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Introduction

Linear algebra arises out of the study of matrices and vectors. In MT1002
we have seen how matrices arise naturally in two settings, first in the context
of solving systems of linear equations and second as specifying certain geo-
metric transformations. Vectors also arise naturally in the geometric setting
of 2-dimensional and 3-dimensional real space. In this part of the course,
we shall see how the concept of a vector space has been generalised from its
geometric origins to an algebraic object which has applications in a range
of different settings:

• pure mathematics (e.g., geometry, algebra, functional analysis, etc.),

• applied mathematics (e.g., spaces of solutions to differential equations,
etc.),

• physics (e.g., quantum mechanics, etc.),

• etc.

A theme that arises as one studies linear algebra is that linearity makes
solving many problems much easier. The sort of information that we are
able to determine concerning transformations that are linear is far beyond
what we can hope to achieve for arbitrary functions. The second theme that
can be observed is that vector spaces form the natural setting in which to
study linearity.

The principal methods that will be covered in this course are the follow-
ing:

• how to calculate the determinant and inverse of a matrix;

• how to recognise a vector space;

• how to show a subset of a vector space is linearly independent;

• how to recognise a linear transformation;

• how to calculate the rank and nullity of a linear transformation;

• how to find eigenvalues and eigenvectors and hence diagonalise a linear
transformation.
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All these ideas are taken further in the module MT3501 Linear Math-
ematics. This set of notes have been written so that the notations used in
both modules are consistent. The following textbooks are relevant to both
modules:

• T. S. Blyth & E. F. Robertson, Basic Linear Algebra, Second Edition,
Springer Undergraduate Mathematics Series (Springer-Verlag 2002);

• R. Kaye & R. Wilson, Linear Algebra, Oxford Science Publications
(OUP 1998).
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Chapter 1

Determinants and Inverses

Recall from MT1002 that given a system of linear equations

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm

(1.1)

we associate an m × n matrix

A =











a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn











and a column vector

b =











b1

b2

...
bm











.

Then solving the system of equations (1.1) is equivalent to solving the equa-
tion

Ax = b

for the column vector

x =











x1

x2

...
xn











.

In this section, we shall consider matrices in more detail, returning to the
topic of solving systems of equations as above at the end.
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An m × n matrix A is a rectangular array of entries with m rows and
n columns. But what are these entries? These entries come from some
field F . We shall not give a detailed definition of such a mathematical
object, but the following is sufficient for our needs.

Definition 1.1 A field is a structure in which we can add, multiply and
subtract any two elements and we can divide any element by a non-zero
element. Furthermore, all natural rules of arithmetic should hold.

We refer to the elements in our field as scalars.

A complete and precise definition of what is meant by a field will be
given in MT3501 (and also in MT4517 Rings and Fields). For this course,
it is enough to say that the two standard examples of fields are the real
numbers R and the complex numbers C. These will be the only fields that
we shall use here.

Let A = [aij ] be a square n× n matrix with entries from a field F . This
notation indicates that aij denotes the entry in the ith row and jth column
of A. The determinant of A was defined in MT1002 in an inductive manner.
We recall this.

First associate to each position in the n × n matrix a sign from the
following grid:











+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...

. . .











Definition 1.2 Fix a particular entry in the n × n square matrix A. The
cofactor of this entry is defined to be:

the determinant of the (n − 1) × (n − 1) matrix obtained by
deleting the row and column containing this entry × the sign
associated with this entry.

The determinant of the n × n matrix A = [aij ] is then obtained by
multiplying each entry in the top row by its cofactor and adding the resulting
products. We denote this determinant by det A or |A|.

Thus to calculate a determinant of a 3 × 3 matrix, we first need to
calculate that of a 2 × 2 matrix, and so on.

For a 1 × 1 matrixx, A = (a11), the determinant is given by

det A = det(a11) = a11.

For a 2 × 2 matrix,

A =

(

a11 a12

a21 a22

)

,
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the determinant is

det

(

a11 a12

a21 a22

)

= a11 det(a22) − a12 det(a21)

= a11a22 − a12a21.

For a 3 × 3 matrix,

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 ,

the determinant is

det





a11 a12 a13

a21 a22 a23

a31 a32 a33



 = a11 det

(

a22 a23

a32 a33

)

− a12 det

(

a21 a23

a31 a33

)

+ a13

(

a21 a22

a31 a32

)

= a11(a22a33 − a23a32) − a12(a21a33 − a23a31)

+ a13(a21a32 − a22a31)

= a11a22a33 − a11a23a32 − a12a21a33

+ a12a23a31 + a13a21a32 − a13a22a31.

Properties of determinants

We shall list various standard properties of determinants. Many of these
are already known from MT1002 and all are very easily checked by direct
calculation for determinants of 2 × 2 and 3 × 3 matrices. The proofs for
arbitrary matrices are more complicated and are omitted.

Definition 1.3 If A = [aij ] is an m × n matrix, the transpose AT of A is
n × m matrix whose (i, j)th entry is aji.

So AT is obtained from A by interchanging rows and columns.

Proposition 1.4 If A is a square matrix, then

detAT = detA.

Consequently, any property of determinants that is expressed in terms of
rows also holds when expressed in terms of columns.

Theorem 1.5 The determinant can be expanded in terms of any row or
column: just go along the particular row or column, multiplying each entry
by its cofactor and then add.
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Example 1.6 Calculate the determinant of

A =





1 2 1
1 −1 1
2 1 −1



 .

Solution: An expansion in terms of the top row gives:

detA = 1 ×
∣

∣

∣

∣

−1 1
1 −1

∣

∣

∣

∣

− 2 ×
∣

∣

∣

∣

1 1
2 −1

∣

∣

∣

∣

+ 1 ×
∣

∣

∣

∣

1 −1
2 1

∣

∣

∣

∣

= 0 − 2 × (−3) + 3

= 0 + 6 + 3 = 9.

An equally valid solution would be to expand in terms of the middle row:

det A = −1 ×
∣

∣

∣

∣

2 1
1 −1

∣

∣

∣

∣

+ (−1) ×
∣

∣

∣

∣

1 1
2 −1

∣

∣

∣

∣

− 1 ×
∣

∣

∣

∣

1 2
2 1

∣

∣

∣

∣

= (−1) × (−3) + (−1) × (−3) − 1 × (−3)

= 3 + 3 + 3 = 9.

Corollary 1.7 If any row of a square matrix is zero, then the determinant
is zero.

Proof: Expand along the zero row; all terms in the sum are zero, so the
determinant is zero. �

Theorem 1.8 Let A be a square matrix and let ri denote the ith row of A.

(i) If row ri is multiplied by the scalar α, then the determinant is also
multiplied by α. Consequently, a common factor in any row can be
taken outside the determinant.

(ii) If row ri is replaced by ri + αrj , then the determinant is unchanged.
Consequently, if two rows are equal, or even proportional to each other,
the determinant is equal to zero.

Example 1.9 Calculate the determinant of

A =





1 2 1
1 −1 1
2 1 −1



 .

Solution: This is an alternative solution to Example 1.6, but this time we
shall apply row operations:

detA =

∣

∣

∣

∣

∣

∣

1 2 1
1 −1 1
2 1 −1

∣

∣

∣

∣

∣

∣
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=

∣

∣

∣

∣

∣

∣

1 2 1
0 −3 0
0 −3 −3

∣

∣

∣

∣

∣

∣

r2 7→ r2 − r1

r3 7→ r3 − 2r1

=

∣

∣

∣

∣

−3 0
−3 −3

∣

∣

∣

∣

(expanding along first column)

= 9.

Proposition 1.10 Interchanging two rows in a square matrix, changes the
sign of the determinant.

Theorem 1.11 (i) If A and B are n×n matrices, then det(AB) = detA·
det B.

(ii) The determinant of a diagonal matrix is the product of the entries on
the diagonal:

det













α1 0 · · · 0

0 α2

...
...

. . . 0
0 · · · 0 αn













= α1α2 . . . αn.

(iii) (AB)T = BTAT.

Inverses

Definition 1.12 Let A be a square matrix. We say that A is invertible
with inverse A−1 if

AA−1 = A−1A = I

(where I is the n × n identity matrix).

One method to find the inverse of a n × n matrix A was described in
MT1002:

(i) Write A and I together in a single n × 2n matrix:

(A | I).

(ii) Apply row operationrs to convert the left hand matrix into the identity
matrix:

(I | B).

(iii) The matrix now appearing on the right-hand side is the inverse of A:

A−1 = B.
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In this section, we shall describe an alternative method for finding in-
verses. The first ingredient is the following:

Definition 1.13 Let A be a square matrix. The adjugate of A, denoted
by adjA, is constructed from A by the following two steps:

(i) Replace each entry in the matrix by its cofactor;

(ii) take the transpose of the resulting matrix.

Example 1.14 Find the adjoint of the matrix

A =





1 2 0
1 3 1
2 3 1





and calculate the product A · adj A.

Solution: Recall that the distribution of the signs associated with the
cofactors is:





+ − +
− + −
+ − +



 .

Each cofactor is the determinant of a 2 × 2 matrix adjusted by the above
signs, so we calculate the matrix of cofactors is





+0 −(−1) +(−3)
−2 +1 −(−1)
+2 −1 +1



 =





0 1 −3
−2 1 1
2 −1 1



 .

Hence

adj A =





0 −2 2
1 1 −1
−3 1 1



 .

Thus

A · adj A =





1 2 0
1 3 1
2 3 1









0 −2 2
1 1 −1
−3 1 1



 =





2 0 0
0 2 0
0 0 2



 = 2I = (det A)I.

We will now show that what was observed in the previous example is
actually true in full generality.

Theorem 1.15 If A is a square matrix, then

A · adj A = (det A)I.
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Proof: Let A = [aij] be an n × n matrix. Write

B = [bij ] = adjA

for the adjugate of A. Here bij is the cofactor of the (j, i)th entry of A.
Now consider the (i, i)th entry of the product AB. It equals

n
∑

k=1

aikbki.

This is the sum of each entry in the ith row multiplied by its cofactor (bki is
the cofactor of the (i, k)th entry), so this sum is simply the determinant
of A calculated by expanding along the ith row. Hence the diagonal entries
in AB all equal det A.

Now consider the (1, 2) entry of the product AB. It equals

n
∑

k=1

a1kbk2.

This is much like expanding the determinant of A using the cofactors of
the second row, but we are multiplying them by the entries of the first row
instead of the second. Hence this sum equals the determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1n

a11 a12 · · · a1n

a31 a32 · · · a3n

...
...

...
an1 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

when we expand along the second row. This matrix has repeated rows, so
its determinant is zero. Hence the (1, 2) entry of AB equals 0. The same
holds for all other off diagonal entries by the same argument. Hence

A · adj A = AB = (det A)I.

�

This enables us to calculate the inverse of a square matrix directly from
its adjugate:

Theorem 1.16 A square matrix A possesses an inverse if and only if its
determinant is non-zero. In this case,

A−1 =

(

1

detA

)

adj A.

10



Proof: If A has an inverse, then AA−1 = I and, upon taking determinants,
we find

(detA)(det A−1) = det I = 1

and therefore det A 6= 0.
Conversely, if det A 6= 0, then B = (1/det A) adjA exists and we see

AB =
1

det A
A · adj A =

1

det A
· (det A)I = I

and hence B = A−1. �

Example 1.17 Find the inverse of

A =





1 2 1
3 0 2
1 3 2



 .

