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Introduction

The following is an excerpt from the Student Handbook relating to this
course:

Aims: The aim of this module is to provide students with a taste
of (both) pure (and applied) mathematics, to give them insight
into areas available for study in later years and to provide them
with the opportunity to broaden their mathematical experience.

Objectives: By the end of the course students should have
gained facility with each of the topic mentioned below and should
be able to perform calculations and prove results. . . .

With these in mind, my goals in my half of this lecture course will be
roughly as follows:

• to introduce some aspects (and methods) of pure mathematics so as
to provoke interest and enthusiasm for future courses;

• to introduce the concept of proof in contexts which are not too unfa-
miliar.

Textbooks

This is a rather broad course and so it is rather difficult to find textbooks
that correspond very well to it. There are many books that between them
cover the material in the course, but usually they go much further than is
required. The following are possibilities for consulting:

• D. M. Burton, Elementary Number Theory (Allyn & Bacon, 1976)
[Short Loan, QA241.B8]

• R. P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied
Introduction (Addison-Wesley, 1989) [QA39.2G85F89]

• T. S. Blyth & E. F. Robertson, Essential Student Algebra, Vol. I
(Chapman & Hall, 1986) [Short Loan, QA155.B6R8]
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Those that are still in print are probably too expensive to consider buy-
ing, but they are worth consulting every so often for additional background
reading. These three are all available in the Mathematics and Physics Li-
brary (the first and third are in short loan). Equally most introductory
texts on (elementary) number theory, discrete mathematics and combina-
torics, and algebra would be of help.

What is Pure Mathematics?

To introduce this course, it is worth considering what pure mathematics
actually is. When undergoing sixth-form studies at school, one may well
believe that pure mathematics is about the development of mathematical
techniques for application in mathematical problems. However, these tech-
niques are precisely what is taught in the MT1002 course and yet it is this
current course that has “Pure Mathematics” in its title. So what is the real
meaning of “Pure Mathematics” and how does it differ from “Mathematical
Methods”?

The study of Pure Mathematics typically has the following format:

• an abstract definition is made of some mathematical object;

• investigation is made of such mathematical objects using arguments
that only exploit the details present within the abstract definition;

• the “theorems” established in the aforementioned investigation are
applied to any example that satisfies the original abstract definition.

This will be the pattern of the course. We shall make various definitions
and then establish theorems to develop the theory and apply the theory to
examples to illustrate the progress that has been made. Initially the level
of abstraction involved may take some getting used to, but in the end this
abstraction is both the power and the beauty behind pure mathematics.

The one skill that will need careful development, and which should evolve
over the course with practice, is the writing of proofs. Many of the questions
on the problem sheets will call for a proof. Initially these may be hard to
generate, but the key is usually to make careful logical deductions from the
given hypotheses and continued practice is essential. The proofs given for
theorems in lectures will illustrate this. The most common obstruction to
producing a proof is not knowing what the terms involved actually mean.
It is important to learn definitions, since otherwise statements of theorems
and questions cannot be understood.

Course content

The structure of the course will be roughly as follows:
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• Elementary Number Theory: integers, divisibility, greatest common
divisor and Euclidean algorithm, factorisation and primes, linear Dio-
phantine equations, congruences

• Functions and Relations: equivalence relations, application to congru-
ences

• Higher Diophantine Equations: Pythagorean triples

• Graphs: examples and properties

• Groups: permutations, introduction to group theory
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Section 1

Divisibility of Integers

Number Theory can be described as the study of the integers (and their
generalisations). Accordingly we are interested in properties of

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.

We may perform three of the basic arithmetical operations within Z:

• Addition; e.g., 4 + 5 = 9

• Multiplication; e.g., (−3)× 7 = −21

• Subtraction; e.g., 3− 8 = −5.

Division, however, is not always defined for any pair of integers. For
example, we cannot divide 3 by 2 to obtain an integer (although 3/2 is
defined in the set of all real numbers, it is not defined in Z). What we can
do in the integers is to divide and obtain a quotient and remainder.

Basic Fact 1.1 For every two integers a and b with b > 0 there exist unique
integers q and r such that

a = bq + r and 0 6 r < b.

We call q the quotient and r the remainder.

This fact should actually be familiar to many, though possibly its signif-
icance may not be so apparent. It will actually be key to most of what we
do in the Number Theory part of this course.

Example 1.2 (i) Dividing 17 by 5 gives: 17 = 5 · 3 + 2.

(ii) Dividing 20 by 4 gives: 20 = 4 · 5 + 0.
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(iii) The Basic Fact is also what underpins “long division” which was prob-
ably met at school. For example, if we attempt to divide 417 by 13 we
proceed as follows:

32
13 417

390
27
26
1

So 417 = 13 · 32 + 1.

We shall take the Basic Fact for granted. Essentially we shall be treating
it as though it is a defining property of the integers (an ‘axiom’) and then
proceed to deduce other information and theorems from it.

There is an alternatve: we could construct the integers by some method
and then prove that the Basic Fact holds. Indeed this can be done without
too much difficulty (at least, in the grand scheme of mathematics it is not
too difficult), but doing so would go well beyond what is expected for this
course. Also doing so might well be unhelpful and discouraging for students
meeting pure mathematics for the first time.

We shall actually be able to make considerable progress using only the
Basic Fact, and we begin with the following definition.

Definition 1.3 For two integers a and b with b 6= 0, we say that b divides a
(or that a is divisible by b) if a = bq for some integer q. We denote this
by b | a.

So when we say “b divides a” what we mean is that we get zero remainder
when we attempt to divide a by b (as in the Basic Fact).

To give a basic flavour of the sort of thing we shall encounter in the
number theory part of these lectures, we are already in a position where we
can prove the following:

Theorem 1.4 The square of an integer is either divisible by 4, or else it
gives remainder 1 when divided by 8.

Proof: Let a be any integer. When we attempt to divide a by 4, the
possible remainders are 0, 1, 2 or 3. We consider each of these possibilities
in turn.

• If a = 4k, then
a2 = (4k)2 = 16k2 = 4(4k2),

which is divisible by 4.
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• If a = 4k + 1, then

a2 = (4k + 1)2 = 16k2 + 8k + 1 = 8(2k2 + k) + 1,

so a2 has remainder 1 when we divide by 8.

• If a = 4k + 2, then

a2 = (4k + 2)2 = 16k2 + 16k + 4 = 4(4k2 + 4k + 1),

which is divisible by 4.

• Finally, if a = 4k + 3, then

a2 = (4k + 3)2 = 16k2 + 24k + 9 = 8(2k2 + 3k + 1) + 1,

so a2 has remainder 1 when we divide by 8.

Hence the theorem is proved. �

It is sensible to review this proof and wonder why it is the correct way
(or at least a sensible way) to proceed. After the event one can see it does
indeed do what it should, but how does one come up with the proof? Such
a question is important to address when as a student one will need to do
something similar for a question on a problem sheet or in an exam.

We knew that in the end we would be interested in the result when we
attempted to divide by 8. Accordingly it is sensible to consider the result
obtained when our original integer a is divided by something. It would seem
sensible to try to divide a by 2, 4 or 8. If one tries looking at the remainder
when we divide a by 2, then the proof does not quite work. (One instead
ends up proving the weaker result that a2 is either divisible by 4 or has
remainder 1 upon dividing by 4.) If instead one examines the remainder
upon dividing by 8, then the proof actually does work but turns out to be
twice as long as the one presented here. So looking at the remainder when
dividing by 4 turns out to be the best choice: it provides both a proof that
works and is not too long.

It is worth considering this sort of review after every proof and solution
to a question. (Hopefully most of the time it can be done quite quickly.)

One of the standard things that is done in pure mathematics is that
certain concepts are introduced and then examined in great detail. We have
introduced the concept of “dividing” and the sensible thing to do is decide
what properties it has. Accordingly, in the next lecture we shall prove the
following result:

Theorem 1.5 (Basic Properties of |||) Let a, b, c, d, x, y be any integers.

(i) a | 0, 1 | a, a | a.
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(ii) a | 1 if and only if a = ±1.

(iii) If a | b and c | d, then ac | bd.

(iv) If a | b and b | c, then a | c.

(v) If a | b and b | a, then a = ±b.

(vi) If a | b and a | c, then a | (bx+ cy).

Proof of Theorem 1.5: This turns out to be reasonably easy — provided
one keeps the definition of “divides” clear in one’s head. Two of the parts
(parts (iv) and (vi)) will be omitted and instead appear as exercises on
Tutorial Sheet I.

(i) We need to express 0 as a product of a and something else:

0 = a · 0

so
a | 0.

Similarly a = a · 1, so
1 | a and a | a.

(ii) The ‘if and only if’ means that we have two things to do. We need
on the one hand to show that if a | 1 then a = ±1; this is the ‘only if’ part.
On the other hand, we need to check that if a = ±1 then a | 1. This is the
‘if’ part and is in this case probably the easiest part.

To prove the ‘if’ part we need to show that both 1 and −1 do divide 1;
that is, we write 1 as a product of 1 and something and also write 1 as a
product of −1 and something.

Now 1 = 1 · 1 and 1 = (−1) · (−1), so 1 | 1 and −1 | 1. Therefore if
a = ±1, then a | 1.

Conversely, if a | 1, we have 1 = aq and so 1 = (−a)(−q). Therefore
either a or −a is a positive divides of 1. But no integer greater than 1 can
divide 1, so either a = 1 or −a = 1. Thus a = ±1.

(iii) Suppose a | b and c | d. This means that there are integers q and r
such that

b = aq and d = cr.

So
bd = aq · cr = (ac)(qr).

Hence
ac | bd.

(The proofs of (iv) and (vi) are similar.)
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(v) Suppose a | b and b | a. This means that there exist integers q and r
such that

b = aq and a = br.

Substitute the former into the latter:

a = aqr

Therefore
a(1− qr) = 0.

