2

)
= (1 4 8 7) (2 5 10) (6 9).

Then σ is a product of three cycles of lengths 4, 3 and 2. Hence

o(σ) = lcm(4, 3, 2) = 12.
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(ii) Consider the symmetric group S3 of degree 3. We know from Theorem 6.9 that this
is group of order 3! = 6. We can list the elements of S3 in cycle notation:

( ) (1 2 3) (1 3 2)
(1 2) (1 3) (2 3)

Thus S3 contains the identity, three 2-cycles and two 3-cycles. Hence there are one
element of order 1, three elements of order 2 and two elements of order 3 in S3. We
can therefore construct a number of cyclic subgroups of S3:

⟨( )⟩ = {( )} (the trivial subgroup)

⟨(1 2)⟩ = {( ), (1 2)}
⟨(1 3)⟩ = {( ), (1 3)}
⟨(2 3)⟩ = {( ), (2 3)}

⟨(1 2 3)⟩ = ⟨(1 3 2)⟩ = {( ), (1 2 3), (1 3 2)}

The 3-cycles (1 2 3) and (1 3 2) are the square (and indeed also the inverse) of each
other and consequently they generate the same cyclic subgroup.

Alternating groups

We shall now construct a very important example of subgroup that occurs within the
finite symmetric group Sn. Recall from Theorem 6.16 that every permutation in Sn can be
written as a product of transpositions. There is no claim that the transpositions occurring
in this theorem are disjoint. Indeed, they are not: we needed overlapping transpositions
to construct an r-cycle as in Example 6.15(iv). Equally, the expression for a permutation
in terms of transpositions is not unique. For example,

(2 3) = (1 2) (2 3) (1 3).

There is, however, an aspect of uniqueness in the decomposition. We shall observe that
the parity of the number of transpositions involved (that is, whether it is odd or even) is
uniquely determined.

Theorem 8.17 Let σ be a permutation in the symmetric group Sn of degree n. The
number of transpositions occurring in a product that equals σ is either always odd or
always even.

Proof: To establish this result, we shall make use of some techniques relating to matrices.
For i = 1, 2, . . . , n, let ei be the row vector with all entries 0 except for the ith entry
which equals 1:

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1).

Thus, in the language of MT2501 Linear Mathematics, B = {e1, e2, . . . , en} is a basis for
the space Rn of row vectors of length n.

Now if σ ∈ Sn, define Aσ to be the n× n matrix with a 1 in entry (i, iσ) for i = 1, 2,
. . . , n and all other entries equal 0. (Thus each row of Aσ has a single non-zero entry and
each column has a single non-zero entry.) The choice of Aσ ensures that

eiAσ = eiσ
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for i = 1, 2, . . . , n. Observe that if σ, τ ∈ Sn, then

eiAσAτ = eiσAτ = e(iσ)τ = ei(στ) = eiAστ

(using the definition that the product στ of the two permutations is their composite).
Hence

Aστ = AσAτ (8.1)

for all permutations σ, τ ∈ Sn. (Equation (8.1) could also be established by careful exam-
ination of the entries when we multiply the two matrices Aσ and Aτ , but the calculation
is a little easier if one computes the effect on the basis vectors.)

Now suppose σ = τ1τ2 . . . τm expresses σ as a product of m transpositions. Then, by
repeated use of Equation (8.1),

Aσ = Aτ1Aτ2 . . . Aτm .

Let τ = (k ℓ) be a transposition. Then the matrix Aτ has the form

Aτ =



1
. . .

1
0 1

1
. . .

1
1 0

1
. . .

1


(where all entries not shown equal 0); that is, Aτ is obtained from the identity matrix by
swapping row k and row ℓ. Hence, by the rules of determinants,

detAτ = −det I = −1

for every transposition τ . Therefore, using the rule det(AB) = (detA)(detB) for determi-
nants1, it follows that

detAσ = (detAτ1)(detAτ2) . . . (detAτm) = (−1)m.

The matrix Aσ is uniquely determined by the permutation σ and hence its determinant
cannot depend upon how we write it as a product of transpositions. Therefore the num-
ber m of transpositions involved must be either always odd (when detAσ = −1) or always
even (when detAσ = 1). This establishes the theorem. □

1If you consult a textbook on linear algebra for the proof of this rule, you might find that the book
uses the formula (∗) detA =

∑
σ∈Sn

(sgnσ)a1,1σa2,2σ . . . an,nσ for the determinant of a matrix A = [aij ],
where sgnσ = ±1 depending upon whether σ is an even or an odd permutation. Accordingly, the proof
of Theorem 8.17 given might appear circular since it uses determinant to show that this “sign” function is
defined. However, with some care one can establish the determinant rule by induction on the size of the
matrix without using the formula (∗) and, provided that one does this, then we are permitted to use this
rule to establish the above theorem.
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Relying upon the above theorem to tell us the concept makes sense, we can now make
the following definition:

Definition 8.18 Let σ be a permutation in the symmetric group Sn of degree n.

(i) We say that σ is an even permutation if it can be written as a product of an even
number of transpositions.

(ii) We say that σ is an odd permutation if it can be written as a product of an odd
number of transpositions.

Indeed, Theorem 8.17 tells us that a permutation is either odd or even and cannot be
both.

Lemma 8.19 Let σ be an r-cycle in the symmetric group Sn. Then

(i) if r is odd, then σ is an even permutation;

(ii) if r is even, then σ is an odd permutation.

This lemma might look contradictory, but it is important to remember that being an
odd or even permutation refers to how many transpositions are involved in the product,
not the length of cycles!