Solution: The determinant of A is

det A =

∣

∣

∣

∣

∣

∣

1 2 1
3 0 2
1 3 2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 2 1
0 −6 −1
0 1 1

∣

∣

∣

∣

∣

∣

= −6 + 1 = −5.

Taking cofactors and the transpose, we find that the adjugate of A is

adj A =





−6 −1 4
−4 1 1
9 −1 −6



 .

Hence

A−1 =





6

5

1

5
−4

5
4

5
−1

5
−1

5

−9

5

1

5

6

5



 .

Lemma 1.18 If A and B are invertible n × n matrices, then AB is also
invertible, with

(AB)−1 = B−1A−1.

Proof: We calculate

AB · B−1A−1 = A(BB−1)A−1 = AIA−1 = AA−1 = I

and similarly B−1A−1 · AB = I. Hence AB has B−1A−1 as its inverse. �
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Solving systems of linear equations

We shall now illustrate how the above concepts arise in the context of solving
systems of simultaneous linear equations. For example, consider the system
of equations

x + 3y + 3z = 2

x + 4y + 3z = 3

x + 3y + 4z = 4.

In matrix form, this is equivalent to





1 3 3
1 4 3
1 3 4









x
y
z



 =





2
3
4



 ,

or
Ax = b,

where

A =





1 3 3
1 4 3
1 3 4



 and b =





2
3
4



 .

Now if the matrix A is invertible, we can multiply by its inverse and deduce
that x = A−1

b is the unique solution to our system of equations. We
conclude:

Theorem 1.19 The system of equations Ax = b has a unique solution
given by x = A−1

b if det A 6= 0.
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Chapter 2

Vector Spaces

The concept of vectors in 2- and 3-dimensional real space should be familiar
to students taking this course. In this chapter, we are going to generalise
this concept in such a way to cover a broad range of mathematical system.
This will include matrices, polynomials, functions, and so on.

Consider the set of vectors in 3-dimensional real space. What properties
do these vectors have? The following are the properties which we shall
require our generalisation to also satisfy:

• If u and v are vectors, they have a sum u + v;

• if α is a scalar and v is a vector, then αv is a vector;

• these addition and scalar multiplication operations satisfy natural-
looking laws.

The following definition gives a mathematical object that fulfils our re-
quirements. It is the principal object of interest for this part of the course.

Definition 2.1 Let F be a field of scalars (typically R and C for this
course). A vector space over F is a set V together with two operations

V × V → V F × V → V

(u, v) 7→ u + v (α, v) 7→ αv,

called addition and scalar multiplication, respectively, such that

(i) u + v = v + u for all u, v ∈ V ;

(ii) (u + v) + w = u + (v + w) for all u, v,w ∈ V ;

(iii) there exists a vector 0 in V such that v + 0 = v for all v ∈ V ;

(iv) for each v ∈ V , there exists a vector −v in V such that v + (−v) = 0;
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(v) α(u + v) = αu + αv for all u, v ∈ V and all scalars α;

(vi) (α + β)v = αv + βv for all v ∈ V and all scalars α, β;

(vii) (αβ)v = α(βv) for all v ∈ V and all scalars α, β;

(viii) 1v = v for all v ∈ V .

It is always important to distinguish between the zero vector 0 in the
vector space V and the zero scalar in our field F . Consequently, we shall
use bold-face notation in these lecture notes (and an underlined zero on the
white-board) to denote the zero vector.

Examples of vector spaces

As a first example of a vector space, we shall generalise the concept of vectors
in 3-dimensional space to arbitrary dimensions.

Example 2.2 Let R
n denote the set of column vectors of length n:

x =











x1

x2

...
xn











.

In R
n, we can add and multiply by scalars:











x1

x2

...
xn











+











y1

y2

...
yn











=











x1 + y1

x2 + y2

...
xn + yn











α











x1

x2

...
xn











=











αx1

αx2

...
αxn











The zero vector is

0 =











0
0
...
0











and negatives are given by

−











x1

x2

...
xn











=











−x1

−x2

...
−xn











.
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With this information, it is very easy to check the eight axioms of a vector
space. The only obstacle is the amount of paper it takes up, not the actual
process of completing the checks!

Comment: We could instead work with row vectors x = (x1, x2, . . . , xn).
In many ways, there is very little to distinguish between them and the
principal difference is notational. For example, many applied mathematics
modules will use row vectors for much of what they do. It is, on the whole,
often more convenient to use row vectors than column vectors since they
take up less space on the page. For the sake of the study of linear algebra,
there is one principal difference and it is for this reason that we shall use
column vectors. They will fit into our theory much better when we come
to study linear transformations and, in particular, the matrix of a linear
transformation.

We shall now give some further examples of vector spaces to illustrate
how widely the concept is applicable. For the first, we shall check all eight
axioms of a vector space, just to indicate how the process is completed.
For those that follow, we shall omit most of the checking since it is usually
straightforward.

Example 2.3 Let Mm×n(F ) be the set of m×n matrices with entries from
a field F (as always, F = R or C in this course). Show that Mm×n(F ) forms
a vector space with respect to the usual addition and scalar multiplication.

Solution: We are using the usual definition of addition of matrices, while
scalar multiplication is to be where each entry of a matrix is multiplied by
the scalar. Thus if A = [aij ] and B = [bij ] are matrices, we define

A + B = [aij + bij ] and αA = [αaij ].

First note that these both give us an m×n matrix, so we do have operations
on Mm×n(F ).

We now check the axioms of a vector space.

(i) A + B = B + A holds for all matrices A,B ∈ Mm×n(F ).

(ii) (A+B)+C = A+(B +C) holds for all matrices A,B,C ∈ Mm×n(F ).

(iii) Let 0 denote the matrix all of whose entries are zero. Then A + 0 =
[aij + 0] = [aij ] = A for all A ∈ Mm×n(F ).

(iv) Given A = [aij], take −A = [−aij] be the matrix whose entries are the
negatives of those in A. Then A + (−A) = 0.

(v) If A = [aij ] and B = [bij ], then

α(A + B) = α([aij ] + [bij ]) = α[aij + bij ] = [α(aij + bij)]

= [αaij ] + [αbij ] = α[aij ] + α[bij ] = αA + αB.
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(vi) A similar calculation shows (α + β)A = αA + βA for α, β ∈ F and
A ∈ Mm×n(F ). (Supply the missing details!)

(vii) Equally (αβ)A = α(βA) for all α, β ∈ F and A ∈ Mm×n(F ). (Supply
the missing details!)

(viii) Finally 1A = 1[aij ] = [1aij ] = [aij] = A for all A ∈ Mm×n(F ).

Hence the space of m × n matrices forms a vector space over F .

Example 2.4 Let Pn be the set of polynomials

f(x) = a0 + a1x + a2x
2 + · · · + anxn

of degree at most n with coefficients from R with the usual addition (add
the coefficients) and scalar multiplication (multiply each coefficient by the
scalar). Show that Pn is a vector space over R.

Sketch solution: Consider f(x), g(x) ∈ Pn, say

f(x) = a0+a1x+a2x
2+· · ·+anxn and g(x) = b0+b1x+b2x

2+· · ·+bnxn,

where all ai and bi are real coefficients. Then

f(x) + g(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x
2 + · · · + (an + bn)xn ∈ Pn

and, if α ∈ R,

αf(x) = (αa0) + (αa1)x + (αa2)x
2 + · · · + (αan)xn ∈ Pn.

The axioms (i)–(viii) are easily checked (in exactly the same way as was
done in Example 2.3), the zero vector in Pn is

0 = 0 + 0x + 0x2 + · · · + 0xn

while, for f(x) as above,

−f(x) = (−a0) + (−a1)x + (−a2)x
2 + · · · + (−an)xn.

Example 2.5 Let FR denote the set of all real-valued functions of a real
variable f : R → R. This set forms a vector space over R, where the addition
and scalar multiplication are given by

(f + g)(x) = f(x) + g(x) (αf)(x) = αf(x).

The zero vector is the function f0 given by

f0(x) = 0 for all x ∈ R.
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Basic properties of vector spaces

Proposition 2.6 Let V be a vector space over a field F . Let v ∈ V and
α ∈ F . Then

(i) α0 = 0;

(ii) 0v = 0;

(iii) if αv = 0, then either α = 0 or v = 0;

(iv) (−α)v = −αv = α(−v).

Proof: (i) Let w = α0. Use condition (v) of Definition 2.1 and the fact
that 0 + 0 = 0 by condition (iii) to give

w = α0 = α(0 + 0) = α0 + α0 = w + w.

Now add −w to both sides to yield

0 = w + (−w) = (w + w) + (−w) = w + (w + (−w)) = w + 0 = w

(using conditions (ii) and (iv) from the definition).
(ii) Use condition (vi) of Definition 2.1 to give

0v = (0 + 0)v = 0v + 0v

and then add −0v just as in part (i) to give 0 = 0v.
(iii) Suppose that αv = 0, but that α 6= 0. Then we can multiply by 1/α

to give
1

α
(αv) = 1

α
0 = 0 (by part (i)).

Now use conditions (viii) and (vii) of the definition to give

v = 1v =
(

1

α
· α

)

v = 1

α
(αv) = 0.

Hence if αv = 0, either α = 0 or v = 0.
(iv)

αv + (−α)v = (α + (−α)) v = 0v = 0,

so if we add −αv to both sides so as to cancel the first term on the left, we
deduce

(−α)v = −αv.

Similarly,
αv + α(−v) = α(v + (−v)) = α0 = 0

and again adding −αv, we deduce

α(−v) = −αv.

�
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Subspaces

Definition 2.7 Let V be a vector space over a field F . A subspace W of V
is a non-empty subset of V which itself forms a vector space under the same
operations.

Hence, a subspace must obey all the axioms of its “parent” space. To
check whether a set forms a subspace, we do not actually need to check
every axiom. Most of them are immediately inherited from the fact that
they hold in the parent space. Actually it is sufficient to ensure the closure
of the operations within W . So to check whether W is a subspace of V , we
need to check

• if v,w ∈ W , then v + w ∈ W ;

• if v ∈ W and α is any scalar, then αv ∈ W .

From these two conditions, all other axioms follow. For example, setting
α = 0 in the second condition shows that

0 = 0v ∈ W.

(Here we use the fact that W is non-empty to find at least one vector v in W .)
Hence W contains the zero vector of V and this ensures that axiom (iii) of
a vector space is inherited by W .

Example 2.8 Let W be the set of all vectors





x
x
x





within the vector space R
3. Show that W is a subspace of R

3.

Solution: We need to show that W is non-empty and satisfies the above two
conditions (i.e., is closed under addition and scalar multiplication). Taking
x = 0 shows that

0 =





0
0
0



 ∈ W,

so W is non-empty. Now if v and w are vectors in W , say

v =





x
x
x



 and w =





y
y
y



 ,
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then

v + w =





x
x
x



 +





y
y
y



 =





x + y
x + y
x + y



 ∈ W

and, for any scalar α ∈ R,

αv = α





x
x
x



 =





αx
αx
αx



 ∈ W.

Hence W is a subspace of R
3.

Example 2.9 Let F be a field and V = M2×2(F ) be the vector space of all
2 × 2 matrices with entries from F . Show that the set W of all diagonal
matrices is a subspace of V .

Solution: Here

W =

{(

a 0
0 b

) ∣

∣

∣

∣

a, b ∈ F

}

⊆ M2×2(F ).