Hence either a = 0 or 1− qr = 0.
If a = 0, then b = aq = 0 and so a = b.
If 1 − qr = 0, then qr = 1. Thus q | 1, so q = ±1 by (ii). Hence

b = aq = ±a.
Therefore in either case a = ±b. �

Positional Notation

Finally for this section, we shall note that the Basic Fact also has an impact
on how we write a number down.

Recall first that the number 1234 means

1 · 1000 + 2 · 100 + 3 · 10 + 4 = 1 · 103 + 2 · 102 + 3 · 101 + 4 · 100.

Generalising this idea leads us to:

Definition 1.6 Fix a positive integer b > 1. If a is a positive integer, we
write

a = (dndn−1 . . . d1d0)b

to denote the expression of a in base b. The di are called the digits and the
notation means that

a = dnb
n + dn−1b

n−1 + · · ·+ d1b+ d0,

where 0 6 di < b for all i = 0, 1, . . . , n.

To write a positive integer a in base b, follow the following method:

Method:

• Divide a by b: a = bq + r.

• Then r is the last digit: d0 = r.

• Apply the method with a replaced by q to find the successive digits
d1, d2, . . . , dn.
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Example 1.7 Let us write 37 in base 5.

37 = 5 · 7 + 2 =⇒ Last digit is 2

7 = 5 · 1 + 2 =⇒ Next digit is 2

1 = 5 · 0 + 1 =⇒ Next digit is 1

Thus
37 = 1225.

Indeed
37 = 52 + 2 · 5 + 2.

Now let us write 37 in base 3.

37 = 3 · 12 + 1

12 = 3 · 4 + 0

4 = 3 · 1 + 1

1 = 3 · 0 + 1

So
37 = 11013 = 33 + 32 + 1.

We may apply the idea used to calculate the expression to prove that
the expression for an integer in base b both exists and is unique.

Theorem 1.8 (Positional Notation) Let b > 1 be a fixed integer. Every
positive integer a can be written as

a = dnb
n + dn−1b

n−1 + · · ·+ d1b+ d0

where n > 0 and 0 6 di < b for all i = 0, 1, . . . , n.
Moreover, if dn is required to be non-zero, then n and all the di are

uniquely determined.

Proof: We prove the existence part of the theorem by induction on a. If
a = 1, we take n = 0 and d0 = 1, and the result holds. Suppose then that
a > 1 and that the result holds for all integers smaller than a. First divide a
by b:

a = bq + d0

where 0 6 d0 < b. Now q = (a− d0)/b < a (since b > 1), so by induction

q = dnb
n−1 + dn−1b

n−2 + · · ·+ d1

where 0 6 di < b for all i. Thus

a = qb+ d0 = dnb
n + dn−1b

n−1 + · · ·+ d1b+ d0.
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This completes the induction step and the existence part of the proof is
established.

Now we turn to uniqueness. Suppose we have the above formula for a
and also another formula

a = emb
m + em−1b

m−1 + · · ·+ e1b+ e0

with em 6= 0 and dn 6= 0. Then

a = b(emb
m−1 + · · ·+ e1) + e0.

Since the quotient and the remainder in the Basic Fact are unique we must
have

e0 = d0

and
emb

m−1 + · · ·+ e1 = q = dnb
n−1 + · · ·+ d1.

Now applying induction to q, we see that m = n and di = ei for all i. This
establishes uniqueness. �
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Section 2

Greatest Common Divisors
and the Euclidean Algorithm

We have already met what it means for one integers to divide another. The
greatest common divisor of two integers is the largest integer that divides
both of them.

Definition 2.1 Let a and b be two integers (at least one of which is non-
zero). The greatest common divisor gcd(a, b) is the largest integer d which
divides both a and b.

Thus d = gcd(a, b) is defined by the following two properties:

• d | a and d | b

• If c | a and c | b, then c 6 d.

If gcd(a, b) = 1 then we say that a and b are coprime.

For rather small integers, it is fairly easy to calculate the greatest com-
mon divisor by inspection.

Example 2.2 (i) gcd(10, 15) = 5

(ii) gcd(16, 20) = 4

(iii) gcd(14, 25) = 1

For much larger pairs of integers we shall need to use a more advanced
tool to find the greatest common divisor. This is the Euclidean Algorithm
which we shall now describe.

The first thing to note is that the positive divisors of an integer a coin-
cide with those of −a. Accordingly we shall only describe the algorithm
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for calculating the greatest common divisor for positive integers. Since
gcd(a, b) = gcd(b, a), there is also no loss of generality in assuming that
the integers a and b involved satisfy a > b.

Algorithm 2.3 (Euclidean Algorithm)

Input: Two positive integers a and b with a > b.

Output: The greatest common divisor gcd(a, b).

Method: • Step 1: Define a1 = a, b1 = b.
Divide a1 by b1: a1 = b1q1 + r1.

• Step n: Define an = bn−1, bn = rn−1.
Divide an by bn: an = bnqn + rn.

• Repeat until rk = 0.

• The last non-zero remainder rk−1 is gcd(a, b).

Example 2.4 Calculate gcd(143, 559).

• Step 1: a1 = 559, b1 = 143.

559 = 143 · 3 + 130

• Step 2: a2 = 143, b2 = 130.

143 = 130 · 1 + 13

• Step 3: a3 = 130, b3 = 13.

130 = 13 · 10 + 0

Here r3 = 0 and so the last non-zero remainder is r2 = 13. Thus

gcd(143, 559) = 13.

Having a supposed algorithm is all well and good, but what reason do we
have to believe the algorithm really does what it is supposed to? On the face
of it the Euclidean Algorithm just returns some positive integer to us. We
must prove that this positive integer actually is the greatest common divisor
of the two input numbers. The first step in doing this is the following.

Lemma 2.5 If a, b, q and r are integers satisfying a = bq + r, then

gcd(a, b) = gcd(b, r).
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Proof: Let d1 = gcd(a, b) and d2 = gcd(b, r). By definition

d1 | a and d1 | b.

Therefore
d1 | (a− qb) = r.

From d1 | b and d1 | r, we deduce d1 6 d2 (since d2 is the greatest common
divisor of b and r).

Similarly d2 | b and d2 | r, so d2 | (bq + r) = a. Hence d2 divides both
a and b, so d2 6 d1 (as d1 is the greatest common divisor of a and b).

Therefore d1 = d2, as claimed. �

Let us now return to the Euclidean Algorithm.
Suppose a and b are positive integers with a > b to which we apply

the Algorithm. This generates for us a sequence of pairs of non-negative
integers:

a1, b1, a2, b2, . . . , ak, bk

defined by
a1 = a, b1 = b

and for n > 2 by

an = bn−1 and bn = rn−1 where an−1 = bn−1qn−1 + rn−1.

First note that since the remainder satisfies rn−1 < bn−1 when we divide,
we have

b1 > b2 > · · · > bk.

This tells us immediately that the process must stop: we do eventually hit
a point where the remainder is zero.

Furthermore Lemma 2.5 tells us that

gcd(an−1, bn−1) = gcd(bn−1, rn−1) = gcd(an, bn)

so
gcd(a1, b1) = gcd(a2, b2) = · · · = gcd(ak, bk).

At the last stage we have rk = 0, so ak = bkqk; that is, bk | ak. Hence

gcd(ak, bk) = bk = rk−1.

Therefore
gcd(a, b) = rk−1,

which is precisely what the Euclidean Algorithm gives us.

This means we have proved the first part of the following:
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Theorem 2.6 (i) The Euclidean Algorithm works: given positive inte-
gers a and b with a > b, applying the Euclidean Algorithm calcu-
lates gcd(a, b).

(ii) Given integers a and b (one of which is non-zero) there exist integers
u and v such that

gcd(a, b) = ua+ vb.

Proof of (ii): First note that gcd(a, 0) = a = 1 · a + 1 · 0, so the result
holds if one of a or b is zero.

To complete the proof of (ii) we may assume that a and b are both
positive, since the greatest common divisor is unchanged if we alter the sign
of a or b and to complete the proof we will simply need to change the sign
of the corresponding u or v as appropriate.

Without loss of generality assume a > b. Apply the Euclidean Algorithm
to a and b to generate a sequence of pairs of integers

a1, b1, a2, b2, . . . , ak, bk.

Claim: For all values of n, an and bn both have the form ua + vb (for
various u and v).

We prove the claim by induction on n. Firstly

a1 = a = 1 · a+ 0 · b, b1 = b = 0 · a+ 1 · b,

so the result holds for n = 1.
Suppose now that n > 1 and that

an−1 = ua+ vb, bn−1 = u′a+ v′b

for some integers u, v, u′ and v′. Now the steps in the Euclidean Algorithm
tell us that

an = bn−1 = u′a+ v′b

while

bn = rn−1 = an−1 − bn−1qn−1
= ua+ vb− qn−1(u′a+ v′b)

= (u− qn−1u′)a+ (v − qn−1v′)b.

Hence an and bn also have the required form. Therefore the claim holds by
induction.

Finally gcd(a, b) = rk−1 = bk (the last non-zero remainder). From the
claim this has the required form. �
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Example 2.7 Take a = 776, b = 544. Apply the Euclidean Algorithm:

• Step 1: a1 = 776, b1 = 544.

776 = 544 · 1 + 232

• Step 2: a2 = 544, b2 = 232.

544 = 232 · 2 + 80

• Step 3: a3 = 232, b3 = 80.

232 = 80 · 2 + 72

• Step 4: a4 = 80, b4 = 72.

80 = 72 · 1 + 8

• Step 5: a5 = 72, b5 = 8.

72 = 8 · 9 + 0

So
gcd(776, 544) = 8.

Reversing the steps enables us to write the greatest common divisor as a
multiple of 776 added to a multiple of 544:

8 = 80− 72

= 80− (232− 2 · 80)

= 3 · 80− 232

= 3(544− 2 · 232)− 232

= 3 · 544− 7 · 232

= 3 · 544− 7(776− 544)

= 10 · 544− 7 · 776.