Proof: This follows immediately from the formula

(i1 i2 . . . ir) = (i1 i2) (i1 i3) . . . (i1 ir)

from Example 6.15(iv) that expresses an r-cycle as a product of r − 1 transpositions. □

Definition 8.20 Let n be a positive integer. The alternating group An of degree n is the
set of even permutations viewed as a group under composition.

Theorem 8.21 Let n be a positive integer.

(i) The alternating group An is a subgroup of the symmetric group Sn.

(ii) If n ⩾ 2, then |An| = 1
2 |Sn| =

1
2n!.

As a consequence, An is indeed a group under the binary operation inherited from Sn.

Proof: (i) We take the convention that the identity is a product of zero transpositions,
so ( ) ∈ An. (This is only necessary when n = 1. For n ⩾ 2, the identity is also the product
of two transpositions: ( ) = (1 2) (1 2).) In particular, An is non-empty.

Now let σ, τ ∈ An. Then σ is a product of an even number, say k, of transpositions
and τ is a product of an even number, say ℓ, of transpositions. Then στ can be expressed
as a product of k + ℓ transpositions and this is still even. Hence στ ∈ An.

If σ = σ1σ2 . . . σk as a product of k transpositions, then

σ−1 = (σ1σ2 . . . σk)
−1

= σ−1
k σ−1

k−1 . . . σ
−1
1

= σkσk−1 . . . σ1

is also a product k transpositions (with use of Theorem 5.16(iv)). Hence σ−1 ∈ An.
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An application of the subgroup test (Theorem 8.5) shows that the alternating group is
a subgroup of Sn.

(ii) Let On be the set of odd permutations in Sn. Then Sn = An ∪ On expresses
the symmetric group as a union of two disjoint sets: the even permutations and the odd
permutations. If σ ∈ An is any even permutation, then σ (1 2) is an odd permutation
since can be expressed as a product of one more transposition than those involved when
expressing σ. Hence we can define a function ϕ : An → On by

ϕ : σ 7→ σ (1 2).

Claim: ϕ is a bijection.

Use of right cancellativity (Lemma 5.17(i)) shows that ϕ is injective: if σ (1 2) = τ (1 2),
then necessarily σ = τ . If τ is any odd permutation, then the product τ (1 2) is even and(

τ (1 2)
)
ϕ = τ (1 2) (1 2) = τ.

Hence ϕ is surjective. Putting these together, we conclude ϕ is bijective.
It follows that An and On contain the same number of elements:

|On| = |An|

The fact that Sn is the disjoint union of An and On then gives us |Sn| = 2|An| and hence

|An| = 1
2 |Sn| =

1
2n!

as claimed. □

77





Chapter 9

Lagrange’s Theorem

In the previous chapter, we introduced the concept of a subgroup of a group. We gave
various examples of subgroups. One might wonder about what level of restriction there
is on which subsets can be subgroups. The purpose of this chapter is to give a greater
understanding about the structure of a group and how the presence of a subgroup actually
gives quite a rigid structure. In particular, the main result of the chapter will tell us that
a subgroup of a finite group G must have order dividing the order of G. This means that
there is indeed restriction over which subgroups can exist.

Cosets

We will be working with a fixed group G with a fixed subgroup H throughout this chapter.
We begin with the following definition:

Definition 9.1 Let G be a group and H be a subgroup of G. If x ∈ G, the right coset
of H with representative x is the following subset of G:

Hx = {hx | h ∈ H } ;

that is, Hx consists of all the products hx as h ranges over all the elements of H.
Similarly, the left coset of H with representative x is the subset

xH = {xh | h ∈ H } .

We shall work almost entirely with right cosets in this chapter. Very similar results
hold for left cosets, but we shall not state all the relevant facts here.

Example 9.2 (i) Recall from Example 8.16(ii) that

H = ⟨(1 2)⟩ = {( ), (1 2)}

is a subgroup of S3. (This is the cyclic subgroup generated by an element of order 2,
so it contains two elements.) We shall calculate the right cosets Hσ of H for all
possible choices of representative σ from S3:

H( ) = {( ), (1 2)} H(1 2) = {(1 2), ( )}
H(1 3) = {(1 3), (1 2 3)} H(2 3) = {(2 3), (1 3 2)}

H(1 2 3) = {(1 2 3), (1 3)} H(1 3 2) = {(1 3 2), (2 3)}

Observe that the right cosets we have calculated have the property that any two of
them are either the same or are disjoint. This will turn out to be a general property
of cosets.

79



Chapter 9. Lagrange’s Theorem

(ii) Take H = {1} to be the trivial subgroup of a group G. If x ∈ G, then Hx = {x} is
a single element of G.

(iii) Take H = G to be the same as the original group G. Then Hx = G for any choice
of x. This follows from Lemma 5.17 that tells us that every element g of G does
occur as a product yx = g for some y ∈ G.

We shall now establish the basic properties of right cosets.

Theorem 9.3 Let G be a group and H be a subgroup of G.

(i) If x, y ∈ G, then Hx = Hy if and only if xy−1 ∈ H.

(ii) Two right cosets of H in G are either equal or disjoint.

(iii) The group G is the disjoint union of the right cosets of H.

(iv) Every right coset of H in G contains the same number of elements as the subgroup H:
if x ∈ G, then |Hx| = |H|.

Proof: (i) Suppose first that Hx = Hy. Now x = 1x ∈ Hx (because the identity
element 1 belongs to H) and therefore x ∈ Hy. Therefore x = hy for some h ∈ H. Then

xy−1 = h ∈ H.

Conversely, suppose xy−1 ∈ H. We shall show that every element of the right coset Hx
also belongs toHy and vice versa. Let h ∈ H so that hx is a typical element of the cosetHx.
Then

hx = h(xy−1)y ∈ Hy

because h(xy−1) ∈ H since we know h, xy−1 ∈ H and the subgroup is closed under
multiplication. Thus every element of Hx also belongs to Hy, so Hx ⊆ Hy.