This set is non-empty since, for example, it contains the zero matrix (take
a = b = 0). Now let A,B ∈ W , say

A =

(

a 0
0 b

)

and B =

(

c 0
0 d

)

.

Then

A + B =

(

a + c 0
0 b + d

)

∈ W

and, if α is a scalar from F , then

αA =

(

αa 0
0 αb

)

∈ W.

Hence W is closed under addition and scalar multiplication, so we conclude
W is a subspace of V = M2×2(F ).

One might wonder whether all non-empty subsets of a vector space are
actually subspaces, but it is easy to find examples of subsets which are not
closed under addition or are not closed under scalar multiplication.

Example 2.10 Let

S =

{





x
y
1





∣

∣

∣

∣

∣

x, y ∈ R

}

.

Show that S is not a subspace of R
3.
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Solution: We show that S is not closed under addition. For example,

v =





0
0
1



 and w =





1
0
1





both lie in S, but

v + w =





1
0
2



 6∈ S.

Hence S is not a subspace of R
3.

Example 2.11 Consider the vector space P3 of all polynomials of degree
at most 3 with real coefficients and let T be the subset of all polynomials of
degree exactly 3. Show that T is not a subspace of P3.

Solution: The set T contains the polynomials x3 and 1 + x2 − x3, but

x3 + (1 + x2 − x3) = 1 + x2 6∈ T.

Hence T is not closed under addition and so is not a subspace.
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Chapter 3

Linear Independence and

Bases

Spanning sets

In a vector space we can multiply vectors by scalars and then add them. We
shall investigate what happens if we apply such operations to some fixed set
of vectors.

Throughout the following discussion we fix a vector space V over a field F
and let A = {v1, v2, . . . , vk} be some fixed set of vectors in V .

Definition 3.1 A vector v is a linear combination of the vectors in A if
there are scalars α1, α2, . . . , αk in F such that

v = α1v1 + α2v2 + · · · + αkvk.

The set of all linear combinations of the vectors in A is called the span
of A . We denote this by Span(A ) or Span(v1, v2, . . . , vk).

Theorem 3.2 Let A = {v1, v2, . . . , vk} be a set of vectors in a vector
space V (over a field F ). Then the span of A is a subspace of V .

As well as saying that W is the span of A in this situation, we shall also
say that A is a spanning set for the space W .

Proof: Write W = Span(A ). First taking αi = 0 for all i, we see that
W contains

0v1 + 0v2 + · · · + 0vk = 0

(by Proposition 2.6(ii)). Hence at least W is non-empty.
Now let v,w ∈ W , so

v = α1v1 + α2v2 + · · · + αkvk and w = β1v1 + β2v2 + · · · + βkvk
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for some scalars αi and βi. Hence

v + w = (α1 + β1)v1 + (α2 + β2)v2 + · · · + (αk + βk)vk ∈ W

and if α is any scalar in F then

αv = (αα1)v1 + (αα2)v2 + · · · + (ααk)vk ∈ W.

Hence W is a subspace of V . �

Example 3.3 Define

e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1



 .

Show that {e1, e2, e3} is a spanning set for R
3.

We refer to this as the standard spanning set.

Solution: A typical element in Span(e1, e2, e3) has the form

xe1 + ye2 + ze3 = x





1
0
0



 + y





0
1
0



 + z





0
0
1



 =





x
y
z





for x, y, z ∈ R. Hence Span(e1, e2, e3) = R
3.

Example 3.4 Let

A =

{(

1 0
0 0

)

,

(

0 0
0 1

)}

.

Determine the subspace of M2×2(F ) spanned by the set A .

Solution: A typical element in the space spanned by A has the form

α

(

1 0
0 0

)

+ β

(

0 0
0 1

)

=

(

α 0
0 β

)

.

Hence Span(A ) is the space of all diagonal 2 × 2 matrices.

Example 3.5 Let V = R
3 be the space of real vectors of length 3. Let

A =











1
1
0



 ,





0
0
1











.

Describe the subspace of V spanned by A .
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Solution: A typical vector in the space spanned by A has the form

v = α





1
1
0



 + β





0
0
1



 =





α
α
β



 .

So a vector v =





x
y
z



 lies in the subspace Span(A ) if and only if x = y.

Hence the subspace of V is the plane in R
3 with equation x − y = 0.

Linear independence

Definition 3.6 Suppose that V is a vector space over a field F . A set A =
{v1, v2, . . . , vk} of vectors is called linear independent if the only solution to
the equation

α1v1 + α2v2 + · · · + αkvk = 0

(with αi ∈ F ) is α1 = α2 = · · · = αk = 0.
If A is not linearly independent, we shall call it linearly dependent.

Proposition 3.7 Let A be a set of vectors in a vector space V .

(i) The set A is linearly independent if and only if no vector in the set
can be expressed as a linear combination of the others.

(ii) The set A is linearly dependent if and only if some vector in the set
can be expressed as a linear combination of the others.

Proof: The two statements are equivalent. We shall prove the second.
Suppose A = {v1, v2, . . . , vk} is linear dependent. This means that there

exist scalars α1, α2, . . . , αk, not all zero, such that

α1v1 + α2v2 + · · · + αkvk = 0.

Let us suppose that it is αj that is non-zero. Rearrange the previous equa-
tion to

αjvj = −(α1v1 + · · · + αj−1vj−1 + αj+1vj+1 + · · · + αkvk).

Therefore

vj =

(

−α1

αj

)

v1 + · · ·+
(

−αj−1

αj

)

vj−1 +

(

−αj+1

αj

)

vj+1 + · · ·+
(

−αk

αj

)

vk.

Hence vj is a linear combination of the other vectors v1, . . . , vj−1, vj+1,
. . . , vk in A .
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Conversely, suppose one of the vectors in A = {v1, v2, . . . , vk} is a linear
combination of the others, say

vj = β1v1 + · · · + βj−1vj−1 + βj+1vj+1 + · · · + βkvk.

Rearranging, we obtain

β1v1 + · · · + βj−1vj−1 + (−1)vj + βj+1vj+1 + · · · + βkvk = 0.

This is an equation expressing the linear dependence of the vectors in A

since not all coefficients are non-zero (the vj has −1 as its coefficient). Hence
A is linear dependent. �

Example 3.8 Show that the vectors

e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1





in R
3 are linearly independent.

Solution: Consider the equation

α1e1 + α2e2 + α3e3 = 0.

We need to show that the only solution for α1, α2 and α3 is the zero solution.
The left-hand side of the equation equals

α1e1 + α2e2 + α3e3 = α1





1
0
0



 + α2





0
1
0



 + α3





0
0
1



 =





α1

α2

α3



 .

Hence we solve




α1

α2

α3



 =





0
0
0



 ,

which forces
α1 = α2 = α3 = 0.

Hence the set of vectors {e1, e2, e3} is linearly independent.

Example 3.9 Show that

{(

1 0
0 0

)

,

(

0 1
0 0

)}

is a linearly independent set of vectors in the vector space M2×2(F ) of 2 ×
2 matrices over the field F .
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Solution: We solve

α

(

1 0
0 0

)

+ β

(

0 1
0 0

)

= 0 =

(

0 0
0 0

)

;

that is,
(

α β
0 0

)

=

(

0 0
0 0

)

.

Hence α = β = 0 and we conclude that our set is linearly independent.

Example 3.10 Show that the following set of vectors in R
3 is linearly de-

pendent:

A =











1
0
1



 ,





0
1
0



 ,





1
1
1











.

Solution: Note that




1
1
1



 =





1
0
1



 +





0
1
0



 .

Hence one vector in A can be expressed as a linear combination of the
others, so A is linearly dependent.

If we rearrange this equation we arrive at

1 ·





1
0
1



 + 1 ·





0
1
0



 + (−1)





1
1
1



 = 0.

This equation also shows that A is not linearly independent since we have
non-zero solutions to the equation expressing linear dependence.

Example 3.11 Determine whether the set

A =











1
2
1



 ,





1
1
2



 ,





1
0
1











is a linearly independent set in R
3.

Solution: We attempt to solve

α1





1
2
1



 + α2





1
1
2



 + α3 +





1
0
1



 = 0;

that is,




1 1 1
2 1 0
1 2 1









α1

α2

α3



 =





0
0
0



 . (3.1)
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Clearly α1 = α2 = α3 = 0 is a solution to this equation. We are interested
in whether this is the only solution. One way of proceeding would be to
simply apply the usual method (from MT1002) for solving such systems of
linear equations. Indeed, this will produce a perfectly valid solution.

An alternative method, however, is to make use of Theorem 1.19 to tell
us that Equation (3.1) has a solution if and only if the matrix

M =





1 1 1
2 1 0
1 2 1





is invertible. We calculate

detM = det

(

1 0
2 1

)

− det

(

2 0
1 1

)

+ det

(

2 1
1 2

)

= 1 − 2 + (4 − 1)

= 2 6= 0.

Hence M is invertible, so Equation (3.1) has a unique solution, namely
α1 = α2 = α3 = 0. Therefore A is linearly independent.

Bases

We now put together the two concepts introduced so far in this chapter.

Definition 3.12 Let V be a vector space over a field F . A subset B of V
is called a basis if

(i) B is a spanning set for V , and

(ii) B is linearly independent.

Throughout this course, we shall assume that any vector space we work
with has a finite basis (that is, a basis containing only a finite number of
vectors). Linear algebra can be done with infinite bases, but we shall avoid
such complications here.

Theorem 3.13 Let B be a basis for a vector space V . Then every vector
in V can be expressed in precisely one way as a linear combination of the
vectors in the basis B.

Proof: Suppose that B = {v1, v2, . . . , vk}. Since B is, in particular, a
spanning set for V , every vector in V is a linear combination of the vectors
in B. We need to use the fact that B is linearly independent to show that
every such linear combination is unique.
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Let v ∈ V and suppose that we have two linear combination expressions
for v in terms of B, say

v = α1v1 + α2v2 + · · · + αkvk = β1v1 + β2v2 + · · · + βkvk. (3.2)

Rearranging the terms we obtain

(α1 − β1)v1 + (α2 − β2)v2 + · · · + (αk − βk)vk = 0.

However, B is linearly independent, so the only possible way that a lin-
ear combination of the vectors in B can equal the zero vector 0 is if all
coefficients involved are zero. Hence

α1 − β1 = α2 − β2 = · · · = αk − βk = 0;

that is,
α1 = β1, α2 = β2, . . . , αk = βk.

Hence the coefficients occurring in Equation (3.2) are the same and we con-
clude that every linear combination expression for v in terms of the basis B

is indeed unique. �

Example 3.14 The set of unit vectors {e1, e2, e3} form a basis for R
3.

Indeed, we saw in Example 3.3 that this set spans R
3, while Example 3.8

tells us that it is linearly independent.
We also call this set the standard basis for R

3.

Example 3.15 Show that {1, x, x2} forms a basis for the space P2 of all
polynomials of degree at most 2 with real coefficients.

Solution: Let B = {1, x, x2}. First note that if f(x) is any polynomial
in P2, then it has the form

f(x) = a0 + a1x + a2x
2

and so f(x) is a linear combination of the polynomials 1, x and x2. Hence
B is a spanning set for P2.

To determine linear independence, note that a0 + a1x + a2x
2 = 0 if and

only if a0 = a1 = a2 = 0. Hence B is a linearly independent set.
Hence B is a basis for P2.