So
gcd(776, 544) = 8 = (−7) · 776 + 10 · 544

and we need take u = −7 and v = 10.
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Section 3

Prime Numbers and Prime
Factorisation

Definition 3.1 A prime number is an integer p > 1 whose only positive
divisors are 1 and p.

Example 3.2 The first few prime numbers are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, . . . .

See the Prime Pages (http://www.utm.edu/research/primes/) for longer
lists of primes and much other interesting information.

The primes are useful since they form the ‘building blocks’ from which
all other integers are made.

Theorem 3.3 (Fundamental Theorem of Arithmetic) Any integer n
with n > 1 can be written uniquely in the form

n = pk11 p
k2
2 . . . pkrr

where the pi are prime numbers with p1 < p2 < · · · < pr and the ki are
positive integers.

Example 3.4 180 = 22 · 32 · 5.

Proof of Theorem 3.3: We shall need some auxiliary results before we
can establish the uniqueness part, but we can establish the existence part
straight away.

We proceed by induction on n. If n is a prime (including n = 2, the base
case in the induction), then already n is a product of prime powers (namely
a single prime) so there is nothing to prove. Assume then that n > 2 and
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that n factorises, say n = st where 1 < s, t < n. By induction, both s and t
can be written as a product of prime powers. Hence, upon multiplying these
expressions together, we see that n = st is also a product of prime powers.

This establishes existence of a prime decomposition. �

For the uniqueness part we prove:

Lemma 3.5 Let p be a prime number.

(i) If p | ab, then either p | a or p | b.

(ii) If p | a1a2 . . . as, then p | ai for some i.

(iii) If p | q1q2 . . . qt where each qi is a prime number, then p = qj for
some j.

Proof: (i) Assume p | ab. If p | a then the result holds. So assume that
p does not divide a. Then gcd(p, a) = 1 (since the only divisors of p are
1 and p and the latter does not divide a). Now part (ii) of Theorem 2.6 tells
us that

1 = up+ va

for some u, v ∈ Z. Hence
b = ubp+ vab.

Now p | ab (by assumption), so we deduce p | (ubp + vab); that is, p | b, as
required.

(ii) Proceed by induction on s. If s = 1, then p | a1 and there is nothing
to prove. Assume then that s > 1. We have p | bas where b = a1a2 . . . as−1.
Hence, by (i), either p | b or p | as. If the first holds, that is, p | b, then
by induction p divides one of a1, a2, . . . , as−1. Hence we deduce p | ai for
some i, completing the inductive step.

(iii) Apply (ii). We deduce p | qj for some j. But as qj is prime, its only
divisors are 1 and qj . Hence p = qj . �

We now return to the uniqueness part of Theorem 3.3. Assume that we
have expressed n in the required form in two different ways:

n = pk11 p
k2
2 . . . pkrr = ql11 q

l2
2 . . . q

lt
t . (3.1)

Note that pi | n = ql11 q
l2
2 . . . q

lt
t . Hence by Lemma 3.5 we have pi = qj for

some j. By the same argument, each ql is equal to some pm. We conclude
that

r = t, p1 = q1, p2 = q2, . . . , pr = qr.

Then Equation (3.1) becomes

pk11 p
k2
2 . . . pkrr = pl11 p

l2
2 . . . p

lr
r .
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Assume ki 6= li for some i. We may assume without loss of generality that
ki > li. Then dividing through by plii gives

pk11 . . . p
ki−1

i−1 p
ki−li
i p

ki+1

i+1 . . . p
kr
r = pl11 . . . p

li−1

i−1 p
li+1

i+1 . . . p
lr
r .

Hence pi divides pl11 . . . p
li−1

i−1 p
li+1

i+1 . . . p
lr
r . This implies that pi = pj (with

i 6= j) by Lemma 3.5(iii). This is a contradiction. Thus ki = li for all i and
we have established the required uniqueness. �

We have established that a positive integer can be factorised uniquely as
a product of prime numbers. This decomposition can also be used to find
all the divisors. Suppose

n = pk11 p
k2
2 . . . pkrr

where the pi are prime numbers with p1 < p2 < · · · < pr and ki ∈ N for all i.
Let m | n with m positive, so write

n = mu

for some integer u. We can decompose m as a product of prime powers

m = ql11 q
l2
2 . . . q

ls
s .

Then each qi | m, so qi | n and Lemma 3.5 gives

qi = pj for some j.

Thus m is a product of powers of some of the primes occurring in the prime
factorisation of n. The same argument can be applied to u: it too is a
product of powers of some of the pi. Let

m = ps11 p
s2
2 . . . psrr , u = pt11 p

t2
2 . . . p

tr
r

where si > 0 and ti > 0 for all i. Then

n = mu = ps1+t1
1 ps2+t2

2 . . . psr+tr
r .

The uniqueness of the expression implies

si + ti = ki for all i

and hence
0 6 si = ki − ti 6 ki for all i.

Theorem 3.6 Let n = pk11 p
k2
2 . . . pkrr be a positive integer expressed as a

product of prime powers (so each pi is a prime number and each ki is a
positive integer). The positive divisors of n are precisely the numbers of the
form

ps11 p
s2
2 . . . psrr

where 0 6 si 6 ki for i = 1, 2, . . . , r. �
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Example 3.7 The divisors of 180 are:

1 = 20 · 30 · 50 9 = 20 · 32 · 50 15 = 20 · 31 · 51

2 = 21 · 30 · 50 18 = 21 · 32 · 50 30 = 21 · 31 · 51

4 = 22 · 30 · 50 36 = 22 · 32 · 50 60 = 22 · 31 · 51

3 = 20 · 31 · 50 5 = 20 · 30 · 51 45 = 20 · 32 · 51

6 = 21 · 31 · 50 10 = 21 · 30 · 51 90 = 21 · 32 · 51

12 = 22 · 31 · 50 20 = 22 · 30 · 51 180 = 22 · 32 · 51

We now turn to consider the properties of the prime numbers. We have
already observed that they are the basic building blocks from which all other
positive integers are constructed via multiplication. Furthermore, they have
been recognised as important and have been studied since ancient times.
Many deep theorems have been proved about them, often involving startling
and surprising methods. On the other hand, there are many questions about
them which are easy to state but which have still not been answered. For
the rest of this lecture I shall begin to examine some of these theorems and
questions. We begin with an important fact which was known by Euclid.

Theorem 3.8 There are infinitely many prime numbers.

Proof: Assume for a contradiction that there are only finitely many primes,
say p1, p2, . . . , pn. Consider

N = p1p2 . . . pn + 1.

This number N must be divisible by a prime, say pi divides N . Then

pi | (N − p1p2 . . . pn) = 1,

which is a contradiction. �

The argument can be modified in a number of ways to show that there
are infinitely many primes of certain forms. First note that as 2 is the only
even prime, it follows that all primes greater than 2 either have the form
4k + 1 or 4k + 3. We can prove:

Theorem 3.9 There are infinitely many prime numbers of the form 4k+3.

Proof: Suppose that p1, p2, . . . , pn are all the primes of the form 4k + 3.
Consider

N = 4p1p2 . . . pn − 1 = 4(p1p2 . . . pn − 1) + 3.

Then N is a product of prime numbers, all of which must be odd. Note that

(4k + 1)(4l + 1) = 4kl + 4k + 4l + 1 = 4(kl + k + l) + 1.
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Hence if N were a product of primes all of which had the form 4k+ 1, then
N would also have this form. Therefore one of the prime divisors of N must
have the form 4k + 3, so is pi for some i. Then

pi | (4p1p2 . . . pn −N) = 1,

a contradiction. This completes the proof. �

Similarly it is possible to show that every prime greater than 3 has the
form 6k + 1 or 6k + 5 and modifying the above argument will show that
there are infinitely many primes of the form 6k + 5. In fact, there are also
infinitely many primes of the form 4k+ 1 and infinitely many primes of the
form 6k+ 1, but this is much harder to prove. These are all special cases of
the following theorem proved by Dirichlet:

Theorem 3.10 (Dirichlet 1837) If a and b are coprime positive integers
then there are infinitely many prime numbers of the form ak + b (k = 0, 1,
2, . . . ).

The proof of this theorem is well beyond what we can hope to prove
in this course, but it does at least give a flavour of the development of
mathematics.

Consider the sequence of numbers of the form 4k + 3:

3, 7, 11, 15, 19, 23, 27, 31, 35, . . . .

We are not claiming that they are all prime, but just that infinitely many
of them are: primes will contine to occur in this list no matter how far we
go along it.

In fact there is no known simple formula which yields only prime numbers
whatever we substitute into it. For some time mathematicians believed that

f(n) = n2 + n+ 41

was such a formula having checked that f(n) is prime for n = 1, 2, 3, . . . , 39.
(Here f(39) = 1601.) However this is, of course, not good enough and we
find:

f(40) = 402 + 40 + 41 = 40(40 + 1) + 41 = 40 · 41 + 41 = 412,

which is not prime. In fact we can prove that there is no polynomial formula
which generates primes.

Theorem 3.11 There is no polynomial f(n) with integer coefficients which
is not constant and which takes only prime values for all non-negative inte-
gers n.
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Proof: Assume that

f(n) = akn
k + ak−1n

k−1 + · · ·+ a1n+ a0

is such a polynomial. Then f(0) = a0 is prime, and so is f(ta0) for all
choices of t = 1, 2, . . . . But

f(ta0) = akt
kak0 + ak−1t

k−1ak−10 + · · ·+ a1ta0 + a0

and therefore a0 | f(ta0) for all t. Since f(ta0) is prime this forces

f(ta0) = a0 for t = 1, 2, . . . .

Hence the polynomial f(n) takes the value a0 infinitely many times and
therefore f(n) must be the constant polynomial taking value a0. �

The other thing that we might ask about is the distribution of primes.
Although we have observed it is difficult to generate primes, one can actually
say quite a lot about their distribution.