Similarly, if h ∈ H, then

hy = h(yx−1)x = h(xy−1)−1x ∈ Hx

since H is closed under products and inverses so h(xy−1)−1 ∈ H. This shows every element
of Hy also belongs to Hx, so Hy ⊆ Hx.

In conclusion, if xy−1 ∈ H, then Hx = Hy. This completes the proof of (i).

(ii) Consider two cosets Hx and Hy of H in G. These cosets are disjoint when Hx ∩
Hy = ∅. Let us suppose that Hx ∩Hy ̸= ∅, so there exists some element g ∈ Hx ∩Hy.
Since g ∈ Hx, we know that g = hx for some h ∈ H. Equally, g = ky for some k ∈ H.
Then

hx = ky

so
xy−1 = h−1k ∈ H.

Now part (i) tells us that Hx = Hy. This shows that if two cosets are not disjoint then
they are equal and so we have established (ii).

(iii) If x is any element of G, then x belongs to one of the right cosets of H: Indeed,
x = 1x ∈ Hx. Hence G is the union of right cosets of H and part (ii) tells us this is a
disjoint union.
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(iv) Define a mapping ϕ : H → Hx by

ϕ : h 7→ hx.

Right cancellativity (Lemma 5.17(i)) shows that ϕ is injective: if hx = kx for h, k ∈ H,
then h = k. The map ϕ is surjective since by definition the coset Hx consists of precisely
the elements that occur as images of ϕ. Hence ϕ is a bijection and therefore

|Hx| = |H|.

This completes the proof of the theorem. □

We shall use the following terminology relating to cosets:

Definition 9.4 Let G be a group and H be a subgroup of G. The index of H in G is the
number of right cosets of H occurring in G. We shall denote it by |G : H|.

Comment: Some sources use square brackets, [G : H], when denoting the index of H
in G. It is also the case that the index of H in G is also equal to the number of left cosets
that H has in G. (This is verified in Question 9 on Problem Sheet IX.) Consequently,
Definition 9.4 does not actually depend upon the choice of using right cosets rather than
left cosets.

Let us now interpret Theorem 9.3. It tells us that the group G is a disjoint union of
the right cosets of the subgroup H. There are |G : H| many of these cosets and each coset
contains |H| many elements. Therefore the number of elements in G equals the product of
the number of cosets by this common size of cosets. This establishes the following theorem:

Theorem 9.5 (Lagrange’s Theorem1) Let G be a group and H be a subgroup of G.
Then

|G| = |G : H| · |H|.

In particular, if G is a finite group, then the order of H divides the order of G. □

Observe that the theorem also shows that we can calculate the number of cosets of a
subgroup H of a finite group G by the formula

|G : H| = |G|/|H|.

Example 9.6 (i) In Example 9.2, we observed that the subgroup H = ⟨(1 2)⟩ =
{( ), (1 2)} has precisely three different cosets in S3:

H( ) = {( ), (1 2)}, H(1 3) = {(1 3), (1 2 3)}, H(2 3) = {(2 3), (1 3 2)}

This coincides with what Lagrange’s Theorem tells us: since H has order 2, it has
index 3 in the group S3.

1This theorem is named after the French mathematician Joseph-Louis Lagrange (1736–1813). His
work predates the introduction of the concept of group into mathematics. This theorem is viewed as being
inspired by the work that he did concerning permutations.
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(ii) Recall the proof of Theorem 8.21(ii). When n ⩾ 2, we observed that the set On

of odd permutations in Sn is the image of the alternating group An under the map
ϕ : σ 7→ σ (1 2). Hence

On = An(1 2)

is the right coset of An with representative (1 2) and the union

Sn = An ∪On = An ∪An(1 2)

is the decomposition of the symmetric group Sn into the two right cosets of An. In
particular, |Sn : An| = 2.

(iii) Lagrange’s Theorem is often used to conclude that certain subgroups cannot exist
within a group. For example, the symmetric group S3 has order 6, so it has no
subgroup of order 4 and the symmetric group S4 has order 24, so it has no subgroup
of order 5.

Warning: Note that Lagrange’s Theorem only indicates that certain subgroups cannot
exist. The converse of Lagrange’s Theorem is not true: If m is divisor of the order of a
finite group G, there is no guarantee that G possesses a subgroup of order m. Indeed, one
can show that the alternating group A4 of degree 4 (which has order 12) has no subgroup
of order 6.

We shall finish this chapter by noting some further consequences of Lagrange’s Theo-
rem.

Corollary 9.7 Let G be a finite group and x be an element of G. Then o(x) is finite and
divides the order of G.

Proof: Use Theorem 8.14(ii) to conclude that o(x) equals the order of the subgroup ⟨x⟩
of G. In particular, this must be finite and, by Lagrange’s Theorem, divides |G|. □

Corollary 9.8 Let G be a finite group of order p, where p is a prime number. Then G is
cyclic; that is, G = ⟨x⟩ for some x ∈ G.

Proof: Choose any x ∈ G that is not the identity. Then ⟨x⟩ is a non-trivial subgroup
of G and, by Lagrange’s Theorem, its order divides |G| = p. The only positive divisors
of p are 1 and p, so we conclude

|⟨x⟩| = p = |G|.

Therefore G = ⟨x⟩. □

Note, indeed, that this proof shows more than is claimed in the corollary. It shows, in
fact, that G = ⟨x⟩ for all choices of x ∈ G except for the identity element.
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Chapter 10

Homomorphisms, Normal Subgroups
and Quotients Groups

There are two main themes that arise in algebra. The first is the study of algebraic
structure occurring with other structures and subgroups are an example of such behaviour.
The second theme is to consider functions between algebraic structures that interact well
with the binary operations present. We turn to this theme in this chapter.