Example 3.16 Show that

B =

{(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)}

is a basis for the vector space M2×2(F ) of all 2×2 matrices over the field F .
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Solution: First note that
(

a b
c d

)

= a

(

1 0
0 0

)

+ b

(

0 1
0 0

)

+ c

(

1 0
0 0

)

+ d

(

0 0
0 1

)

,

so every matrix in M2×2(F ) is a linear combination of the set B. Hence
B is a spanning set for our vector space.

Secondly if

a

(

1 0
0 0

)

+ b

(

0 1
0 0

)

+ c

(

1 0
0 0

)

+ d

(

0 0
0 1

)

=

(

0 0
0 0

)

,

that is, if
(

a b
c d

)

=

(

0 0
0 0

)

,

then a = b = c = d = 0. This demonstrates that B is a linearly independent
set.

Hence B is a basis for M2×2(F ).

The next example shows that a basis for a vector space V need not be
unique. (Indeed, very few vector spaces have a unique basis.)

Example 3.17 Consider the following three polynomials

p1(x) = 1 + 2x + x2, p2(x) = 1 + x + 2x2, p3(x) = 1 + x2.

Show that C = {p1(x), p2(x), p3(x)} is a basis for P2.

Comparing with Example 3.15 shows that the natural basis for a space
is not necessarily the only basis.

Solution: We seek to show that every polynomial can be expressed in the
form

αp1(x) + βp2(x) + γp3(x)

(for this shows that C spans P2) and, moreover, that the coefficients α, β
and γ are uniquely determined. The latter will ensure linear independence,
since when we solve

αp1(x) + βp2(x) + γp3(x) = 0 = 0 · p1(x) + 0 · p2(x) + 0 · p3(x)

the uniqueness forces α = β = γ = 0, as required.
So let f(x) = a + bx + cx2 ∈ P2 and solve

αp1(x) + βp2(x) + γp3(x) = f(x); (3.3)

that is,

α(1 + 2x + x2) + β(1 + x + 2x2) + γ(1 + x2) = a + bx + cx2.
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Equating coefficients gives the system of three linear equations:

α + β + γ = a

2α + β = b

α + 2β + γ = c;

that is,




1 1 1
2 1 0
1 2 1









α
β
γ



 =





a
b
c



 .

We know that this has a unique solution if and only if the matrix

A =





1 1 1
2 1 0
1 2 1





is invertible (i.e., has non-zero determinant), by Theorem 1.19. Indeed,

detA = 1 − 2 + (4 − 1) = 2 6= 0,

so there is indeed a unique solution to the Equation (3.3).
We conclude that C is indeed a linearly independent spanning set, that

is, a basis for P2.

The basic fact that one needs to know about bases for vector spaces is
that they always exist. Indeed, if one starts with a spanning set for a vector
space, then one can produce a basis by omitting the correct choice of vectors.

Theorem 3.18 Let V be a vector space and let A = {v1, v2, . . . , vk} be a
set of vectors in V .

(i) If A spans V , then there is some subset of A which is a basis for V .

(ii) If A is linearly independent, then we can adjoin more vectors to A

to produce a set B which is a basis for V and contains A .

We omit the proof. The essential idea for the first is that if A is not
linearly independent, then some vector vi in A is a linear combination of
the other vectors. If we omit vi then we show that the resulting set also
spans V . Repeating this process produces a set which is linearly independent
and spans V ; that is, a basis for V .

Similarly, for the second the idea is that if A does not span V , then
there is some vector which is not a linear combination of the vectors in A .
Adjoining this vector will still give a linear independent set. Repeating this
process produces a basis when V is finite-dimensional. We summarise the
procedure by saying that every linearly independent set can be extended to
a basis for the vector space.

(More details will be provided in MT3501 for both facts.)
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Dimension

Definition 3.19 Let V be a vector space over a field F . We say that V is
finite-dimensional if it possesses a finite spanning set; that is, if V possesses
a finite basis. The dimension of V is the size of any basis for V and is
denoted by dimV .

For this definition to make sense, we need to know that the dimension
is uniquely determined by the vector space; i.e., that it is not possible for
a vector space to have bases of different sizes. We state this as a theorem,
though we defer the proof to MT3501.

Theorem 3.20 Every basis for a finite-dimensional vector space contains
the same number of vectors.

Example 3.21 The dimension of R
3 as a vector space over R is 3. Indeed,

in Example 3.14 we observed that {e1, e2, e3} is a basis for R
3.

Example 3.22 Example 3.15 tells us that P2 is a vector space of dimen-
sion 3 over R.

Example 3.23 Example 3.16 tells us that M2×2(F ) is a vector space of
dimension 4 over the field F .

Example 3.24 Consider the differential equation

d2y

dx2
− y = 0.

From MT1002, you will know know that the general equation to this equa-
tion is

y = Aex + Be−x

where A and B are any constants. This tells us that the set of all functions
which are solutions to the differential equation forms a vector space over R

and, moreover, that every solution can be written uniquely as a linear com-
bination of the two functions f1(x) = ex and f2(x) = e−x. Hence these two
functions form a basis for the vector space of solutions and we conclude that
the solution space has dimension 2.

This is a general phenomenon of solutions to linear differential equations.
A linear differential equation of degree n will typically have a solution space
of dimension n.
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Chapter 4

Linear Transformations

Linear transformations (also frequently called linear mappings) are functions
between vector spaces that have particularly nice properties. They actually
occur very widely in mathematics and its applications. In this chapter we
shall investigate the general properties of linear transformations, in partic-
ular noting the close connection between them and matrices.

Definition 4.1 Let V and W be two vector space over the same field F
of scalars. Consider a mapping T : V → W ; that is, to each vector v ∈
V the mapping associates a vector T (v) in W . We shall call T a linear
transformation or linear mapping if the following two conditions hold:

(i) T (u + v) = T (u) + T (v) for all u, v ∈ V , and

(ii) T (αv) = αT (v) for all v ∈ V and all scalars α ∈ F .

Example 4.2 One of the most standard examples of a linear transformation
is to take an m×n matrix A, say with real entries, and to define a mapping
R

n → R
m by multiplying by A:

v 7→ Av.

This is a linear transformation due to standard properties of matrix multi-
plication:

A(u + v) = Au + Av

and
A(αv) = α · Av

(for any vectors u,v ∈ R
n and any α ∈ R) are well-known (and easily

verified) properties.
Hence multiplication by A is a linear transformation R

n → R
m.
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Example 4.3 Define a function T : M2×2(F ) → M2×1(F ) by

T :

(

a b
c d

)

→
(

a
c

)

.

Show that T is linear.

Solution: We check the conditions:

T

((

a1 b1

c1 d1

)

+

(

a2 b2

c2 d2

))

= T

(

a1 + a2 b1 + b2

c1 + c2 d1 + d2

)

=

(

a1 + a2

c1 + c2

)

=

(

a1

c1

)

+

(

a2

c2

)

= T

(

a1 b1

c1 d1

)

+ T

(

a2 b2

c2 d2

)

and

T

(

α

(

a b
c d

))

= T

(

αa αb
αc αd

)

=

(

αa
αc

)

= α

(

a
c

)

= α · T
(

a b
c d

)

.

Hence T is a linear transformation.

Example 4.4 Recall that Pn denotes the space of real polynomials of degree
at most n. Define T : Pn → Pn−1 by

T : p 7→ dp

dx
.

Show that T is a linear transformation.

Solution: We simply use two standard properties of differentiation. If
p and q are polynomials (indeed, any differentiable functions) we know that

d

dx
(p + q) =

dp

dx
+

dq

dx
and

d

dx
(αp) = α

dp

dx
;

that is,
T (p + q) = T (p) + T (q) and T (αp) = αT (p)

for any p, q ∈ Pn and any α ∈ R, as required.

Example 4.5 Define T : R → R
3 by

T (x) =





x
2x
3x



 .

Show that T is a linear transformation.
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Solution:

T (x + y) =





x + y
2(x + y)
3(x + y)



 =





x
2x
3x



 +





y
2y
3y



 = T (x) + T (y)

and

T (αx) =





αx
2αx
3αx



 = α





x
2x
3x



 = αT (x).

Hence T is linear.

The following describes the basic properties of a linear transformation.
They are all direct consequences of the definition.

Proposition 4.6 Let T : V → W be a linear transformation between two
vector spaces over the field F . Then

(i) T (0) = 0; that is, the zero vector in V is mapped to the zero vector
in W by T ;

(ii) T (−v) = −T (v) for all v ∈ V ;

(iii) if v1, v2, . . . , vk ∈ V and α1, α2, . . . , αk are scalars in F , then

T (α1v1 + · · · + αkvk) = α1T (v1) + · · · + αkT (vk).

Proof: (i) We know that 0 ·0 = 0 (by Proposition 2.6), so applying T gives

T (0) = T (0 · 0) = 0 · T (0) = 0

(using Proposition 2.6(ii) again).
(ii) Proposition 2.6(iv) tells us that (−1)v = −1v = −v, so

T (−v) = T ((−1)v) = (−1)T (v) = −T (v).

(iii) Expanding using repeated application of the two conditions of Def-
inition 4.1, we see

T (α1v1 + · · ·+ αkvk) = T (α1v1) + · · ·+ T (αkvk) = α1T (v1) + · · ·+ αkT (vk).

�
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The matrix of a linear transformation

Proposition 4.7 Let V and W be vector spaces over a field F . Then any
linear transformation T : V → W is uniquely determined by its effect on a
basis for V .

Proof: Suppose that B = {v1, v2, . . . , vn} is a basis for V . We shall show
that if wi = T (vi) is known for each i, then the effect of T on any vector
in V is uniquely determined.

If v ∈ V , then as B is a basis, there exist unique scalars αi such that

v = α1v1 + · · · + αnvn

(see Theorem 3.13). Consequently, when we use Proposition 4.6(iii), we see

T (v) = T (α1v1 + · · · + αnvn)

= α1T (v1) + · · · + αnT (vn)

= α1w1 + · · · + αnwn.

Hence the effect of T on every vector in V is uniquely specified. �

Example 4.8 Let T : R
2 → R

3 be a linear transformation such that

T

(

1
1

)

=





0
1
0



 and T

(

0
1

)

=





1
0
1



 .

What is the value

T

(

a
b

)

?

Solution: Note that
(

1
0

)

=

(

1
1

)

−
(

0
1

)

,

so by linearity

T

(

1
0

)

= T

(

1
1

)

− T

(

0
1

)

=





0
1
0



 −





1
0
1



 =





−1
1
−1



 .

We are now able to calculate the effect of T on an arbitrary vector in R
2:

T

(

a
b

)

= T

(

a

(

1
0

)

+ b

(

0
1

))

= aT

(

1
0

)

+ bT

(

0
1

)
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= a





−1
1
−1



 + b





1
0
1





=





b − a
a

b − a



 .

Example 4.9 We shall now give an example to illustrate how the original
linear transformation can be recovered from the action on a basis.

Define a linear transformation T : R
3 → M2×2(R) by

T





a
b
c



 =

(

a a + b
c a + c

)

.

The effect of T on the standard basis for R
3 is then

T (e1) = T





1
0
0



 =

(

1 1
0 1

)

T (e2) = T





0
1
0



 =

(

0 1
0 0

)

T (e3) = T





0
0
1



 =

(

0 0
1 1

)

.