Theorem 3.12 Let pn denote the nth prime number. Then

pn 6 22
n−1

.

This result is pointing to the fact that primes do occur reasonably often.

Proof: We proceed by induction on n. To start with we have

p1 = 2 = 22
1−1
.

The inductive step relies on the method of proof of Theorem 3.8. We know
that there is a prime number q which divides

p1p2 . . . pn + 1

and this cannot be one of the first n prime numbers. Hence

pn+1 6 q 6 p1p2 . . . pn + 1

6 2 · 22 · . . . · 22n−1
+ 1

= 21+2+···+2n−1
+ 1

= 22
n−1 + 1

= 22
n−1 + 22

n−1 = 22
n
.

This completes the proof. �

23



A much stronger (and far harder to prove) result is that

lim
n→∞

n log n

pn
= 1.

This is one of the equivalent formulations of the famous Prime Number
Theorem (proved in 1896 by Hadamard and de la Vallée Poussin). It can
be interpreted as saying that for large values of n, the nth prime is roughly
nearby the number n log n. (This being the natural logarithm.)

It is certainly worth mentioning a few open questions that mathemati-
cians have still yet to solve:

Goldbach’s Conjecture: Is it true that every even number greater than 2
can be written as the sum of two prime numbers?

Twin Primes Conjecture: Is it true that there are infinitely many prime
numbers p such that p+ 2 is also prime?

We can interpret the Prime Number Theorem as saying that there are
many prime numbers and that they occur rather regularly. The above con-
jectures also assert similar things. However, we finish our discussion of
primes by showing that there are large gaps where no primes occur. Namely
we prove:

Theorem 3.13 For every positive integer n, there is a sequence of n con-
secutive composite numbers.

(‘Composite’ means a number that is not prime; i.e., composed as a
product of more than one prime number.)

Proof: Consider the following numbers:

(n+ 1)! + 2 divisible by 2

(n+ 1)! + 3 divisible by 3

...

(n+ 1)! + (n+ 1) divisible by n+ 1.

These n consecutive numbers are all composite. �
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Section 4

Linear Diophantine
Equations

A Diophantine equation is an equation involving a number of variables all
of whose coefficients are integers and to which we seek solutions which are
integers.

Diophantine Equations with One Variable: These are essentially un-
interesting: one simply attempts to solve them as ordinary equations by
any method possible and then examines whether the solutions obtained are
integers or not.

The behaviour becomes much more interesting if we consider an equation
involving two variables.

Example 4.1 Consider
x+ y = 1.

For every choice of x there is a unique solution for y, namely y = 1 − x.
Thus the equation has infinitely many solutions, all of the form (x, 1 − x)
for x ∈ Z.

Example 4.2 Consider the equation

x+ 2y = 1.

This time we see that a solution for x cannot be arbitrary: it must also be an
odd number. On the other hand, given any y there is always a solution for x,
namely x = 1 − 2y. Thus this equation also has infinitely many solutions,
all of the form (1− 2y, y) for y ∈ Z.

Example 4.3 Consider the equation

3x+ 6y = 1.
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This equation has no solutions: the left-hand side is always a multiple of 3
no matter what choice is made for x and y, while the right-hand side is not
a multiple of 3.

Let us now move on to consider the general situation. We start by
defining the object of concern.

Definition 4.4 A linear Diophantine equation (in two variables) is an equa-
tion of the form

ax+ by = c

where a, b and c are integers.

In view of our previous discussion, we have the following natural ques-
tions to consider:

• Under what conditions does the above equation have integer solutions?

• If the equation does have solutions, how many solutions does it have?

• How can we find all the solutions?

In view of the last example, it should be unsurprising that the common
divisors of a and b are of relevance. We shall address each of these questions
in turn.

Existence of Solutions

Consider the general linear Diophantine equation

ax+ by = c (4.1)

where a, b and c are integers. Assume that a and b are both non-zero (so
the equation genuinely involves two variables). Let

d = gcd(a, b).

Then d divides both a and b so we may write

a = da1 and b = db1

for some integers a1 and b1.
Suppose that we do have a solution (x0, y0) to the equation. This means

ax0 + by0 = c. Now since d divides a and b, we deduce d | (ax0 + by0); that
is, d | c.

Conversely suppose d | c. Write c = dc1. We make use of part (ii) of
Theorem 2.6. It tells us that there exist integers u and v such that

d = ua+ vb.
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Hence upon multiplying c1 we obtain

uac1 + vbc1 = dc1;

that is,
a(uc1) + b(vc1) = c.

Therefore (uc1, vc1) is a solution of the equation.

Conclusion: The equation has a solution if and only if d | c.

Number of Solutions

Suppose that we do have a solution (x0, y0) to Equation (4.1). We can find
other solutions by taking

x = x0 + b1t, y = y0 − a1t

for any integer t. Indeed

ax+ by = ax0 + ab1t+ by0 − ba1t
= (ax0 + by0) + (da1b1t− db1a1t)
= c+ 0 = c.

Since t can be any integer we deduce that our equation has infinitely many
solutions.

Finding all Solutions

We have (under the condition d | c) infinitely many solutions to our lin-
ear Diophantine equation. But could there be others about which we are
currently unaware?

We shall need the following result in the course of our discussion.

Lemma 4.5 Let r, s and t be integers and assume that r and s are coprime.
If r | st, then r | t.

Recall that to say r and s are coprime is to say that their greatest
common divisor is 1.

Proof: gcd(r, s) = 1, so by part (ii) of Theorem 2.6, there exist integers
u and v such that

ur + vs = 1.

Therefore
t = t(ur + vs) = utr + vst.

Now r | st by assumption, while clearly r divides utr. Hence r | (utr+ vst),
so r | t, as claimed. �
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Now let us return to our linear Diophantine equation (4.1). Suppose we
have fixed one solution (x0, y0) to (4.1). Let (x, y) be any other solution. So
we have

ax+ by = c = ax0 + by0.

Hence
a1d(x− x0) = b1d(y − y0).

Dividing by d gives
a1(x− x0) = b1(y − y0).

Now a1 = a/d and b1 = b/d, so we have gcd(a1, b1) = 1 (see Question 3 on
Tutorial Sheet II). Hence a1 and b1 are coprime, while the above equation
tells us

a1 | b1(y − y0).

Hence Lemma 4.5 tells us that

a1 | (y0 − y).

This means that y0 − y = a1t for some t ∈ Z. Substituting into the above
equation gives

a1(x− x0) = b1a1t.

Therefore
x− x0 = b1t.

Hence x = x0 + b1t and y = y0 − a1t.
So we have shown that all solutions to (4.1) arise in the form we previ-

ously presented.
We summarise our finding as follows:

Theorem 4.6 Let a, b and c be integers with a and b not both zero.

(i) The linear Diophantine equation

ax+ by = c

has a solution if and only if d = gcd(a, b) divides c.

(ii) If d | c, then one solution may be found by determining u and v such
that d = ua+ vb and then setting

x0 = uc/d and y0 = vc/d.

All other solutions are given by

x = x0 + (b/d)t, y = y0 − (a/d)t

for t ∈ Z.
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Example 4.7 We shall find all solutions of

77x+ 42y = 35.

First we calculate gcd(77, 42) using the Euclidean Algorithm:

77 = 42 · 1 + 35

42 = 35 · 1 + 7

35 = 7 · 5 + 0

So
gcd(77, 42) = 7.

Since 7 does divide 35, this means that the linear Diophantine equation
does have integer solutions. To actually find the solutions we first reverse
the steps in the Euclidean Algorithm:

7 = 42− 35

= 42− (77− 42)

= (−1) · 77 + 2 · 42.

So we take u = −1 and v = 2. One solution is then

x0 = (−1) · 35/7 = −5, y0 = 2 · 35/7 = 10.

All the solutions are given by

x = x0 + (42/7)t = −5 + 6t

y = y0 − (77/7)t = 10− 11t

where t ∈ Z.

We can also apply these techniques to other types of problem, for exam-
ple:

Example 4.8 A customer bought some apples and some oranges, 12 pieces
of fruit in total, and they cost him £1.32. If an apple costs 3p more than an
orange, and if more apples than oranges were purchased, how many pieces
of each fruit were bought?

Solution: Let x be the number of apples bought. Then 12 − x is the
number of oranges bought. Let y be the cost of an apple. Then y− 3 is the
cost of an orange. We obtain the following equation

xy + (12− x)(y − 3) = 132.
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Therefore

xy + 12y − 36− xy + 3x = 132

3x+ 12y = 168

x+ 4y = 56

We can solve this equation by inspection:

x = 56− 4t, y = t (for t ∈ Z).

But we have further requirements: 6 < x < 12, so

6 < 56− 4t < 12.

Therefore

44 < 4t < 50

11 < t < 121
2 .

Hence t = 12. We deduce that

x = 8, y = 12.

So the customer bought 8 apples at 12p each and 4 oranges at 9p each.
(Finally check our working: 8 · 12 + 4 · 9 = 132.)

Example 4.9 Suppose that we have available postage stamps in two de-
nominations: 5p and 7p. What values can one make using combinations of
stamps?

(E.g., 10 = 5 + 5, 12 = 5 + 7, etc.)

Solution: We are asking for what values of c does

5x+ 7y = c

have (non-negative) solutions? Now gcd(5, 7) = 1, so our theory tells us that
the equation does always have solutions (but possibly they are negative and
one cannot put a negative number of stamps on a parcel!)

Let us instead follow the standard method and adjust at the appropri-
ate point to ensure we are getting non-negative solutions. First apply the
Euclidean Algorithm:

7 = 5 · 1 + 2

5 = 2 · 2 + 1

2 = 1 · 2 + 0.
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(So the greatest common divisor is indeed 1.) Reversing these steps:

1 = 5− 2 · 2
= 5− 2(7− 5)

= 3 · 5 + (−2) · 7.

So take u = 3, v = −2. One solution to the linear Diophantine equation is
then:

x0 = 3c, y0 = −2c.