Homomorphisms

Definition 10.1 Let G and H be groups and we assume that the binary operations are
written as multiplication in both these groups. A homomorphism ϕ : G→ H is a function
such that

(xy)ϕ = (xϕ)(yϕ) for all x, y ∈ G.

Comment: People often say that a homomorphism “preserves the structure” of the
groups. By this, one means that the above equation holds. The term comes from Greek:
homos meaning “same” and morphe meaning “shape.” The condition appearing in the def-
inition means that if we take two elements x and y of G then we get the same answer when
we (i) multiply them in G and then apply the function ϕ, and (ii) apply the function ϕ to
both elements and then multiply the resulting elements of H.

We now give some examples of homomorphisms. We shall return to these examples
throughout this chapter.

Example 10.2 (i) Recall the general linear group of degree 2 over R consists of all
invertible 2× 2 matrices with real coefficients. Define ψ : GL2(R) → R∗ by

Aψ = detA.

Note that a matrix A ∈ GL2(R) has non-zero determinant, so the determinant is
some element of the multiplicative group of R. This function is a homomorphism
due to the standard multiplicative property of determinants: If A,B ∈ GL2(R), then

(AB)ψ = det(AB) = (detA)(detB) = (Aψ)(Bψ).

(ii) The set of real numbers {±1} is a subgroup of the multiplicative group of real num-
bers. We can see this by constructing the multiplication table so as to observe that
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this set is closed under products and inverses:

+1 −1

+1 +1 −1
−1 −1 +1

There is a homomorphism from the symmetric group Sn of degree n to this group
by defining

σΦ =

{
+1 if σ is an even function,
−1 if σ is an odd function.

To check that this Φ is a homomorphism, one needs to consider the four possible
cases of whether the two permutations involved are odd or even. For example, if σ is
an odd permutation and τ is an even permutation, then the product στ is odd (as
the number of transpositions involved is the sum of the number in σ and the number
in τ). Hence in this case

(στ)Φ = −1 = (−1)(+1) = (σΦ)(τΦ).

Checking all four cases verifies that (στ)Φ = (σΦ)(τΦ) for all σ, τ ∈ Sn, as required
to show Φ: Sn → {±1} is a homomorphism.

(iii) Let m ⩾ 2 be an integer. We shall consider the additive group (Z,+) of the ring Z
and the additive group (Z/mZ,+) of the ring Z/mZ of congruence classes modulo m.
Define ϕ : Z → Z/mZ by

ϕ : x 7→ [x]

where [x] denotes the congruence class of x modulo m. If x, y ∈ Z, then

(x+ y)ϕ = [x+ y] = [x] + [y] = xϕ+ yϕ,

using the definition of the arithmetic in the ring of congruence classes. This shows
that ϕ is a homomorphism between these two additive groups. Note also in this
example that we adjust the formula required for a homomorphism because the binary
operations in the two groups are written as addition, not multiplication.

(iv) Let G and H be any groups and suppose 1H denotes the identity element of H.
Define ζ : G→ H by

xζ = 1H for all x ∈ G.

Thus ζ is a constant function that always takes the value 1H . If x, y ∈ G, then

(xy)ζ = 1H = 1H · 1H = (xζ)(yζ).

Hence ζ is a homomorphism.

(v) If G is any group, then the identity function ε : G→ G is a homomorphism. Indeed,
if x, y ∈ G, then

(xy)ε = xy = (xε)(yε).

The next step is to begin to understand what properties homomorphisms have. The
basic properties are summarized in the following result.

Theorem 10.3 Let G and H be groups and ϕ : G → H be a homomorphism. Suppose
that the identity element of G is 1G and the identity element of H is 1H . Then
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(i) 1Gϕ = 1H ;

(ii) (x−1)ϕ = (xϕ)−1 for all x ∈ G.

In part (ii), x−1 denotes the inverse of the element x in the group G while (xϕ)−1 de-
notes the inverse of the element xϕ in the group H.

Proof: (i) Since 1G is the identity element of G, it satisfies 12G = 1G. Hence upon applying
the homomorphism ϕ we obtain

1Gϕ = (12G)ϕ = (1Gϕ)
2.

Multiplying now by the inverse of 1Gϕ in the group H (that is, using cancellativity), we
deduce 1Gϕ = 1H .

(ii) Observe that
xϕ · (x−1)ϕ = (xx−1)ϕ = 1Gϕ = 1H

with use of part (i). Similarly

(x−1)ϕ · xϕ = (x−1x)ϕ = 1Gϕ = 1H .

We conclude that (x−1)ϕ is the element that we need to multiply xϕ by in order to produce
the identity; that is, by uniqueness of inverses,

(x−1)ϕ = (xϕ)−1. □

Isomorphisms

Now that we know about homomorphisms, even though have only basic information about
them, we can at least discuss what it means for a pair of groups to be “essentially the
same.” The relevant term is the following:

Definition 10.4 Let G and H be group. An isomorphism between G and H is a bijective
homomorphism ϕ : G → H. If there is an isomorphism between G and H, then we say
that G and H are isomorphic and write G ∼= H.