Now let us exploit linearity to reconstruct the general rule:

T





a
b
c



 = T (ae1 + be2 + ce3)

= aT (e1) + bT (e2) + cT (e3)

= a

(

1 1
0 1

)

+ b

(

0 1
0 0

)

+ c

(

0 0
1 1

)

=

(

a a + b
c a + c

)

.

We shall now describe how a matrix can be associated to any linear
transformation from one vector to another.

Let V and W be finite-dimensional vector spaces over the same field F .
Suppose that B = {v1, v2, . . . , vn} and C = {w1, w2, . . . , wm} are bases
for V and W , respectively, so that dim V = n and dimW = m. (Strictly
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speaking we are working with ordered bases here, since the indexing of the
basis vectors matters and reordering the vectors will change the matrix we
produce.)

Now let T : V → W be a linear transformation. We know that T is
uniquely determined by the images T (v1), T (v2), . . . , T (vn) of the basis
vectors. These images are vectors in W , so we can uniquely express each
one in terms of the basis C for W :

T (v1) = α11w1 + α21w2 + · · · + αm1wm

T (v2) = α12w1 + α22w2 + · · · + αm2wm

...
...

...

T (vn) = α1nw1 + α2nw2 + · · · + αmnwm

That is, the general formula is

T (vj) =

m
∑

i=1

αijwi for j = 1, 2, . . . , n.

(Take note of the order of subscripts appearing on the coefficients here. They
are not quite in the order one might expect!)

Definition 4.10 The m × n matrix [αij ] whose (i, j)th entry is the coeffi-
cient αij appearing above is called the matrix of T with respect to the bases
B and C .

There is no standard notation for this matrix, but we shall choose to
denote it by Mat(T ) or, when we wish to be explicit about the dependence
on the bases B and C , by MatB,C (T ).

Note that this matrix very much depends on the choice of bases for the
two vector spaces concerned. The crucial point to remember when con-
structing this matrix is that the first column consists of those coefficients
that arise when we write T (v1) in terms of the basis C . More generally, the
scalars appearing in the jth column are the coefficients that arise when we
write T (vj) in terms of the basis C .

Example 4.11 Consider the linear transformation T : R
3 → R

4 given by

T





x
y
z



 =









x
x + y

x + 2y + z
y + 3z









.

What is the matrix of T with respect to the standard bases for the vector
spaces?
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Solution: We calculate the effect of T on each of the basis vectors for R
3

and find the coefficients when these images are written in terms of the basis
for R

4:

T (e1) = T





1
0
0



 =









1
1
1
0









= 1









1
0
0
0









+ 1









0
1
0
0









+ 1









0
0
1
0









+ 0









0
0
0
1









T (e2) = T





0
1
0



 =









0
1
2
1









= 0









1
0
0
0









+ 1









0
1
0
0









+ 2









0
0
1
0









+ 1









0
0
0
1









T (e3) = T





0
0
1



 =









0
0
1
3









= 0









1
0
0
0









+ 0









0
1
0
0









+ 1









0
0
1
0









+ 3









0
0
0
1









We now write the coefficients appearing down the column of the matrix.
Thus the matrix of T with respect to the standard bases is

Mat(T ) =









1 0 0
1 1 0
1 2 1
0 1 3









.

So what does the matrix of a linear transformation do? If T : V → W
is a linear transformation, n = dim V , m = dim W and A = Mat(T ), then
A gives us a linear transformation A : Fn → Fm (by multiplying vectors
by the matrix). Moreover, A has the same effect on the standard bases for
Fn and Fm as T does on the bases for V and W that we are considering.
In particular, when we calculate the matrix A of a linear transformation
T : Fn → Fm with respect to the standard bases, then T actually is the
same as multiplication by the matrix A.

We can see this in the context of the above example. Indeed, for the
matrix

A = Mat(T ) =









1 0 0
1 1 0
1 2 1
0 1 3









,

we calculate

Av = A





x
y
z



 =









1 0 0
1 1 0
1 2 1
0 1 3













x
y
z



 =









x
x + y

x + 2y + z
y + 3z









= T (v).
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Example 4.12 Recall that Pn denotes the space of polynomials of degree at
most n with real coefficients. Let T : Pn → Pn−2 be the linear transformation
given by

T : p 7→ d2p

dx2
for a polynomial p.

Find the matrix of T relative to some bases for Pn and Pn−2.

Solution: A natural basis for Pn is {1, x, x2, x3, . . . , xn} consisting of all
monomials. A similar basis exists for Pn−2. We calculate the effect of T on
each element of the basis for Pn and write it in terms of the basis for Pn−2:

T (1) = 0

T (x) = 0

T (x2) = 2

T (x3) = 0 + 6x

T (x4) = 0 + 0x + 12x2

...

T (xn) = 0 + 0x + · · · + 0xn−1 + n(n − 1)xn−2

We now write the coefficients appearing down the columns of our matrix:

Mat(T ) =















0 0 2 0 0 . . . 0
0 0 0 6 0 . . . 0
0 0 0 0 12 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0 n(n − 1)















Example 4.13 (September 2003) A mapping T from R
2 to itself is de-

fined by

T :

(

x
y

)

7→
(

x + 2y
x − y

)

.

Show that this is a linear transformation. Find the matrix of this transfor-
mation with respect to the standard basis for R

2.

Solution: We check the two conditions for linearity:

T

((

x1

y1

)

+

(

x2

y2

))

= T

(

x1 + x2

y1 + y2

)

=

(

x1 + x2 + 2(y1 + y2)
x1 + x2 − (y1 + y2)

)

=

(

x1 + 2y1

x1 − y1

)

+

(

x2 + 2y2

x2 − y2

)

= T

(

x1

y1

)

+ T

(

x2

y2

)
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and

T

(

α

(

x
y

))

= T

(

αx
αy

)

=

(

αx + 2αy
αx − αy

)

= α

(

x + 2y
x − y

)

= αT

(

x
y

)

.

Hence T is a linear transformation.
Now we apply T to the standard basis of R

2:

T (e1) = T

(

1
0

)

=

(

1
1

)

= e1 + e2

T (e2) = T

(

0
1

)

=

(

2
−1

)

= 2e1 − e2

Hence the matrix of T with respect to the standard basis is

Mat(T ) =

(

1 2
1 −1

)

.

Rank and nullity

Definition 4.14 Let T : V → W be a linear transformation.

(i) The image of T consists of all images T (v) of vectors in V under T .
It is denoted by im T or by T (V ):

im T = T (V ) = {T (v) | v ∈ T }.

(ii) The kernel or nullspace of T consists of all vectors in V which are
mapped to the zero vector of W by T . It is denoted by ker T :

ker T = { v ∈ V | T (v) = 0 }.

Proposition 4.15 Let T : V → W be a linear transformation, where V and
W are vector spaces over a field F .

(i) If U is a subspace of V , then T (U) = {T (u) | u ∈ U } is a subspace
of W .

(ii) The image of T is a subspace of W .

(iii) The kernel of T is a subspace of V .

Proof: (i) Certainly T (U) is non-empty since U is non-empty. Now let
w1, w2 ∈ T (U). Then w1 = T (u1) and w2 = T (u2) for some u1, u2 ∈ U .
Hence

w1 + w2 = T (u1) + T (u2) = T (u1 + u2) ∈ T (U),
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since U is a subspace of V so u1 +u2 ∈ U . Similarly if α ∈ F and w ∈ T (U),
then w = T (u) for some u ∈ U . We calculate that

αw = αT (u) = T (αu) ∈ T (U),

since U is a subspace of V so αu ∈ U . We have shown than T (U) is
closed under addition and scalar multiplication. We conclude that T (U) is
a subspace of W .

(ii) This follows immediately from (i) since it is the special case that
U = V .

(iii) We know that T (0) = 0 and therefore 0 ∈ ker T . We are at least
therefore dealing with a non-empty subset of V . Now let v1, v2 ∈ ker T .
Then

T (v1 + v2) = T (v1) + T (v2) = 0 + 0 = 0

and we deduce that v1 + v2 ∈ ker T . Now let α ∈ F and v ∈ ker T . Then

T (αv) = αT (v) = α0 = 0

and we deduce that αv ∈ ker T . Hence ker T is closed under addition and
scalar multiplication, so it is a subspace of V . �

Now that we know that the image and the kernel of T : V → W are
subspaces of W and V , respectively, it makes sense to talk about their
dimensions. Consequently, we can make the following definition:

Definition 4.16 Let T : V → W be a linear transformation.

(i) The rank of T is the dimension of the image im T of T . We shall
denote this by rankT .

(ii) The nullity of T is the dimension of the kernel ker T of T . We shall
denote this by nullT .

Comment: The notations here are not uniformly established and they are
selected for convenience rather than for being definitive. Many authors use
different notations or, more commonly, no specific notation whatsoever for
these two concepts.

Example 4.17 Define the linear map T : R → R
3 by

T (x) =





x
2x
3x



 .

Find the rank and nullity of T .
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Solution: The image of T is

im T = {T (x) | x ∈ R }

=











x
2x
3x





∣

∣

∣

∣

x ∈ R







=







x





1
2
3





∣

∣

∣

∣

x ∈ R







,

the set of all scalar multiples of the vector





1
2
3



 .

Hence im T is the subspace spanned by the set consisting of this single non-
zero vector. This set is linearly independent (a set consisting of a single
non-zero vector is always linearly independent) and so we conclude that it is
a basis for im T . Hence the rank of T is 1. (The image of T has dimension 1.)

The kernel of T consists of those x ∈ R such that T (x) = 0. Now

T (x) = 0 ⇐⇒





x
2x
3x



 =





0
0
0



 ⇐⇒ x = 0.

Hence ker T = {0}, which is a zero dimensional space. Hence the nullity
of T is 0.

Example 4.18 Find the rank and nullity of the linear transformation from
R

2 to R
3 given by

T

(

x
y

)

=





x
x + y
x − y



 .

Solution: A vector in the image of T has the form

T

(

x
y

)

=





x
x + y
x − y



 = x





1
1
1



 + y





0
1
−1



 .

Hence the set

A =











1
1
1



 ,





0
1
−1
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is a spanning set for imT . However, this set is also linearly independent,
for if

α





1
1
1



 + β





0
1
−1



 =





0
0
0



 ,

then




α
α + β
α − β



 =





0
0
0





and we deduce α = β = 0. Hence A is a basis for im T and so

rankT = dim im T = 2.

The kernel of T consists of those vectors v for which T (v) = 0; that is,
we solve

T

(

x
y

)

=





x
x + y
x − y



 =





0
0
0





and we deduce that x = y = 0. Hence

ker T =

{(

0
0

)}

= {0},

which is a zero-dimensional space. Therefore nullT = 0.

Notice that in Example 4.17 that T : R → R
3 satisfies

rankT + null T = 1 + 0 = 1 = dim R

while in Example 4.18 our transformation T : R
2 → R

3 satisfies

rankT + nullT = 2 + 0 = 2 = dim R
2.

These are actually examples of a general phenomenon.

Theorem 4.19 (Rank-Nullity Theorem) Let T : V → W be a linear
transformation between finite-dimensional vector spaces over a field F . Then

rankT + nullT = dimV.

Proof: Let B = {v1, v2, . . . , vn} be a basis for ker T (so that n = null T )
and extend this to a basis C = {v1, v2, . . . , vn, vn+1, . . . , vn+k} for V (so that
dim V = n + k). We now seek to find a basis for im T .