The general solution to the problem is then

x = 3c− 7t, y = −2c+ 5t.

To achieve non-negative solutions we require

3c− 7t > 0, i.e., t 6 3c/7

and

−2c+ 5t > 0, i.e., t > 2c/5.

Hence we require that the integer t lie between 2c/5 and 3c/7; that is, that
there is at least one integer between these numbers. How far apart are they?

3c/7− 2c/5 = (15c− 14c)/35 = c/35.

Hence if c > 35, this gap is > 1 and there definitely will be an integer in the
region we want. Thus for c > 35, non-negative solutions exist.

Conclusion: Any value of 35p or greater can be achieved using 5p and 7p
stamps.

(Values smaller than 35p will have to be checked by hand.)

In fact, it turns out that the crucial point here is that the a and b we
are considering here (5 and 7) are coprime. Provided we know this there
will always be some point beyond which all integers can be achieved using
a combination of multiples of a and b.

Theorem 4.10 Let a and b be coprime positive integers. Then every num-
ber c > ab can be expressed as λa+ µb with λ and µ non-negative integers.

The proof is omitted, but essentially it is the same argument as supplied
to solve the above problem.
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Section 5

Congruences

Definition 5.1 Let m be an integer with m > 1. We say that two integers
a and b are congruent modulo m if a − b is divisible by m. We denote this
by a ≡ b (mod m).

Thus

a ≡ b (mod m) if and only if m | (a− b).

The concept of congruence links nicely back to our “basic fact” about
division. If a is an integer and we attempt to divide by m, we obtain
quotient q and remainder r:

a = mq + r.

Then a − r = mq, so m | (a − r). Then, by definition of congruence, a ≡ r
(mod m).

Example 5.2 3 ≡ 24 (mod 7)
−31 ≡ 11 (mod 7)
20 6≡ 100 (mod 7)

Example 5.3 a ≡ 0 (mod m) if and only if m | a.

Example 5.4 Two integers are congruent modulo 10 if and only if they end
with the same digit.

We shall begin by developing some properties of congruence arithmetic.

Theorem 5.5 Let m be an integer with m > 1 and let a, b and c be integers.

(i) a ≡ a (mod m).

(ii) If a ≡ b (mod m), then b ≡ a (mod m).
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(iii) If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

We shall meet names for the properties presented in this theorem in the
next section. For the moment we note that congruence modulo m has some
similarity to equality: we can view integers that are congruent modulo m as
being ‘somehow the same.’

Proof: (i) a− a = 0, which is divisible by m, so a ≡ a (mod m).
(ii) Assume a ≡ b (mod m). This means m | (a− b), so a− b = mq for

some integer q. Therefore b − a = −mq = m(−q), so m | (b − a). Hence
b ≡ a (mod m).

(iii) Assume a ≡ b (mod m) and b ≡ c (mod m). This means m | (a−b)
and m | (b − c), so there exist integers q and r such that a − b = mq and
b− c = mr. Therefore

a− c = (a− b) + (b− c) = mq +mr = m(q + r)

and we deduce m | (a− c); that is, a ≡ c (mod m). �

Theorem 5.6 (Congruence Arithmetic) Suppose that m is an integer
with m > 1 and let a, b, c, d and k be integers with k > 0.

(i) If a ≡ b (mod m) and c ≡ d (mod m), then

a+ c ≡ b+ d (mod m)

and

ac ≡ bd (mod m).

(ii) If a ≡ b (mod m), then

a+ c ≡ b+ c (mod m)

ac ≡ bc (mod m)

and

ak ≡ bk (mod m).

Proof: (i) By assumption m | (a−b) and m | (c−d). Therefore there exist
integers q and r such that

a− b = mq and c− d = mr.

Then

(a+ c)− (b+ d) = (a− b) + (c− d)

= mq +mr

= m(q + r).
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So m |
(
(a+ c)− (b+ d)

)
; that is

a+ c ≡ b+ d (mod m).

Also

ac− bd = ac− bc+ bc− bd
= (a− b)c+ b(c− d)

= mqc+ bmr

= m(qc+ br),

so m | (ac− bd); that is,

ac ≡ bd (mod m).

(ii) Since c ≡ c (mod m), we can take c = d in (i) to give

a+ c ≡ b+ c (mod m) and ac ≡ bc (mod m).

Equally if we assume by induction that ak−1 ≡ bk−1 (mod m), then part (i)
gives

ak = a · ak−1 ≡ b · bk−1 = bk (mod m).

�

Example 5.7 The number 270 + 370 is divisible by 13.
Indeed

26 = 64 ≡ −1 (mod 13),

so
266 = (26)11 ≡ (−1)11 = −1 (mod 13),

so
270 = 266 · 24 ≡ (−1) · 16 ≡ 10 (mod 13).

Similarly
33 = 27 ≡ 1 (mod 13),

so
369 = (33)23 ≡ 123 = 1 (mod 13),

so
370 = 369 · 3 ≡ 1 · 3 = 3 (mod 13).

Hence
270 + 370 ≡ 10 + 3 = 13 ≡ 0 (mod 13),

so
13 | (270 + 370).
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Example 5.8 Let us find the last digit of 21003. We work modulo 10:

21 = 2

22 = 4

23 = 8

24 = 16 ≡ 6 (mod 10).

Now note
62 = 36 ≡ 6 (mod 10).

Assume, as an inductive hypothesis, that 6k−1 ≡ 6 (mod 10) (where k > 2).
Then

6k = 6k−1 · 6 ≡ 6 · 6 ≡ 6 (mod 10).

Hence 6k ≡ 6 (mod 10) for all positive integers k. So

21003 = (24)1003 · 23 ≡ 6250 · 8 (mod 10)

≡ 6 · 8 (mod 10)

= 48

≡ 8 (mod 10).

So the last digit of 21003 is 8.

Theorem 5.9 Every positive integer is congruent to the sum of its digits
modulo 3 and also modulo 9.

Proof: First note that 10 ≡ 1 (mod 9) and 10 ≡ 1 (mod 3). Therefore

10k ≡ 1k = 1 (mod 9).

Write a = (dndn−1 . . . d1d0)10, so

a = dn · 10n + dn−1 · 10n−1 + · · ·+ d1 · 10 + d0

≡ dn · 1 + dn−1 · 1 + · · ·+ d1 · 1 + d0

= dn + dn−1 + · · ·+ d1 + d0.

The same argument applies if we work modulo 3. �

Corollary 5.10 A positive integer is divisible by 9 if and only if the sum
of its digits is divisible by 9.

A positive integer is divisible by 3 if and only if the sum of its digits is
divisible by 3. �
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Section 6

Functions and Relations

In this section we discuss two useful tools in Pure Mathematics. They will
be applied afterwards to the concepts we have been discussing previously
and also to further material we shall introduce.

Functions

You will have met functions in other courses, but probably were more in-
terested in differentiating them. Here we shall be more interested in more
abstract properties. We begin with a definition:

Definition 6.1 Let X and Y be sets. A function f : X → Y is a “rule”
which associates to each x ∈ X some element in Y . We denote this rule by

f : x 7→ f(x) (for x ∈ X).

We then say that f maps the element x to the element f(x).
We call X the domain of the function f and Y the codomain (or range)

of f .

Example 6.2 (i) We can define a function

f : R→ R
x 7→ x2

which maps each real number to its square. This is the sort of familiar
function considered in MT1002, for example.

(ii) Define a function f : Z→ N by

f(x) =

{
the smallest prime dividing x if this exists (i.e,., x 6= ±1)

1 otherwise.
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Although not given by closed formula as the first example is, this is a
perfectly valid function. It does give a unique value to f(x) for each
x ∈ Z. For example,

f(0) = 2, f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 2,

f(5) = 5, f(6) = 2, f(7) = 7, . . . .

(iii) Take P = {x ∈ R | x > 0 }. The following is not a valid definition of
a function f : P → R:

f(x) = y satisfying y2 = x.

The problem here is that there is no uniquely determined y for all x.
For example, for f(2) should we choose

√
2 or −

√
2?

In much of Pure Mathematics (especially algebra), we are interested in
functions with the following properties:

Definition 6.3 Let X and Y be sets and let f : X → Y be a function.

(i) We say f is one-one (or injective) if different elements in X always
map to different elements in Y : that is,

f(x1) = f(x2) =⇒ x1 = x2

for x1, x2 ∈ X.

[PICTURE HERE – CONVERT TO TIKZ]

(ii) We say f is onto (or surjective) if every element in Y is the image of
some element in X: that is,

For all y ∈ Y , there is some x ∈ X with f(x) = y.

PICTURE HERE – CONVERT TO TIKZ

(iii) We say f is bijective if it is both one-one and onto.

Example 6.4 Define f : Z→ {0, 1} by

f(x) =

{
0 if x is even

1 if x is odd.

Then f is onto, since f(0) = 0 and f(1) = 1. If we were to choose a larger
codomain (but the same definition of the function) then it would cease to
be onto.

This f is not one-one: f(1) = f(3), so we have two distinct points in the
domain mapping to the same image.
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Example 6.5 This example illustrates that the behaviour for the same for-
mula can altered by the choice of domain and codomain.

Define f : Z→ Z by
f(x) = x+ 1.

f is one-one Let x, y ∈ Z and suppose f(x) = f(y). This means x + 1 =
y+1 and (subtracting 1 from both sides) we deduce x = y. Hence f is
one-one.

f is onto Let b ∈ Z. Define x = b− 1 ∈ Z. Then f(x) = x+ 1 = b. Hence
every b ∈ Z is the image of some element in Z under f , so f is onto.

Now define a function g : N→ N (where N = {1, 2, 3, . . . }) by

g(x) = x+ 1.

This is a new function: although it has the same “rule” as f it has a different
domain and codomain, so is different. This function g is still one-one (by
the same argument). But

g(x) = x+ 1 > 2 for all x ∈ N

so g(x) 6= 1 always. Hence g is not onto.