Recall that a bijection ϕ : G→ H is a function such that each element of H corresponds
to a unique element of G under ϕ; that is, if h ∈ H there is a unique choice of g ∈ G with
gϕ = h. In the case of an isomorphism ϕ : G → H we are saying that not only do the
elements of the two groups correspond, but also if g1, g2 ∈ G correspond to h1, h2 ∈ H
(that is, h1 = g1ϕ and h2 = g2ϕ), then

h1h2 = (g1ϕ)(g2ϕ) = (g1g2)ϕ;

that is, the product of g1 and g2 corresponds to the product of h1 and h2. This tells us that
an isomorphism between two groups is essentially just a relabelling of the elements but
otherwise the multiplication is the same. Consequently, the two groups should be viewed
as being the same.
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Example 10.5 We have actually already seen the concept isomorphism appearing in these
lecture notes, but have not had this terminology to describe it. For example, if G =
{1, g1, g2, g3} is a group of order 4 such that x2 = 1 for all x ∈ G, then the Cayley table
has the form

1 g1 g2 g3
1 1 g1 g2 g3
g1 g1 1
g2 g2 1
g3 g3 1

There is a unique way to complete this to the Cayley table of a group (since we must have
each element appear exactly once in each row and each column):

1 g1 g2 g3
1 1 g1 g2 g3
g1 g1 1 g3 g2
g2 g2 g3 1 g1
g3 g3 g2 g1 1

This is, of course, the same pattern as that of the Klein 4-group. Consequently, G is
isomorphic to the Klein 4-group V4: The isomorphism ϕ : G→ V4 is given by

1ϕ = e, g1ϕ = a, g2ϕ = b, g3ϕ = c

(where V4 = {e, a, b, c} as in Example 5.9).

Kernels and images

We shall now describe the main tools that we use to describe the behaviour of homomor-
phisms.

Definition 10.6 Let ϕ : G→ H be a homomorphism from a group G to a group H.

(i) The kernel of ϕ is
kerϕ = {x ∈ G | xϕ = 1H } .

(ii) The image of ϕ is
imϕ = {xϕ | x ∈ G } .

So, if ϕ : G → H is a homomorphism, the kernel is the set of elements of G that are
mapped to the identity element of H, while the image is the set of elements of H that
arise as the image of some element of G. Consequently, kerϕ is some subset of G, while
imϕ is some subset of H. The main properties of these subsets are as follows, specifically
that they are in fact subgroups.

Theorem 10.7 Let ϕ : G→ H be a homomorphism from a group G to a group H. Then

(i) the kernel of ϕ is a subgroup of G;

(ii) the image of ϕ is a subgroup of H;

(iii) g−1xg ∈ kerϕ for all x ∈ kerϕ and g ∈ G.
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Part (iii) of this theorem tells us that, not only is the kernel closed under products and
inverses, it is also closed under the forming of products g−1xg where x ∈ kerϕ but g can
be any element of G. We shall discuss this property later in this chapter.

Proof: (i) Since 1Gϕ = 1H , as observed in Theorem 10.3(i), the identity element 1G
of G is in the kernel of ϕ. In particular, kerϕ is non-empty. Let x, y ∈ kerϕ. Then
xϕ = yϕ = 1H . Now

(xy)ϕ = (xϕ)(yϕ) = 1H · 1H = 1H

and
(x−1)ϕ = (xϕ)−1 = 1−1

H = 1H

with use of Theorem 10.3(ii). This shows xy, x−1 ∈ kerϕ for all x, y ∈ kerϕ. The subgroup
test (Theorem 8.5) tells us that the kernel, kerϕ, is indeed a subgroup of G.

(ii) Since G is non-empty, the set imϕ of images of the elements of G under ϕ is certainly
also non-empty. Let g, h ∈ imϕ. Then g = xϕ and h = yϕ for some x, y ∈ G. Now

gh = (xϕ)(yϕ) = (xy)ϕ ∈ imϕ

and
g−1 = (xϕ)−1 = (x−1)ϕ ∈ imϕ,

again with use of Theorem 10.3(ii). Therefore, by Theorem 8.5, the image imϕ is a
subgroup of H.

(iii) Let x ∈ kerϕ and g ∈ G. Observe

(g−1xg)ϕ = (gϕ)−1(xϕ)(gϕ) = (gϕ)−1 · 1H · (gϕ) = (gϕ)−1(gϕ) = 1H .

(We used the definition of the term homomorphism and, again, Theorem 10.3(ii) in this
calculation.) We conclude that g−1xg ∈ kerϕ. □

Example 10.8 Let us return to the examples in Example 10.2 to see how these subgroups
occur.

(i) We defined ψ : GL2(R) → R∗ by Aψ = detA (the determinant of the matrix A).
Every non-zero real number does occur as the determinant of an invertible matrix,
indeed

det

(
x 0
0 1

)
= x

and therefore this ψ is surjective: imψ = R∗. The kernel is the set of matrices of
determinant 1; that is, kerψ = SL2(R), the special linear group (see Example 8.8).

(ii) We define Φ: Sn → {±1} by mapping an even permutation to +1 and an odd
permutation to −1. If n ⩾ 2, then there are both even permutations (e.g., the
identity) and odd permutations (e.g., (1 2)) in Sn. Hence imΦ = {±1}; that is, Φ is
surjective. The kernel of ϕ consists of all even permutations; that is, kerΦ = An, the
alternating group of degree n.

(iii) In our third example, we defined the homomorphism of additive groups ϕ : Z →
Z/mZ by xϕ = [x], the congruence class of x modulo m. Since the codomain consists
of all the congruence classes, this ϕ is surjective: imϕ = Z/mZ. The kernel consists
of all x ∈ Z such that [x] = [0]; that is, x ≡ 0 (mod m). Hence kerϕ consists of all
integers that are divisible by m.
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(iv) The trivial homomorphism ζ : G → H between two groups is given by xζ = 1H for
all x ∈ G. Hence ker ζ = G and im ζ = {1H} (the trivial subgroup of H).

(v) The identity map ε : G → G, given by x 7→ x for all x ∈ G, is a bijective homomor-
phism. That is, it is an example of an isomorphism from the group G to itself. The
image im ε = G, while ker ε = {1G}.