If w ∈ im T , then w = T (v) for some v ∈ V . We can write v as a linear
combination of the vectors in the basis C , say

v = α1v1 + · · · + αn+kvn+k
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for some scalars α1, . . . , αn+k ∈ F . Then, applying T and using linearity,

w = T (v) = T (α1v1 + · · · + αn+kvn+k)

= α1T (v1) + · · · + αn+kT (vn+k)

= αn+1T (vn+1) + · · · + αn+kT (vn+k),

since T (v1) = · · · = T (vn) = 0 as v1, . . . , vn ∈ ker T . This shows that the
set D = {T (vn+1), . . . , T (vn+k)} spans im T .

Now we show that D is linearly independent. Suppose that

β1T (vn+1) + · · · + βkT (vn+k) = 0;

that is
T (β1vn+1 + · · · + βkvn+k) = 0.

Hence the vector
β1vn+1 + · · · + βkvn+k

belongs to the kernel of T . We know that B is a basis for ker T and hence

β1vn+1 + · · · + βkvn+k = γ1v1 + · · · + γnvn

for some γ1, . . . , γn ∈ F . Rearranging we obtain the equation

(−γ1)v1 + · · · + (−γn)vn + β1vn+1 + · · · + βkvn+k = 0.

This equation involves the vectors in the basis C for V . Therefore, since
C is linearly independent, we conclude that all the coefficients involved are
zero. In particular,

β1 = β2 = · · · = βk = 0,

which is what we needed to deduce that D is linearly independent.
Hence D = {T (vn+1), . . . , T (vn+k)} is a basis for im T and so

rankT = dim im T = k = (n + k) − n = dim V − nullT.

Thus
rankT + nullT = dimV,

as claimed. �

The advantage of this theorem is that it tells us that once we know either
the rank or the nullity of a linear transformation, then we can (pretty much
immediately) deduce the other. This, of course, saves us a considerable
amount of work.
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The rank of a matrix

We can also simplify the process of finding the rank of a linear transformation
by exploiting its matrix with respect to some bases. This involves what is
known as the rank of a matrix, which we shall now describe.

Definition 4.20 Let A be an m × n matrix.

(i) The columns of A can be viewed as (column) vectors in Fm. The
subspace of Fm spanned by these columns is called the column-space
of A.

The column-rank of A is the dimension of its column-space.

(ii) The rows of A can be viewed as (row) vectors in Fn. The subspace
of Fn spanned by these rows is called the row-space of A.

The row-rank of A is the dimension of its row-space.

Example 4.21 Consider the 3 × 3 identity matrix I. Its column-space is
spanned by its three columns





1
0
0



 ,





0
1
0



 ,





0
0
1





(viewed as elements of R
3). We have already observed that these three

vectors form a basis for R
3. Hence the column-space is the whole of R

3 and,
since dimR

3 = 3, the column-rank of I is 3.

Theorem 4.22 Let A be an m × n matrix over a field F . The following
numbers are equal:

(i) the row-rank of A;

(ii) the column-rank of A;

(iii) the rank of the linear transformation A : Fn → Fm given by multipli-
cation by A; that is, v 7→ Av.

Proof: We omit the proof that (i) and (ii) are equal. Full details can be
found, for example, on page 47 of Blyth & Robertson.

To show that (ii) and (iii) are equal, we shall simply show that the
column-space and the image of the linear transformation v 7→ Av are the
same subspace of Fm. Hence their dimensions are the same, which is what
we need to show. Let a1, a2, . . . , an denote the columns of A, so A has the
form

A =
(

a1 a2 . . . an

)

.
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Let {e1, e2, . . . , em} be the standard basis for Fn; that is,

ei =

























0
...
0
1
0
...
0

























,

with the 1 in the ith entry. Thus an arbitrary vector in Fn has the form

v =











x1

x2

...
xn











= x1e1 + x2e2 + · · · + xnen.

Hence

Av = A(x1e1 + x2e2 + · · · + xnen)

= x1 Ae1 + x2 Ae2 + · · · + xn Aen

and
Aei =

(

a1 a2 . . . an

)

ei = ai.

So
Av = x1a1 + x2a2 + · · · + xnan.

Therefore

im A = {Av | v ∈ Fn }
= {x1a1 + x2a2 + · · · + xnan | x1, x2, . . . , xn ∈ F }
= Span(a1,a2, . . . ,an).

Hence the image of A and the column-space are equal, so the rank and
column-rank are equal. �

In view of this result, we tend to simply refer to the rank of a matrix.
To find the rank of a matrix, we make use of the familiar row operations.
By applying row operations, we can reduce any matrix to what is known as
echelon form.

Definition 4.23 A matrix E is said to be in echelon form if

(i) all non-zero rows of E are above any rows consisting entirely of zeros
and
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(ii) each leading (non-zero) entry in a row is in a column to the right of
the leading entry of the row above it.

Thus a matrix in echelon form has the following general shape:

E =















0 0 ∗ ∗ · · ·
0 · · · · · · 0 ∗ . . .
0 · · · · · · · · · 0 ∗ . . .
...

. . . 0 ∗
0 0 · · · · · · 0















Theorem 4.24 If a matrix A is row-equivalent to a matrix E in echelon
form, then the rank of A is equal to the number of non-zero rows in E.

Example 4.25 Find the rank of the matrix

A =





1 2 3
2 5 6
3 4 7



 .

Solution: We first apply row operations to reduce A into echelon form:




1 2 3
2 5 6
3 4 7



 −→





1 2 3
0 1 0
0 −2 −2



 r2 7→ r2 − 2r1, r3 7→ r3 − 3r1

−→





1 2 3
0 1 0
0 0 −2



 r3 7→ r3 + 2r2.

This matrix in echelon form has three non-zero rows. We conclude that
A has rank 3.

Rank and the matrix of a linear transformation

Given a linear transformation T : V → W of two finite-dimensional vector
spaces V and W , we have already described how to construct the matrix of
the linear transformation. Suppose that dimV = n and dimW = m. Let
A = Mat(T ) be the matrix of T with respect to some bases for V and W .
Then A is an m × n matrix which encodes the linear transformation T . In
particular, the way that T behaves is essentially the same as the way that
v 7→ Aa behaves as a linear transformation A : Fn → Fm. In particular,
the following fact is true:

Theorem 4.26 Let T : V → W be a linear transformation and A = Mat(T )
with respect to some bases for V and W . Then

rankT = rankA.
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Theorem 4.22 tells us that the rank of A as a linear transformation is
equal to both its row-rank and its column-rank. We therefore have the fol-
lowing recipe for calculating the rank and nullity of a linear transformation.

• Let T : V → W be a linear transformation.

• Determine A = Mat(T ), with respect to some bases.

• Apply row operations to produce a matrix E in echelon form that is
row-equivalent to A.

• The rank of T is equal to the rank of A and this equals the number of
non-zero rows in E.

• Finally determine the nullity of T via the Rank-Nullity Theorem (that
is, Theorem 4.19).

This is usually a reasonably straightforward algorithmic process. Nev-
ertheless it is often not that much easier than determining a basis explicitly
for either the kernel or the image of T .

Example 4.27 Find the rank, nullity, kernel and a basis for the kernel of
the linear transformation R

4 → R
3 given by v 7→ Av where

A =





1 2 −1 4
2 4 3 5
−1 −2 6 −7



 .

Solution: The matrix of this linear transformation with respect to the
standard basis of the vector spaces is the original matrix A. We apply row
operations to reduce it to echelon form:

A →





1 2 −1 4
0 0 5 −3
0 0 5 −3





r2 7→ r2 − 2r1

r3 7→ r3 + r1

→





1 2 −1 4
0 0 5 −3
0 0 0 0



 r3 7→ r3 − r2

This last matrix is in echelon form and has two non-zero rows. We conclude
that our original matrix has rank 2. Then by the Rank-Nullity Theorem,
rankA + nullA = dim R

4 = 4. Hence the nullity of A equals 2.
To find the kernel, we solve Av = 0; that is,





1 2 −1 4
2 4 3 5
−1 −2 6 7













x
y
z
t









=





0
0
0



 .
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This is a system of linear equations which we solve by applying Gaussian
elimination to:





1 2 −1 4
2 4 3 5
−1 −2 6 7

0
0
0





But Gaussian elimination is performed by precisely the row operations we
used above, so we reduce to





1 2 −1 4
0 0 5 −3
0 0 0 0

0
0
0



 .

Hence we solve

x + 2y − z + 4t = 0 and 5z − 3t = 0.

The solutions to these equations is parametrized by y and t and are given
by z = 3

5
t and x = −2y − 17

5
t. Therefore

ker A =























−2y − 17

5
t

y
3

5
t
t









∣

∣

∣

∣

∣

y, t ∈ R















.

An arbitrary vector in the kernel has the form









−2y − 17

5
t

y
3

5
t
t









= y









−2
1
0
0









+ t









−17/5
0

3/5
1









.

We conclude that every vector in the kernel is a linear combination of the
two vectors appearing on the right-hand side here and it is easy to check
they are linearly independent. Hence























−2
1
0
0









,









−17/5
0

3/5
1























is a basis for the kernel of A.

48



Chapter 5

Eigenvalues, Eigenvectors

and Diagonalisation

In this section we shall be principally concerned with the situation that
we have a vector space V and a linear transformation T : V → V (that is,
from V back to itself). A particular case will be when we have a square
n × n matrix A viewed as a linear transformation A : Fn → Fn.

Eigenvalues and eigenvectors

Definition 5.1 Let V be a vector space and T : V → V be a linear trans-
formation. We say that a scalar λ is an eigenvalue of T if there is some
non-zero vector v in V such that

Tv = λv.

Any non-zero vector satisfying this equation will be called an eigenvector
for T associated to the eigenvalue λ.

In particular, if A is a square n × n matrix with entries from a field F ,
then λ ∈ F is an eigenvalue with corresponding eigenvector v ∈ Fn if

Av = λv and v 6= 0.

Example 5.2 Let V = R
2 and consider the matrix

A =

(

−1 3
3 −1

)

.

We calculate that
(

−1 3
3 −1

)(

1
1

)

=

(

2
2

)

= 2

(

1
1

)
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and
(

−1 3
3 −1

)(

1
−1

)

=

(

−4
4

)

= −4

(

1
−1

)

.

Hence

(

1
1

)

is an eigenvector for A with eigenvalue 2 and

(

1
−1

)

is an eigen-

vector for A with eigenvalue −4.

Finding eigenvalues and eigenvectors

Let T : V → V and let A = Mat(T ) be the matrix of T with respect to some
basis B for V . We seek to find a scalar λ and a non-zero vector v ∈ V such
that Tv = λv. This rearranges to

(λI − T )v = 0

and correspondingly we find

(λI − A)v = 0

for some v 6= 0 in Fn. (The entries of v are precisely the coefficients of v
when expressed as a linear combination of the vectors in the basis B.) For
such a non-zero vector v, the matrix λI − A cannot be invertible. Hence

λ is an eigenvalue of T if and only if det(λI − A) = 0.

We therefore make the following definition.

Definition 5.3 Let T : V → V be a linear transformation and let A be
the matrix of T with respect to some basis B for V . The characteristic
polynomial of T is

det(xI − A);

that is, we expand the determinant of the matrix involving the variable x
to obtain a polynomial in x.

It is a fact (delayed until MT3501) that the characteristic polynomial
does not depend on the choice of basis B for V .