We shall finish our discussion about functions by considering bijective
functions in a little more detail. Suppose f : X → Y is a bijective function.
Then for each y ∈ Y , there exists some x ∈ X such that f(x) = y (because
f is surjective). On the other hand, since f is injective there can only be
one such x because f is injective. Hence each y ∈ Y has the form y = f(x)
for one and only one element x ∈ X. Thus the function f yields an exact
correspondence between elements of X and elements of Y . For this reason
bijections are often called one-to-one correspondences.
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We shall consider these properties of functions again later, particularly in
the context of graphs and of permutations. Let us now move on to consider
“relations”.

Definition 6.6 A relation on a set X is any set R of ordered pairs of
elements of X. If (x, y) ∈ R, we usually denote this by xRy.

Strictly speaking this is the definition of a binary relation since it involves
just two elements of X. The idea behind the concept of a relation is that it
‘links’ the two elements x and y.
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Example 6.7 6 is a relation on Z. As a set of ordered pairs, this relation
corresponds to { (x, y) | x 6 y } ⊆ Z× Z.

< is a relation on Z.
= is a relation on Z.
| is a relation on Z.
⊆ is a relation on the set of all subsets of X.

The concept of a relation generalised all these ideas (they are all impor-
tant and archetypal examples of relations) and it is for this reason that we
typically write xRy to say that x and y are related under R.

If R is a relation on a finite set X, then we can represent it using a
particular type of diagram. We draw a node (a blob) to represent each
element of X and draw an arrow from x to y if xRy (that is, if (x, y) ∈ R).
[Such a diagram will be referred to as a “graph” later in the course.]

Example 6.8 Consider the relation | on the set X = {1, 2, 3, 4, 5, 6}. It is
represented by the following diagram:
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Example 6.9 Define R on X = {1, 2, 3, . . . , 12} by

xRy if and only if
2 appears the same number of times in the
factorisation of x and y.
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As a further example of a relation on Z, we have congruence modulom (≡
(mod m)) where m > 1. We discussed this relation considerably previously.
In particular, Theorem 5.5 observed that congruence (modulo m) enjoyed
three properties to which we shall now give names.

Definition 6.10 Let R be a relation on a set X.

(i) R is reflexive (R) if xRx for all x ∈ X;

(ii) R is symmetric (S) if xRy implies yRx for all x, y ∈ X;

(iii) R is anti-symmetric (AS) if xRy and yRx imply x = y for all x, y ∈ X;

(iv) R is transitive (T) if xRy and yRz imply xRz for all x, y, z ∈ X.

Example 6.11 (i) ≡ (mod m) is reflexive, symmetric and transitive,
but not anti-symmetric. (The first three are precisely what Theo-
rem 5.5 says.)

(ii) 6 (on Z) is reflexive, anti-symmetric and transitive, but not symmet-
ric.
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(iii) < (on Z) is anti-symmetric and transitive, but not reflexive or sym-
metric.

(iv) = (on any set) is reflexive, symmetric, and transitive.

(v) | (on N) is reflexive, anti-symmetric and transitive (see Theorem 1.5).

(vi) The relation R of Example 6.9 is reflexive, symmetric and transitive.

The properties R, S and T are independent : we can find a relation which
satisfies any collection of them but not the others.

Example 6.12 The following diagram defines a relation which is reflexive
and symmetric but not transitive.
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We give a special name to relations that are reflexive, symmetric and
transitive.

Definition 6.13 An equivalence relation is a relation that is reflexive, sym-
metric and transitive.

Example 6.14 ≡ (mod m) on Z, = on any set, and the relation R of
Example 6.9 are all equivalence relations.
6 (on Z) and | (on N) are not equivalence relations — they are anti-

symmetric not symmetric.

It is worth noting that relations that are reflexive, transitive and anti-
symmetric are called order relations. They can be thought of as generalisa-
tions of 6.

Equivalence relations are very important in mathematics — principally
because they enable us to consider some elements of a set as being somehow
the ‘same.’ The idea here is that if two elements of a set are related under an
equivalence relation then we view these elements as sharing some property
and then we collect together all elements sharing this property. (In some
sense, equivalence relations are then generalisations of equality.)

Example 6.9 typifies this idea: elements that are related share the power
of 2 that they are divisible by and we split the set X into 4 subclasses.

We formalise this idea in the following definition.

Definition 6.15 Let R be an equivalence relation on the set X and let
x ∈ X. The equivalence class of x is the following subset of X:

[x] = { y ∈ X | xRy },

the set of all elements which are related to x.

40



Example 6.16 The equivalence classes for the equivalence relation R in
Example 6.9 are:

[1] = {1, 3, 5, 7, 9, 11}
[2] = {2, 6, 10}
[4] = {4, 12}
[8] = {8}

Theorem 6.17 Let R be an equivalence relation on a set X.

(i) x ∈ [x] for all x ∈ X;

(ii)
⋃

x∈X [x] = X;

(iii) if x, y ∈ X, then either [x] = [y] or [x] ∩ [y] = ∅.

Proof: (i) R is reflexive, so xRx. Hence x ∈ [x].
(ii) follows directly from (i).
(iii) Let x, y ∈ X and suppose that [x]∩ [y] 6= ∅. This means that there

is at least one element, say z, belonging to both [x] and [y]. This means

xRz and yRz.

Since R is symmetric, the latter implies zRy. Then as R is transitive,
xRz and zRy together imply that

xRy.

We shall now use this observation to prove that [x] = [y]. We do this by
showing that every element of [x] is also an element in [y] and vice versa.

First let u ∈ [x]. This means xRu. Now applying the symmetry of R to
the fact that xRy, we deduce yRx. Then the transitivity of R means that
yRx and xRu imply yRu. Thus u ∈ [y].

Now let v ∈ [y]. Then we have yRv. Taking this together with xRy
leads us to xRv (by transitivity), so v ∈ [x].

Hence [x] and [y] contain exactly the same elements, so are equal. �

Our conclusion is that the set X is the union of the equivalence classes
and any two different equivalence classes are disjoint.

Corollary 6.18 If R is an equivalence relation on a set X, then X is the
disjoint union of the equivalence classes.

We refer to this situation by saying that the equivalence classes of R
partition X.

41



Example 6.19 Define a relation R on Q by

xRy if and only if x− y ∈ Z.

R: x− x = 0, so x− x ∈ Z and hence xRx for all x ∈ Q.

S: Suppose xRy, so that x− y ∈ Z. Then y − x = −(x− y) ∈ Z, so yRx.

T: Suppose xRy and yRz. Then x − y ∈ Z and y − z ∈ Z, so x − z =
(x− y) + (y − z) ∈ Z. Hence xRz.

Thus R is an equivalence relation on Q. Note that

xR0 means x ∈ Z,

so
[0] = Z.

Similarly
[12 ] = {. . . ,−3

2 ,−
1
2 ,

1
2 ,

3
2 , . . . }

and, in general, for any q ∈ Q,

[q] = { q + a | a ∈ Z }.

We shall finish this section by considering congruence modulom in detail.
Let m be an integer with m > 1. Theorem 5.5 tells us that congruence

modulo m (≡ (mod m)) is an equivalence relation on the set Z. We desire
to describe the equivalence classes. To do this we need an alternative way
to describe the congruence condition.

Lemma 6.20 a ≡ b (mod m) if and only if a and b have the same remainder
when divided by m.

Proof: Suppose a and b have the same remainder upon dividing by m:

a = mq1 + r and b = mq2 + r.

Then
a− b = (mq1 + r)− (mq2 + r) = m(q1 − q2),

so a ≡ b (mod m).
Conversely assume a ≡ b (mod m). Divide a and b by m:

a = mq1 + r1 and b = mq2 + r2

where 0 6 r1, r2 < m. Then

a− b = m(q1 − q2) + (r1 − r2).

Now m | (a − b) by assumption, so we deduce m | (r1 − r2). But 0 6
r1, r2 < m, so −m < r1− r2 < m. Since r1− r2 is divisible by m, we deduce
r1 − r2 = 0; that is, r1 = r2 as required. �
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This has the following consequence:

Theorem 6.21 Let m > 1. The equivalence relation of being congruent
modulo m has precisely m equivalence classes, namely

[r] = { km+ r | k ∈ Z }

for r = 0, 1, . . . , m− 1.

These equivalence classes are sometimes also referred to as congruence
classes.

Proof: The first thing to do is to apply Lemma 6.20: for 0 6 r < m we
see

a ∈ [r] ⇐⇒ r ≡ a (mod m)

⇐⇒ r and a have the same remainder upon dividing by m

⇐⇒ a = km+ r for some k.

So
[r] = { km+ r | k ∈ Z }.

This shows that these equivalence classes do have the form we claimed.
We still need to show that this list gives us all the equivalence classes

and that they are distinct.
If a ∈ Z, then a has remainder r upon dividing by m where 0 6 r < m,

and so a ≡ r (mod m). This shows that a ∈ [r]. Hence every element of Z
lies in one of the equivalence classes

[0], [1], . . . , [m− 1].

It follows that this list gives all the equivalence classes.
If [r] = [s] where 0 6 r, s < m, then r ≡ s (mod m), so they have the

same remainder upon dividing by m, so r = s.
Hence there are precisely m equivalence classes:

[0], [1], . . . , [m− 1].

�

To finish this section, we shall interpret Theorem 5.6 in the context of
these equivalence classes. Part (i) of that theorem stated:

• If a ≡ b (mod m) and c ≡ d (mod m), then

a+ c ≡ b+ d (mod m)

ac ≡ bd (mod m).
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The upshot of these conditions is that we can think of addition and multi-
plication as operating on the congruence classes as well as the integers. For
example, the first can be interpreted as the statement:

[a] = [b] and [c] = [d] imply [a+ c] = [b+ d].