This set of examples does illustrate how the kernel and image have significance to a
homomorphism. We summarize now their general relevance to the question of whether
a homomorphism is injective or surjective. Part (ii) of the following theorem is just the
definition of what it means for a function to be surjective. Part (i) requires a little more
effort to verify.

Theorem 10.9 Let ϕ : G→ H be a homomorphism between two groups G and H. Then

(i) ϕ is injective if and only if kerϕ = {1G};

(ii) ϕ is surjective if and only if imϕ = H.

Proof: (i) Suppose first that ϕ is injective. Let x ∈ kerϕ. Then xϕ = 1H = 1Gϕ. Since
ϕ is injective, we conclude that x = 1G. Consequently, the only element in the kernel is
the identity 1G (and we know this element is definitely in the set). Hence kerϕ = {1G}.

Conversely suppose kerϕ = {1G}. Let x, y ∈ G and suppose xϕ = yϕ. Then

(xy−1)ϕ = (xϕ)(yϕ)−1 = (xϕ)(xϕ)−1 = 1H

so xy−1 ∈ kerϕ. By assumption, xy−1 = 1G and therefore x = y (upon multiplying on the
right by y). Hence ϕ is injective.

(ii) As note above, part (ii) follows immediately from the definitions. □

The use of part (i) of the theorem means that it is easier to check that a homomorphism
ϕ : G→ H is injective compared with an arbitrary function. We do not have to check that
different elements are always mapped to different values by ϕ. We just need to check that
only the element of G that is mapped to the identity element of H (that is, the only element
in the kernel of ϕ) is the identity element of G.

Normal subgroups

We shall now investigate the property appearing in part (iii) of Theorem 10.7. We make
the following definition:

Definition 10.10 Let G be a group and N be a subgroup of G. We say that N is a
normal subgroup of G if it satisfies the additional condition: g−1xg ∈ N for all x ∈ N and
g ∈ G. We write N P G to indicate that N is a normal subgroup of the group G.

Comments:

(i) The element g−1xg is called the conjugate of x by g.

(ii) To verify that a particular subset N of a group G is indeed a normal subgroup we
need to first verify that N is a subgroup (so apply the subgroup test, Theorem 8.5)
and then verify that N is closed under conjugation by arbitrary elements of G (so
check the condition in the above definition).
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(iii) If ϕ : G→ H is any homomorphism, then Theorem 10.7 tells us that the kernel of ϕ
is a normal subgroup of G.

This last comment means that we have an immediate collection of examples of normal
subgroups by use of Example 10.8:

Example 10.11 (i) The special linear group SL2(R) is a normal subgroup of the general
linear group GL2(R) since it is the kernel of the determinant map. (Indeed, the same
argument shows that SLn(F ) is a normal subgroup of GLn(F ) for every positive
integer n and every field F .)

(ii) The alternating group An is a normal subgroup of the symmetric group Sn since it
is the kernel of the “sign map” Φ that sends an even permutation to +1 and an odd
permutation to −1.

(iii) If G is any group, then G is a normal subgroup of itself (as it is the kernel of the
map ζ : x 7→ 1) and {1} is a normal subgroup of G (as it is the kernel of the identity
map).

An alternative method to verify that a subgroup is normal is to directly check that it
is closed under conjugation. The above examples could all also have been established by
that method.

Theorem 10.12 Let G be a group and N be a subgroup of G. The following conditions
on N are equivalent:

(i) N is a normal subgroup of G;

(ii) the set g−1Ng =
{
g−1xg

∣∣ x ∈ N
}

equals N for all g ∈ G;

(iii) every left coset of N in G is also a right coset of N in G and vice versa;

(iv) Ng = gN for all g ∈ G.

Proof: (i) ⇒ (ii): Suppose that N P G; that is, N satisfies the condition in Defini-
tion 10.10. By assumption, g−1xg ∈ N for all x ∈ N and all g ∈ G. This shows that
g−1Ng ⊆ N for all g ∈ G.

In particular, if g ∈ G is fixed, then g−1Ng ⊆ N and gNg−1 = (g−1)−1Ng−1 ⊆ N .
Let x ∈ N . Then gxg−1 = y ∈ N , so x = g−1yg ∈ g−1Ng. This establishes the reverse
inclusion N ⊆ g−1Ng.

In conclusion, g−1Ng = N and this holds for all g ∈ G.

(ii) ⇒ (iii): Suppose g−1Ng = N for all g ∈ N . Fix g ∈ G. If x ∈ N , then g−1xg = y
for some y ∈ N and hence xg = gy ∈ gN . Since x is an arbitrary element of N , we
conclude Ng ⊆ gN .

Similarly, if x ∈ N = g−1Ng, then x = g−1zg for some z ∈ N and hence gx = zg ∈ Ng.
Since x is arbitrary, we conclude gN ⊆ Ng.

In conclusion, Ng = gN for all g ∈ G. In particular, every left coset equals a right
coset (indeed the right coset with the same representative) and every right coset equals a
left coset.

(iii) ⇒ (iv): Let g ∈ G. The left coset gN equals some right coset of N , say gN = Nh
for some h ∈ G. Then g = g1 ∈ gN = Nh and g = 1g ∈ Ng, so Ng ∩ Nh ̸= ∅. Since
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cosets are either disjoint or equal (Theorem 9.3(ii)) we conclude that Ng = Nh. Hence
gN = Nh = Ng, as claimed.

(iv) ⇒ (i): Let x ∈ N and g ∈ G. By assumption, Ng = gN , so xg ∈ Ng = gN and
we deduce xg = gy for some y ∈ N . Then g−1xg = y ∈ N . This shows g−1xg ∈ N for all
x ∈ N and g ∈ G; that is, N P G. □

Example 10.13 We shall also give some examples relating to normal subgroups that do
not, on the face of it, directly refer to kernels of homomorphisms. Recall from Question 8
on Problem Sheet VI that conjugation in the symmetric group is given, for conjugates of
cycles, by:

ρ−1 (i1 i2 . . . ir) ρ = (i1ρ i2ρ . . . irρ)

and that the conjugate of a permutation in Sn is another permutation with the same
disjoint cycle structure.