We have observed that the eigenvalues of a linear transformation are the
roots of its characteristic polynomial. (Note that this is not the definition
of the eigenvalues: it is the method to find the eigenvalues. The definition
of eigenvalue — given in Definition 5.1 — makes sense even over infinite-
dimensional vector spaces while we cannot calculate a determinant of a
matrix in such a setting.) We then find the eigenvectors by solving the
equation Tv = λv for each eigenvalue λ that we have determined.

In the examples that follow, we shall consider a matrix A as a linear
transformation A : Fn → Fn (as in Example 4.2). Then the matrix of the
linear transformation A with respect to the standard bases is A itself and
so we find the eigenvalues by solving the equation det(xI − A) = 0.
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Example 5.4 Find the eigenvalues and corresponding eigenvectors of the
matrix

A =





1 −4 0
2 7 3
−2 −4 −2



 .

Solution: The characteristic polynomial of A is

det(xI − A) = det





x − 1 4 0
−2 x − 7 −3
2 4 x + 2





= (x − 1)
(

(x − 7)(x + 2) + 12
)

− 4
(

−2(x + 2) + 6
)

= (x − 1)(x2 − 5x − 14 + 12) − 4(2 − 2x)

= (x − 1)(x2 − 5x − 2) + 8(x − 1)

= (x − 1)(x2 − 5x − 2 + 8)

= (x − 1)(x2 − 5x + 6)

= (x − 1)(x − 2)(x − 3).

Hence the roots of the characteristic polynomial are 1, 2 and 3 and these
are the eigenvalues of A.

We now solve the equation Av = λv for each eigenvalue λ in turn seeking
a non-zero solution v.

Case λ = 1: Our equation Av = λv = v rearranges to (A − I)v = 0;
that is,





0 −4 0
2 6 3
−2 −4 −3









x
y
z



 =





0
0
0



 .

Thus we arrive at three equations:

−4y = 0, 2x + 6y + 3z = 0, −2x − 4y − 3z = 0.

The first tells us that y = 0 and then the last two both reduce to 2x + 3z =
0. (This is a general phenomenon of this process. The fact that λ is an
eigenvector will always ensure that there is a non-zero solution and hence
some redundancy in the equations.) We can take x to be any non-zero value
to obtain a non-zero solution of our equation. We shall choose x = 3 for
then z = −2x/3 = −2. Hence





3
0
−2



 is an eigenvector for A with eigenvalue 1.
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Case λ = 2: We solve (A − 2I)v = 0; that is,




−1 −4 0
2 5 3
−2 −4 −4









x
y
z



 =





0
0
0



 .

To solve this equation, let us apply row operations to the matrix (and the
vector appearing on the right-hand side, though since it is zero we shall
perceive no change!):





−1 −4 0
2 5 3
−2 −4 −4

0
0
0



 −→





−1 −4 0
0 −3 3
0 4 −4

0
0
0





r2 7→ r2 + 2r1

r3 7→ r3 − 2r1

Hence we obtain essentially two equations:

−x − 4y = 0, y − z = 0.

(Note that both the second and third rows give rise to scalar multiples of the
latter equation.) Given any non-zero choice of y, we now obtain a solution.
We shall choose y = 1, so that x = −4y = −4 and z = y = 1. Hence





−4
1
1



 is an eigenvector for A with eigenvalue 2.

Case λ = 3: We solve (A − 3I)v = 0; that is,




−2 −4 0
2 4 3
−2 −4 −5









x
y
z



 =





0
0
0



 .

Thus we obtain three equations

−2x − 4y = 0, 2x + 4y + 3z = 0, −2x − 4y − 5z = 0

which immediately reduce to

x + 2y = 0, z = 0.

Here we shall take y = 1, so that x = −2 and z = 0. Hence




−2
1
0



 is an eigenvector for A with eigenvalue 3.

Note that in each case, we always have some choice for our eigenvector.
This reflects the (easily verified) fact that if v is an eigenvector with eigen-
value λ for a linear transformation T , then any non-zero scalar multiple of v
is also an eigenvector with the same eigenvalue.
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Example 5.5 Find the eigenvalues and eigenvectors of the matrix

A =





2 1 1
0 1 0
0 0 1



 .

Solution: First we find the characteristic polynomial:

det(xI − A) = det





x − 2 −1 −1
0 x − 1 0
0 0 x − 1





= (x − 2)(x − 1)2.

Hence the eigenvalues (roots of the characteristic polynomial) are

λ = 2 and 1 (twice).

We now find the eigenvectors associated to each eigenvalue.

Case λ = 2: We solve (A − 2I)v = 0; that is,





0 1 1
0 −1 0
0 0 −1









x
y
z



 =





0
0
0



 .

We deduce that y = z = 0, while x may be arbitrary. Hence




1
0
0



 is an eigenvector for A with eigenvalue 2.

Case λ = 1: We solve (A − I)v = 0; that is,





1 1 1
0 0 0
0 0 0









x
y
z



 =





0
0
0



 .

Hence x + y + z = 0. Therefore two of the variable, say x and y, can be
arbitrary and the third is then determined. Taking x = 1 and y = 0 gives
the eigenvector





1
0
−1



 ,

while taking x = 0 and y = 1 gives the eigenvector




0
1
−1



 .
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It is easy to check that these last two vectors are linearly independent (for
example, neither is a scalar multiple of the other). Hence, although we have
a repeated eigenvalue, we have managed to find as two linearly independent
eigenvalues with eigenvalue 1.

It is not always the case that we can find as many linearly independent
eigenvectors as the eigenvalue occurs as a repeated root of the characteristic
polynomial. Investigating this situation is one of the most important topics
in linear algebra and it will be considered in greater detail in MT3501.

Change of basis

Recall the matrix A from Example 5.4:

A =





1 −4 0
2 7 3
−2 −4 −2



 .

In that example, we found three eigenvectors

v1 =





3
0
−2



 , v2 =





−4
1
1



 , v3 =





2
−1
0





with eigenvalues 1, 2 and 3, respectively. Using the methods from earlier in
the course, it is not difficult to verify that these three vectors are linearly
independent. Hence B = {v1,v2,v3} is a basis for R

3. We can therefore
consider the matrix of the linear transformation A : v 7→ Av with respect to
the basis B. However, the three vectors in B are eigenvectors, so when we
express the image of each of them in terms of B we see that

Av1 = v1, Av2 = 2v2, Av3 = 3v3.

We write the coefficients down the columns of the matrix:

MatB,B(A) =





1 0 0
0 2 0
0 0 3



 .

This is a diagonal matrix and this is precisely the point behind finding
eigenvectors. If we can find a basis B for our vector space consisting of
eigenvectors for a linear transformation T , then the matrix of T with respect
to B is a diagonal matrix.

But how is this new matrix related to the original one? We shall now
address this.
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Fix a vector space V over a field F and a linear transformation T : V →
V . Consider two different bases A and B for V . We shall determine how
MatA ,A (T ) and MatB,B(T ) are related. Let A = {v1, v2, . . . , vn} and
B = {w1, w2, . . . , wn}. Suppose that

MatA ,A (T ) = [αij ] and MatB,B(T ) = [βij ].

This means that

T (vj) =

n
∑

i=1

αijvi and T (wj) =

n
∑

i=1

βijwi

for j = 1, 2, . . . , n.
To determine how the αij and βij are related, the important thing to

remember that any vector in V can be uniquely expressed as a linear com-
bination of the members of a basis. In particular, we can write

wj =
n

∑

k=1

λkjvk (5.1)

and

vℓ =

n
∑

i=1

µiℓwi (5.2)

(for some coefficients λkj, µiℓ ∈ F ), so expressing each basis vector wj

from B in terms of the basis A and vice versa. From this, we calculate

T (wj) = T

( n
∑

k=1

λkjvk

)

=

n
∑

k=1

λkjT (vk)

=
n

∑

k=1

λkj

n
∑

ℓ=1

αℓkvℓ

=
n

∑

ℓ=1

n
∑

k=1

αℓkλkj

n
∑

i=1

µiℓwi

=
n

∑

i=1

n
∑

ℓ=1

n
∑

k=1

µiℓαℓkλkjwi

=
n

∑

i=1

( n
∑

ℓ=1

n
∑

k=1

µiℓαℓkλkj

)

wi.

This must be the unique expression for T (wj) as a linear combination of the
vectors in the basis B. Hence

βij =
n

∑

ℓ=1

n
∑

k=1

µiℓαℓkλkj.
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This formula is simply that expressing the multiplication of the matrices
involved. Specifically, if we write

A = MatA ,A (T ) = [αij ], B = MatB,B(T ) = [βij ]

P = [λij], Q = [µij],

then the above formula says

B = QAP.

However, it turns out that Q and P are also linked. Substituting (5.1)
into (5.2) gives

vℓ =

n
∑

i=1

µiℓ

n
∑

k=1

λkivk =

n
∑

k=1

( n
∑

i=1

λkiµiℓ

)

vk.

This must be the unique expression for vℓ as a linear combination of the
vectors in A = {v1, v2, . . . , vn}. Thus

(PQ)kl =

n
∑

i=1

λkiµiℓ = δkℓ =

{

1 if k = ℓ

0 if k 6= ℓ.

(This δkℓ is called the Kronecker delta.) So

PQ = I,

the n × n identity matrix. Similarly, substituting (5.2) into (5.1) yields
QP = I by the same argument. Hence

Q = P−1.

We have proved:

Theorem 5.6 Let V be a vector space of dimension n over a field F and
let T : V → V be a linear transformation. Let A and B be bases for V and
let A and B be the matrices of T with respect to A and B, respectively.
Then there exists an invertible matrix P such that

B = P−1AP.

The coefficient in the (i, j)th entry of P is found by writing each vector wj

in the basis B in terms of the vectors vi appearing in the basis A .

We mention briefly that precisely the same sort of argument (though
slightly more complicated because two change of bases are involved) estab-
lishes what happens if we have a linear transformation T : V → W and we
consider different bases for V and for W :
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Theorem 5.7 Let V and W be finite-dimensional vector spaces over a
field F and let T : V → W be a linear transformation. Suppose that
B and B′ are bases for V and C and C ′ be bases for W . Then there
exist invertible matrices P and Q such that

MatB′,C ′(T ) = Q−1 · MatB,C (T ) · P.

Moreover, the (i, j)th entry of P is the coefficient when the jth vector of B

is written in terms of the basis B′ and the (i, j)th entry of Q is the coefficient
when the jth vector of C is written in terms of the basis C ′.

Example 5.8 Let

A =





1 −4 0
2 7 3
−2 −4 −2



 .

Find a 3 × 3 matrix P such that P−1AP = D is a diagonal matrix.

Solution: This is the matrix we considered in Example 5.4. We found three
eigenvectors, namely

v1 =





3
0
−2



 , v2 =





−4
1
1



 , v3 =





2
−1
0



 ,

which have eigenvalues 1, 2 and 3, respectively. Let B = {v1,v2,v3} and
let A = {e1, e2, e3} be the standard basis for R

3. If P is the change of basis
matrix from A to B, then Theorem 5.6 says that P−1AP is the matrix of A
with respect to B, namely

P−1AP = MatB,B(T ) = D =





1 0 0
0 2 0
0 0 3



 .

To calculate the matrix P , we write each vector vi in B in terms of the
standard basis:

v1 =





3
0
−2



 = 3e1 − 2e3

v2 =





−4
1
1



 = −4e1 + e2 + e3

v3 =





2
−1
0



 = 2e1 − e2
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We write these coefficients down the columns of P :

P =





3 −4 2
0 1 −1
−2 1 0



 .