This allows us to define operations on the equivalence classes by:

[a] + [b] = [a+ b] and [a] · [b] = [ab]

and here we can replace a+ b and ab by the integers in the range 0 6 r < m
congruent to a+ b and ab modulo m.

Example 6.22 Take m = 6. For simplification, let us write 0, 1, . . . , 5 for
the congruence classes modulo 6 (instead of [0], [1], . . . ). We then have the
following multiplication tables:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

This is modular arithmetic, which plays an important role in abstract
algebra and appears in the MT2002 course.
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Section 7

Higher Degree Diophantine
Equations

In Section 4 we established great control over the solutions of the linear Dio-
phantine equation ax+ by = c. We shall finish the our discussion of number
theory by considering solutions to some Diophantine equations which are
not linear.

Pythagorean triples

Consider the Diophantine equation

x2 + y2 = z2. (7.1)

By Pythagoras’ Theorem, a solution to this Diophantine equation corre-
sponds to a right-angled triangle with sides of integer length.

Suppose x, y, z are solutions with

gcd(x, y, z) = d > 1.

Write x = dx1, y = dy1 and z = dz1. Substituting into Equation (7.1) and
dividing by d2 yields:

x21 + y21 = z21

and here gcd(x1, y1, z1) = 1.

Definition 7.1 A solution (x, y, z) of Equation (7.1) is called a Pythagorean
triple. If x, y, z > 0 and gcd(x, y, z) = 1, then the Pythagorean triple (x, y, z)
is called primitive.

Our earlier discussion tells us that it is enough to find all primitive
Pythagorean triples. We can then find all Pythagorean triples by multiplying
by an integer.
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Our goal is then to find all primitive Pythagorean triples. We begin with
three auxiliary results.

Lemma 7.2 Let a, b, c, n ∈ Z with n > 1. If ab = cn and gcd(a, b) = 1,
then both a and b are nth powers.

Proof: Factorise c as a product of prime powers:

c = pk11 p
k2
2 . . . pkmm .

Then
ab = cn = pnk11 pnk22 . . . pnkmm .

Now each pi divides only one of a and b (as gcd(a, b) = 1), so it follows that
a and b are both products of nth powers of prime powers, so a and b are nth
powers. �

Lemma 7.3 The sum of two odd squares is not a square.

Proof: First recall Theorem 1.4: The square of an integer is either divisible
by 4 or it gives remainder 1 when divided by 8. Thus if a and b are odd
integers,

a2 ≡ 1 (mod 8) and b2 ≡ 1 (mod 8).

Thus
a2 + b2 ≡ 2 (mod 8),

so
a2 + b2 ≡ 2 (mod 4).

Hence a2 + b2 is not a square (it is not divisible by 4). �

Corollary 7.4 If (x, y, z) is a primitive Pythagorean triple then one of
x and y is even, while the other is odd (and consequently z is odd).

Proof: If both x and y are even, then so would be z, contradicting
gcd(x, y, z) = 1. The previous lemma shows that they cannot both be odd.
Hence one is even and the other is odd. �

Now let (x, y, z) be a primitive Pythagorean triple. Without loss of
generality assume that x is even and that y and z is odd. Then z − y and
z + y are even. Write

z − y = 2u, z + y = 2v

where u, v ∈ Z. Then 2z = 2(u+ v), so z = u+ v. Similarly y = v − u.
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Claim: gcd(u, v) = 1.
Let d = gcd(u, v). If d > 1, let p be a prime dividing d. Then p | u and

p | v, so
p | (u+ v) = z and p | (v − u) = y.

Then p2 | (z2−y2) = x2 and it follows that p | x also. This is a contradiction
since gcd(x, y, z) = 1.

Thus gcd(u, v) = 1, as claimed.

Remember x is even and observe

(x/2)2 = (z2 − y2)/4 =

(
z − y

2

)(
z + y

2

)
= uv

and then, by Lemma 7.2, both u and v are squares. Write

u = t2, v = s2

where s, t ∈ Z. Then

z = u+ v = s2 + t2

y = v − u = s2 − t2

x =
√

4uv = 2st.

Moreover gcd(s, t) = 1 because gcd(u, v) = 1. Also s and t are not both
odd, since otherwise this would cause x, y, z all to be even.

Conversely suppose x, y, z are given by the above formulae. Then

x2 + y2 = 4s2t2 + (s2 − t2)2

= s4 + 2s2t2 + t4

= (s2 + t2)2 = z2,

so (x, y, z) is a Pythagorean triple. If gcd(s, t) = 1 and s and t are not both
odd, then y and z are odd. If p is a prime dividing both y and z, then firstly
it is odd and secondly

p | (y + z) = 2s2 and p | (z − y) = 2t2,

so p | s and p | t, contrary to gcd(s, t) = 1. Hence gcd(y, z) = 1 and we
deduce (x, y, z) is a primitive Pythagorean triple.

We summarise this discussion as follows:

Theorem 7.5 (Pythagorean Triples) All the solutions of the equation

x2 + y2 = z2
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satisfying
x, y, z > 0, gcd(x, y, z) = 1, 2 | x

are given by
x = 2st, y = s2 − t2, z = s2 + t2

for integers s > t > 0 such that gcd(s, t) = 1 and s and t are not both odd.
All other solutions of the equation can be obtained from these by multi-

plying by an integer, interchanging x and y, and changing the sign of some
of x, y, z.

The solutions for small s and t (0 < t < s 6 7) are as follows:

s t x y z

2 1 4 3 5
3 2 12 5 13
4 1 8 15 17
4 3 24 7 25
5 2 20 21 29
5 4 40 9 41
6 1 12 35 37
6 5 60 11 61
7 2 28 45 53
7 4 56 33 65
7 6 84 13 85

Example 7.6 Let (x, y, z) be a primitive Pythagorean triple. We may sup-
pose (without loss of generality) that x is even. So

x = 2st, y = s2 − t2, z = s2 + t2

for some integers s and t with

s > t > 0, gcd(s, t) = 1, s, t not both odd.

Suppose that s and t are not divisible by 3. (Note that if 3 | s or 3 | t, then
3 | x.)

Then s ≡ ±1 (mod 3) and t ≡ ±1 (mod 3), so

s2 ≡ 1 (mod 3) and t2 ≡ 1 (mod 3).

Hence
y = s2 − t2 ≡ 1− 1 = 0 (mod 3).

So if 3 - s and 3 - t, then 3 | y.
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Conclusion: If (x, y, z) is a primitive Pythagorean triple, then exactly
one of x and y is divisible by 3 (and hence z is not divisible by 3).

We finish this section by considering two theorems about higher Dio-
phantine equations. The following was first discovered by Fermat.

Theorem 7.7 The equation

x4 + y4 = z2

has no positive integer solutions.

I shall omit the proof for the moment. If time permits in the last week of
this lecture course I shall return and prove this. The method is to observe
if (x0, y0, z0) is a solution (all positive) with z0 as small as possible, then
(x20, y

2
0, z0) is a primitive Pythagorean triple. We then apply Theorem 7.5

and eventually reduce to a solution to the original equation with smaller
value of z. This will be a contradiction and would prove the theorem.

An immediate corollary is:

Theorem 7.8 The equation

x4 + y4 = z4

has no positive integer solutions.

Proof: If (x0, y0, z0) were a solution, then (x0, y0, z
2
0) would be a solution

to x4 + y4 = z2 and the previous theorem says this is impossible. �

In the 17th century, Fermat conjectured that the equation

xn + yn = zn

has no positive integer solutions when n > 2. (Actually, he claimed to
have a proof, but modern mathematicians suspect he was wrong — as have
many who have attempted to solve it.) In the end, establishing the truth
of the conjecture resisted attempts until very recently when Wiles finally
showed it was true. It is very interesting to note how the solution of such
an innocuous appearing question finally depended on deep developments in
new and exciting areas of pure mathematics.
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Section 8

Graphs

The theory of graphs started with a paper of Euler who was interested in a
problem known as “The Seven Bridges of Königsberg. We shall meet this
problem later, but we shall begin by motivating a study by recalling our
earlier discussion of relations.

Recall that a relation R on a set V is a collection of ordered pairs and
that we wrote aRb to denote that (a, b) belonged to this collection. We
previously thought of this as indicating some link from a to b and denoted
it by a diagram. [DRAW!]

We considered these sort of diagrams and noted, for example, that equiv-
alence relations were relations satisfying particular properties. In this sec-
tion, we shall study these diagrams and give particular names to them.
Principally we shall see that such diagrams can be used to represent other
situations as well as relations.

Example 8.1 Consider a collection of villages {a, b, c, d, e, f} joined by a
number of roads as follows:

PICTURE HERE – CONVERT TO TIKZ

This will be an example of a graph (without having direction attached
to it). We begin by defining what we mean by a directed graph; i.e., when
all these roads are one-way! Such objects are useful for describing many
situations, for example, road networks, communication networks, etc.

Directed graphs

Definition 8.2 A directed graph (or digraph) consists of a set V of points,
called the vertices, and a set E of ordered pairs from V , called the edges.
We write Γ = (V,E) to denote such a graph.

Example 8.3 Let V = {1, 2, 3, 4, 5} and

E = {(1, 2), (2, 2), (2, 3), (3, 4), (3, 5), (4, 5), (5, 1), (5, 3)}.
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We represent the graph Γ = (V,E) by the following diagrams:

(0,-1)(11,6) (0,0).14(0,3).15(2,0).1 3(3,5).1 1(5,2).1 2[arrowsize=2pt 5]-¿(3,5)(5,2)
[arrowsize=2pt 5]¡-(5.5,2)0.59089.9 [arrowsize=2pt 5]-¿(5,2)(2,0)
[arrowsize=2pt 5]-¿(2,0)(0,0) [arrowsize=2pt 5]-¿(2,0)(1,2)(0,3)

[arrowsize=2pt 5]-¿(0,0)(0,3) [arrowsize=2pt 5]-¿(0,3)(3,5) [arrowsize=2pt

5]-¿(0,3)(1,1)(2,0) (7,0).1 2(11,0).1 5(7,2).1 4(11,2).1 3(9,4).1 1[arrowsize=2pt
5]-¿(9,4)(7,0) [arrowsize=2pt 5]-¿(6.6,-.4).510099.9 [arrowsize=2pt

5]-¿(7,0)(11,2) [arrowsize=2pt 5]-¿(11,2)(7,2) [arrowsize=2pt
5]-¿(11,2)(11.5,1)(11,0) [arrowsize=2pt 5]-¿(7,2)(11,0) [arrowsize=2pt

5]-¿(11,0)(9,4) [arrowsize=2pt 5]-¿(11,0)(10.8,1)(11,2)

We usually think of the term “graph” as referring to such a pictorial
representation. It is for this reason we refer to the “vertices” and the “edges”
of the graph. It does raise one question:

Question: When are two graphs the ‘same’?