(i) Let H = ⟨(1 2)⟩ = {( ), (1 2)} and consider whether or not this is a normal subgroup
of the symmetric group S3 of degree 3. We calculate

(1 3)−1 (1 2) (1 3) = (2 3) /∈ H.

Hence H is not closed under conjugation, so H is not a normal subgroup of S3.

(ii) Let H = {( ), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. In Example 8.9, we showed that
this H is a subgroup of the symmetric group S4 of degree 4. Indeed, we showed
that the Cayley table is essentially the same as that of the Klein 4-group, so H is
a subgroup of S4 that is isomorphic to the Klein 4-group V4. Note that H consists
of the identity element and all the permutations that can be written as a product of
two disjoint transpositions.

Now if σ ∈ H and ρ ∈ S4, then ρ−1σρ has the same disjoint cycle structure as σ.
Hence either ρ−1σρ = ( ) ∈ H or ρ−1σρ is a product of two disjoint transpositions
and so is in H. Therefore H P S4.

Quotient groups

We shall now describe a construction that is very useful in the study of groups. If G is a
group and N is a normal subgroup, then we can construct a new group, the quotient group,
whose elements are the cosets of N . The basic idea is that this will usually be a smaller
group (indeed, Lagrange’s Theorem tells us that the number of elements is |G|/|N |) and so
working with this group should in some sense be easier. We will be able to do little more
than begin to work with this construction, but with further exploration one would be able
to understand how to obtain information about the original group G from this quotient
group.

Definition 10.14 Let G be a group and let N be a normal subgroup of G. Let

G/N = {Nx | x ∈ G } ,

the set of all right cosets of N in G. Define a multiplication on G/N by

Nx ·Ny = Nxy

for x, y ∈ G (i.e., we multiply the representatives of the cosets).
We call G/N with this multiplication the quotient group of G by N .
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Note: We only use the notation G/N when N P G. If a subgroup H of a group G is
not normal then we cannot use the above formula to define a group structure on the set
of cosets of H.

Theorem 10.15 Let G be a group and N be a normal subgroup of G. Then G/N is a
group with respect to the multiplication defined above.

Proof: The most challenging step in the proof is the first one, verifying that we do have a
binary operation on G/N , whereas checking the axioms of a group turns out to be straight-
forward. The issue is very similar to that in Lemma 4.6. In the case of a quotient group,
the multiplication given in Definition 10.14 depends upon the representatives x and y and
we know that cosets can have different representatives. We need to ensure our multiplica-
tion is well-defined; that is, that it depends only upon the cosets concerned and not on the
choice of representatives for the cosets.

Consider two cosets of N and suppose that we have written them with different repre-
sentatives: Nx = Nx′ and Ny = Ny′. This means that

x(x′)−1 ∈ N and y(y′)−1 ∈ N,

by Theorem 9.3(i). Let’s give names to these elements of N , say a = x(x′)−1 and b =
y(y′)−1, so x = ax′ and y = by′ where a, b ∈ N . To help in the following calculation we
shall write gh for the conjugate h−1gh of an element g by another element h. Then

xy = ax′by′ = ax′b(x′)−1x′y′ = ab(x
′)−1

x′y′.

Since N P G, it follows that the conjugate b(x′)−1 ∈ N and so ab(x′)−1 ∈ N . Therefore

xy(x′y′)−1 = ab(x
′)−1 ∈ N

and, using Theorem 9.3(i) again,
Nxy = Nx′y′.

This tells us that we get the same answer for the product Nx ·Ny whether we calculate it
using the representatives x and y or using the representatives x′ and y′. Hence we have a
well-defined multiplication on G/N .

The remaining steps of the proof are more straightforward. We check the axioms of a
group:

Associativity: Let Nx,Ny,Nz ∈ G/N . Then

(Nx ·Ny) ·Nz = Nxy ·Nz = N(xy)z

and
Nx · (Ny ·Nz) = Nx ·Nyz = Nx(yz).

But the multiplication in G is associative, so (xy)z = x(yz) and hence

(Nx ·Ny) ·Nz = Nx · (Ny ·Nz),

as required.

Identity: Nx ·N1 = Nx1 = Nx and N1 ·Nx = N1x = Nx for all x ∈ G, so N1 is the
identity element of G/N .
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Inverses: Nx · Nx−1 = Nxx−1 = N1 and Nx−1 · Nx = Nx−1x = N1, so Nx−1 is the
inverse of Nx in G/N .

Hence G/N is a group. □

Example 10.16 The quaternion group Q8 of order 8 contains eight elements

Q8 = {±1,±i,±j,±k}

and has multiplication given by

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

One should maintain the order of the elements in the above products, but one can multiply
throughout by −1 to determine products such as k(−i) = −ki = −j. This can be shown
to be a group. Indeed the easiest method is to observe that this group is isomorphic to the
group Q of matrices in Question 12 on Problem Sheet VIII.