Definition 5.9 A linear transformation T : V → V of a finite dimensional
vector space V is said to be diagonalisable if there is a basis for V with
respect to which the matrix of T is represented by a diagonal matrix.

If A is an n × n matrix with entries from F , then it determines a linear
transformation A : Fn → Fn. If P is the change of matrix from the standard
basis to another basis B, then we have observed the matrix of A with respect
to the new basis B is P−1AP . The corresponding definition for matrices is
then:

Definition 5.10 Let A be a square matrix over a field F . We say A is
diagonalisable if there is an invertible matrix P such that P−1AP is diagonal.

A linear transformation T is diagonalisable if there is a basis B =
{v1, v2, . . . , vn} such that the matrix of T with respect to B has the form

MatB,B(T ) =













λ1 0 . . . 0

0 λ2

...
...

. . . 0
0 . . . 0 λn













.

This means that T (vi) = λivi for each i. Consequently:

Theorem 5.11 A linear transformation T : V → V is diagonalisable if and
only if there is a basis for V consisting of eigenvectors for T . �

Example 5.12 Let

A =





2 1 1
0 1 0
0 0 1



 .

Find a matrix P such that P−1AP is diagonal.

Solution: In Example 5.5, we determined the eigenvalues and linearly in-
dependent eigenvectors for this matrix, namely





1
0
0



 ,





1
0
−1



 ,





0
1
−1
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with eigenvalues 2, 1 and 1 respectively. The entries appearing in these
vectors are the coefficients when we write then in terms of the standard
basis for R

3. Hence the change of basis matrix is

P =





1 1 0
0 0 1
0 −1 −1





and P−1AP is the diagonal matrix whose entries are the eigenvalues:

P−1AP =





2 0 0
0 1 0
0 0 1



 .

[Exercise: Check via hand calculation this equation.]

Powers of matrices

The advantage of diagonal matrices is that it is much easier to calculate pow-
ers of a diagonal matrix. Suppose that A is a matrix which is diagonalisable,
say P−1AP = D, where D is diagonal. Rearranging we have

A = PDP−1.

Calculating successive powers:

A2 = PDP−1 · PDP−1 = PD2P−1

and
A3 = PDP−1 · PDP−1 · PDP−1 = PD3P−1,

etc. Thus, we can calculate powers of A by calculating powers of D and
multiplying by P and P−1. Calcuating powers of D is very easy, for if

D =













λ1 0 . . . 0

0 λ2

...
...

. . . 0
0 . . . 0 λn













,

then

Dm =













λm
1 0 . . . 0

0 λm
2

...
...

. . . 0
0 . . . 0 λm

n













.

So provided we have found all the eigenvalues λi of A and the change of
basis matrix P (via calculating the eigenvectors), we can calculate Am very
quickly. (Far more quickly than performing all the matrix multiplications!)
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Symmetric matrices

Definition 5.13 An n × n matrix A is called symmetric if AT = A.

Let A be an n × n symmetric matrix with real entries. It is a fact that
such a matrix is diagonalisable. Let B = {v1,v2, . . . ,vn} be a basis for R

n

consisting of eigenvectors for A and let λi be the eigenvalue corresponding
to the eigenvector vi. Thus

Avi = λivi for i = 1, 2, . . . , n. (5.3)

Proposition 5.14 If λi 6= λj, then vi and vj are orthogonal; that is,

vi · vj = 0,

where · denotes the usual scalar (or “dot”) product for vectors in R
n.

Proof: Recall that
vi · vj = v

T
i vj

where the right-hand side denotes the matrix multiplication of the vector vi

(which is then a 1 × n matrix!) and the transpose of the vector vj (an
n × 1 matrix). Taking the transpose of Equation (5.3) gives

v
T
i A = v

T
i AT = λiv

T
i .

Hence
v

T
i Avj = λiv

T
i vj.

On the other hand, using the fact that vj is also an eigenvector, we deduce

v
T
i Avj = v

T
i λjvj = λjv

T
i vj .

Subtracting these last two equations gives

(λi − λj)v
T
i vj = 0.

Since λi 6= λj, we can divide by λi − λj and conclude

vi · vj = v
T
i vj = 0,

as claimed. �

This establishes that eigenvectors for a symmetric matrix corresponding
to distinct eigenvalues are orthogonal. In fact, it can be established that if
A is a symmetric n × n matrix, then there is a basis for R

n consisting of
orthogonal eigenvectors for A.
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Let B = {v1,v2, . . . ,vn} be a basis for R
n consisting of orthogonal

eigenvectors for A. Let
ki = |vi| =

√
vi · vi

and replace each vi by 1

ki
vi. This has the consequence that each vector vi

now has unit length. Thus we may assume {v1,v2, . . . ,vn} is an orthonormal
set :

vi · vj = v
T
i vj = δij =

{

1 if i = j

0 if i 6= j.

Let P be the change of basis matrix from the standard basis of R
n to B;

that is, we write the entries of each vector vi down the columns of P . Thus

P =
(

v1 v2 . . . vn

)

(the ith column of P is the vector vi). Consider the product PTP :

PTP =











v
T
1

v
T
2

...
vn











(

v1 v2 . . . vn

)

=











v
T
1 v1 v

T
1 v2 . . . v

T
1 vn

v
T
2 v1 v

T
2 v2 . . . v

T
2 vn

...
...

. . .
...

v
T
nv1 v

T
nv2 . . . v

T
nvn











=













1 0 . . . 0

0 1
...

...
. . . 0

0 . . . 0 1













Hence PTP = I, the identity matrix. Rearranging, we deduce that P−1 =
PT.

Therefore, applying change of basis to the matrix A we conclude

PTAP = D

where D is the diagonal matrix containing the eigenvalues of A.

Definition 5.15 A matrix P whose inverse is equal to its transpose is called
orthogonal.

We have observed that if A is a real symmetric matrix, then the change
of basis matrix P can be taken to be orthogonal:
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Theorem 5.16 If A is a real symmetric matrix, then there exists an or-
thogonal matrix P such that PTAP = D is diagonal. �

Example 5.17 Find an orthogonal matrix which diagonalises

A =

(

3 1
1 3

)

.

Solution: The characteristic polynomial of A is

det

(

x − 3 −1
−1 x − 3

)

= (x − 3)2 − 1

= x2 − 6x + 8

= (x − 2)(x − 4).

Hence the eigenvalues of A are 2 and 4. We must now find orthonormal
eigenvectors.

Case λ = 2: We solve (A − 2I)v = 0:

(

1 1
1 1

)(

x
y

)

=

(

0
0

)

;

that is, x + y = 0. Hence
(

1
−1

)

is an eigenvector for A with eigenvalue 2. We now normalise:

∣

∣

∣

∣

(

1
−1

)∣

∣

∣

∣

2

=

(

1
−1

)

·
(

1
−1

)

= 12 + (−1)2 = 2.

Hence
1√
2

(

1
−1

)

is an eigenvector for A with eigenvalue 2 and unit length.

Case λ = 4: We solve (A − 4I)v = 0:

(

−1 1
1 −1

)(

x
y

)

=

(

0
0

)

;

that is, x − y = 0. Hence
(

1
1

)
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is an eigenvector for A with eigenvalue 4. Its length is
√

12 + 12 =
√

2, so

1√
2

(

1
1

)

is an eigenvector for A with eigenvalue 4 and unit length.
Hence

{(

1/
√

2
−1/

√
2

)

,

(

1/
√

2
1/
√

2

)}

is an orthonormal basis for R
2 consisting of eigenvectors for A. The change

of basis matrix is

P =

(

1/
√

2 1
√

2
−1/

√
2 1/

√
2

)

=
1√
2

(

1 1
−1 1

)

.

[Let us verify that this matrix P does indeed solve the problem:

PTP =
1

2

(

1 −1
1 1

)(

1 1
−1 1

)

=
1

2

(

2 0
0 2

)

= I.

Then

PTAP =
1√
2

(

1 −1
1 1

)(

3 1
1 3

)

1√
2

(

1 1
−1 1

)

=
1

2

(

2 −2
4 4

)(

1 1
−1 1

)

=
1

2

(

4 0
0 8

)

=

(

2 0
0 4

)

,

which is indeed the diagonal matrix containing the eigenvalues of A.]

Hermitian matrices

We now describe an analogous situation to that just presented, but now for
matrices with entries being complex numbers.

Definition 5.18 Let A be a matrix whose entries are complex numbers.
Write A† for the matrix obtained by taking the complex conjugate of each
entry of A and then the transpose of the resulting matrix. That is,

A† = (Ā)T.

We previously considered real symmetric matrices and observed that
they could be diagonalised using orthogonal matrices. The corresponding
types of matrices to be considered here are:
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Definition 5.19 (i) A Hermitian matrix is a matrix A with complex
numbers as entries such that A† = A.

(ii) A unitary matrix is a matrix U whose inverse is U †.

Thus, a unitary matrix is a square matrix U satisfying

UU † = U †U = I.

In the same way that a real symmetric matrix can be diagonalised by
an orthogonal matrix, here a Hermitian matrix can be diagonalised by a
unitary matrix:

Theorem 5.20 If A is a Hermitian matrix, then there exists a unitary
matrix U such that U †AU = D is diagonal.

Example 5.21 Find a unitary matrix that diagonalises the Hermitian ma-
trix

A =

(

1 i
−i 1

)

.

Note that

Ā =

(

1 −i
i 1

)

,

so A† = (Ā)T = A. Thus the previous theorem does indeed apply here.
The method of solution is the same as for real symmetric matrices: we find
eigenvectors that are of unit length.

Solution: The characteristic polynomial is

det

(

x − 1 −i
i x − 1

)

= (x − 1)2 + i2

= x2 − 2x + 1 − 1

= x2 − 2x = x(x − 2).

Hence the eigenvalues of A are 0 and 2.

Case λ = 0: We solve Av = 0:
(

1 i
−i 1

)(

z
w

)

=

(

0
0

)

;

that is, z + iw = 0. Hence
(

−i
1

)
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is an eigenvector with eigenvalue 0. Its magnitude is
√

|−i|2 + |1|2 =
√

2,

so the unit eigenvector is
1√
2

(

−i
1

)

.

Case λ = 2: We solve (A − 2I)v = 0:

(

−1 i
−i −1

)(

z
w

)

=

(

0
0

)

;

that is, −z + iw = 0. Hence
(

i
1

)

is an eigenvector with eigenvalue 2 and the unit eigenvector is

1√
2

(

i
1

)

.

The required unitary matrix is

U =
1√
2

(

−i i
1 1

)

.

[Let us now verify the claim. Note

U † =
1√
2

(

i −i
1 1

)T

=
1√
2

(

i 1
−i 1

)

,

so

U †U =
1

2

(

i 1
−i 1

)(

−i i
1 1

)

=
1

2

(

2 0
0 2

)

= I

(using the fact that i2 = −1). Then

U †AU =
1

2

(

i 1
−i 1

)(

1 i
−i 1

)(

−i i
1 1

)

=
1

2

(

0 0
−2i 2

)(

−i i
1 1

)

=
1

2

(

0 0
0 4

)

=

(

0 0
0 2

)

,

which (as required) is a diagonal matrix whose diagonal entries are the
eigenvalues of A.]
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We final fact, which we state without proof and which was a feature in
the previous example, is:

Proposition 5.22 If A is a Hermitian matrix, then all its eigenvalues are
real numbers.

66