Let N = ⟨−1⟩ = {±1}, the cyclic subgroup generated by the element −1. This is cer-
tainly a subgroup. Furthermore, the definition of the multiplication is that (−1)i = −i =
i(−1) and similarly for other products involving −1, so −1 commutes with all elements
of Q8. Therefore

g−1(−1)g = g−1g(−1) = −1 ∈ N

for all g ∈ Q8. On the other hand, g−11g = 1 for all g ∈ Q8. We conclude that N P Q8.
We may therefore construct the quotient group Q8/N . Let us calculate some products

in this quotient group: The coset Ni = {±i} = N(−i) by definition and

(Ni)2 = Ni ·Ni = Ni2 = N(−1) = N1

since −1 ∈ N and therefore these last two cosets are equal by Theorem 9.3(i). Exactly the
same argument shows that (Nj)2 = (Nk)2 = N1 and we now conclude that every element
of Q8/N satisfies (Ng)2 = N1. Example 10.5 tells us that

Q8/N ∼= V4.

The First Isomorphism Theorem

The final thing we do in the lecture course is bring the concepts of this chapter together.
Let ϕ : G → H be a homomorphism. We know from Theorem 10.7 that the kernel of ϕ
is a normal subgroup of G. According to Theorem 10.15, we can construct the quotient
group G/kerϕ. It is a group, but the question that should arise is what does this group
have to do with the original homomorphism? The following theorem gives the answer:

Theorem 10.17 (First Isomorphism Theorem) Let G and H be groups and ϕ : G→
H be a homomorphism. Then

G/kerϕ ∼= imϕ.

Proof: We need to construct an isomorphism (a bijective homomorphism) betweenG/kerϕ and
imϕ. To simply notation, we shall write K = kerϕ and define the function θ : G/K → imϕ
by

(Kx)θ = xϕ.

The definition of θ appears to depend on the choice of representative x for the coset Kx,
so we must first check that θ is well-defined.
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Suppose Kx = Ky. Then xy−1 ∈ K = kerϕ, so

1 = (xy−1)ϕ = (xϕ)(yϕ)−1

and multiplying by yϕ gives xϕ = yϕ. Hence θ is well-defined: we get the same value for
the image of Kx = Ky under θ whether we use the representative x or y.

Next
(Kx ·Ky)θ = (Kxy)θ = (xy)ϕ = (xϕ)(yϕ) = (Kx)θ · (Ky)θ

and we deduce θ is a homomorphism.
If g ∈ imϕ, then g = xϕ for some x ∈ G. Then

(Kx)θ = xϕ = g

and we see that θ is surjective.
Finally if Kx ∈ ker θ, then 1 = (Kx)θ = xϕ, so x ∈ kerϕ = K and therefore Kx = K1,

the identity element in G/K, by use of Theorem 9.3(i). This shows that ker θ = {K1} =
{1G/K} and Theorem 10.9(i) now tells us θ is injective.

Hence θ is a bijective homomorphism; that is, an isomorphism. Hence

G/ker θ = G/K ∼= imϕ. □

Example 10.18 (i) Recall Example 10.8(i): there is a homomorphism ψ : GL2(R) →
R∗ which has kernel kerψ = SL2(R) (the special linear group) and image imψ = R∗

(that is, ψ is surjective). The First Isomorphism Theorem tells us

GL2(R)/SL2(R) ∼= R∗.

(ii) Also recall from Example 10.8(ii) that the homomorphism Φ: SL2(R) → {±1} has
kernel kerΦ = An (the alternating group) and, provided n ⩾ 2, is surjective. Hence,
for n ⩾ 2,

Sn/An
∼= {±1} = ⟨−1⟩,

which is a cyclic group of order 2. (This is not so surprising: Since |Sn : An| = 2,
the quotient Sn/An is of order 2 and so is cyclic by Corollary 9.8.)

Having shown that the groups above are isomorphic, it then follows that their properties
are the same. As an example, since R∗ is an abelian group (multiplication in the field R is
commutative), the same is true for the quotient group GL2(R)/SL2(R). The general linear
group GL2(R) is non-abelian (as observed earlier) but we have found a normal subgroup
for which the associated quotient group is abelian.

The following example arises in many situations. For example, if G is any finite group
and x ∈ G, then x has finite order by the Corollary 9.7 of Lagrange’s Theorem. Con-
sequently C = ⟨x⟩ is a cyclic group of order n = o(x) (and this n divides the order of
the finite group G that we started with). We would then be able to apply the method
presented in the following example.

Example 10.19 Let C = ⟨x⟩ be a cyclic group of order n (for some positive integer n).
Consider the group Z of integers under addition and define a map ϕ : Z → C by

ϕ : k 7→ xk for k ∈ Z.
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The standard power laws (see Theorem 5.20) show that

(k + ℓ)ϕ = xk+ℓ = xkxℓ = (kϕ)(ℓϕ)

for all k, ℓ ∈ Z. Hence ϕ is a homomorphism from the group (Z,+) to the cyclic group C.
(Note that the group operation in Z is addition + and so on the left-hand side of the above
formula we use the addition operation, while on the right-hand side we use the group
multiplication in C.)

Since C = ⟨x⟩ is cyclic, the element of C are the powers of the generator x and hence
imϕ =

{
xk
∣∣ k ∈ Z

}
= C. We determine the kernel of ϕ by using the observation in

Theorem 8.14(i) concerning the order of the element x:

k ∈ kerϕ if and only if kϕ = 1

if and only if xk = 1

if and only if o(x) = n divides k

by use of Theorem 8.14(i). Hence kerϕ consists of all the multiples of n:

kerϕ = {nq | q ∈ Z } = nZ.

An application of the First Isomorphism Theorem tells us that

C = ⟨x⟩ ∼= Z/nZ

where the group on the right-hand side is the quotient group of Z by the (normal) sub-
group nZ. (It is safe to bracket “normal” here since (Z,+) is an abelian group, so every
subgroup is normal.)

Corollary 10.20 Any two cyclic groups of the same order are isomorphic.

Proof: Let C = ⟨x⟩ and D = ⟨y⟩ be cyclic groups of order n. The above example shows

C ∼= Z/nZ ∼= D

and hence C and D are isomorphic. □
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