The above example illustrates the same description can be drawn in two
different ways — however, we would like to think of them as somehow the
same. We can formalise this sort of idea in the following definitions.

Definition 8.4 Let Γ = (V,E) be a directed graph. We say that a vertex u
is adjacent to a vertex v if (u, v) is an edge in Γ.

We will use this to describe what it means for graphs to be ‘the same.’

Definition 8.5 Let Γ = (V,E) and Γ′ = (V ′, E′) be directed graphs. We
say that Γ and Γ′ are isomorphic (written Γ ∼= Γ′) if there is a bijection
f : V → V ′ such that if v1, v2 are vertices of Γ then

v1 and v2 are adjacent in Γ ⇐⇒ f(v1) and f(v2) are adjacent in Γ′.

Thus these graphs are isomorphic if they have essentially the same ver-
tices and the same edges. In view of this we usually do not wish to distinguish
between isomorphic graphs.

(This term comes from Greek: isos means ‘equal’, while morphe means
‘shape’.)

Deciding when two graphs are isomorphic can be quite difficult though
and it is useful to consider alternative ways of describing graphs to help us
answer this problem.

Definition 8.6 Let Γ = (V,E) be a directed graph with vertex set V =
{v1, v2, . . . , vn}. The adjacency matrix of Γ is the matrix A(Γ) whose (i, j)th
entry is 1 if (vi, vj) is an edge in Γ and whose (i, j)th entry is 0 if vi is not
adjacent to vj .
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Example 8.7 Consider the following graph:

(0,0)(4,4) (0,0).1 (2,1).1 (4,2).1 (0,3).1 (3,4).1 12345[arrowsize=2pt 5]-¿(3,4)(4,2)
[arrowsize=2pt 5]-¿(4.5,2).510099.9 [arrowsize=2pt 5]-¿(4,2)(2,1)
[arrowsize=2pt 5]-¿(2,1)(0,0) [arrowsize=2pt 5]-¿(2,1)(1,1.5)(0,3)

[arrowsize=2pt 5]-¿(0,0)(0,3) [arrowsize=2pt 5]-¿(0,3)(3,4) [arrowsize=2pt
5]-¿(0,3)(1,2.5)(2,1)

The adjacency matrix for this directed graphs is:
0 1 0 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 0 1
1 0 1 0 0


The adjacency matrix entirely encodes the edges present in the graph.

Consequently the following observation is immediate:

Lemma 8.8 Two directed graphs are isomorphic if and only if they have
identical adjacency matrices following some relabelling of the vertices.

Walks in directed graphs

Definition 8.9 Let Γ = (V,E) be a directed graph. A walk in Γ is a
sequence of vertices and edges where each edge is directed from the vertex
preceding it to the vertex following it.

Thus a walk has the form

v0, e1, v1, e2, v2, . . . , vn−1, en, vn

where edge ei has the form ei = (vi−1, vi). (We often omit the reference to
the vertices in this sequence for this reason.) We define the length of the
walk to be the number of edges occurring.

Thus, in Example 8.7 the following is a walk of length 6 from 1 to 4:

(1, 2), (2, 2), (2, 3), (3, 5), (5, 3), (3, 4).

Related to this definition we have:

Definition 8.10 (i) A path in a directed graph Γ is a walk in which no
vertex occurs more than once.

(ii) A circuit in a directed graph Γ is a closed walk (that is, a walk where
the first and last vertex are the same).

52



So in Example 8.7
(2, 3), (3, 4), (4, 5)

is a path, while
(5, 3), (3, 4), (4, 5)

is a circuit.

Theorem 8.11 Let Γ = (V,E) be a directed graph with vertex set V =
{v1, v2, . . . , vn} and adjacency matrix A. Then the (i, j)th entry of Am is
the number of walks of length m from vi to vj in Γ.

Proof: We proceed by induction on m. The case m = 1 is immediate: there
is a walk from vi to vj of length 1 precisely when there is an edge (vi, vj)
in Γ, which is precisely when there is a 1 (and not a 0) in the (i, j)th entry
of the adjacency matrix A.

Let A = (aij). Suppose that B = Am = (bij) and that bij is the num-
ber of walks of length m from vi to vj . According to the rules for matrix
multiplication, the (i, j)th entry of Am+1 = BA is

n∑
k=1

bikakj .

Now bik is the number of walks of length m from vi to vk. We can extend
such a walk to one of length m + 1 to vj precisely when there is an edge
from vk to vj (i.e, when akj = 1 rather than 0). Hence bikakj is equal to the
number of walks of length m + 1 from vi to vj stopping at vk at the mth
step and therefore

n∑
k=1

bikakj

is the total number of walks from vi to vj of length m+ 1. This completes
the inductive step and proves the theorem. �

Other forms of graph

We have met the definition of a directed graph. Two important variations
are the following:

Definition 8.12 If Γ = (V,E) is a directed graph, an edge of the form (v, v)
(with v ∈ V ) is called a loop.

A directed graph Γ = (V,E) is said to be loop-free if it has no loops.

We said that a directed graph was useful for describing a relation on a
set V . Under this, a loop-free directed graph corresponds to a relation R
that is irreflexive; i.e., for which xRx does not hold for any x.
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Definition 8.13 A directed graph Γ = (V,E) with the property that when-
ever (vi, vj) is an edge then also (vj , vi) is an edge is called a graph (or
undirected graph).

Thus an (undirected) graph corresponds to a relation R which is sym-
metric. In this situation we can replace to the two directed edges between
a pair of adjacent vertices by a single undirected edge. For example [draw
any graph] represents an undirected graph.

Sometimes we permit graphs to have more than one edge between a pair
of vertices. We then say that our graph has multiple edges and call it a
multigraph. The following definition restricts us away from this situation:

Definition 8.14 A simple graph is an (undirected) graph that possesses no
multiple edges and no loops.

Definition 8.15 A graph Γ is connected if there is a path between any two
distinct vertices of Γ.

We usually employ this definition only for undirected graphs — the rea-
son being that in directed graphs things get rather complicated:

s s s-�

This directed graph is disconnected according to the definition: it is im-
possible to travel from the left-hand vertex to the right-hand one along a
path.

Degrees of vertices

Definition 8.16 Let Γ = (V,E) be an (undirected) graph. The degree of
a vertex v is the number of edges incident to that vertex. We denote this
by ρ(v).

If Γ is a graph in which every vertex has the same degree, then we say
Γ is regular.

Example 8.17 The following graphs are regular:

unit=9.7mm (0,0)(13,3) (0,0).1 (1.5,3).1 (3,0).1 (0,0)(1.5,3) (1.5,3)(3,0)
(0,0)(3,0) (5,0).1 (6.5,1).1 (6.5,3).1 (8,0).1 (5,0)(8,0) (5,0)(6.5,3)

(5,0)(6.5,1) (6.5,1)(6.5,3) (6.5,1)(8,0) (6.5,3)(8,0) (10,0).1 (10,3).1 (13,0).1
(13,3).1 (10,0)(10,3) (10,0)(13,0) (10,3)(13,3) (13,0)(13,3)
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Examples of graphs

Example 8.18 (i) The complete graph Kn is the (simple) graph with
n vertices in which every pair of distinct vertices is adjacent.

(0,-1)(10,2) (0,0).1 (0,-.5)K1 (2,0).1 (2,2).1 (2,0)(2,2) (2,-.5)K2

(4,0).1 (6,0).1 (5,1.732).1 (4,0)(6,0) (6,0)(5,1.732) (5,1.732)(4,0)
(5,-.5)K3 (8,0).1 (8,2).1 (10,2).1 (10,0).1 (8,0)(8,2) (8,0)(10,2)

(8,0)(10,0) (8,2)(10,2) (8,2)(10,0) (10,2)(10,0) (9,-.5)K4

The graph Kn has n(n− 1)/2 edges.

(ii) The null graph Nn is the graph with n vertices and no edges.

(0,-1)(4,.4) (0,0).1 (1,0).1 (2,0).1 (3,0).1 (4,0).1 (2,-.5)N5

(iii) The cycle of length n is the graph Cn with vertices V = {v1, v2, . . . , vn}
and edges

E = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}.

(-2,-3)(2,2) (0,2).1 (1.564,1.247).1 (-1.564,1.247).1 (1.95,-.445).1
(-1.95,-.445).1 (.868,-1.802).1 (-.868,-1.802).1 (0,2)(1.564,1.247)

(1.564,1.247)(1.95,-.445) (1.95,-.445)(.868,-1.802)
(.868,-1.802)(-.868,-1.802) (-.868,-1.802)(-1.95,-.445)

(-1.95,-.445)(-1.564,1.247) (-1.564,1.247)(0,2) (0,-2.2)C7

Trees

Definition 8.19 A simple graph Γ is called a tree if it is connected and
contains no circuits.

Definition 8.20 Given any graph Γ1, a spanning tree Γ of Γ1 is a subgraph
which contains all the vertices of Γ1 and is a tree.

We think of a spanning tree as providing minimal connectivity for the
graph and as a minimal skeletal framework holding the vertices together.

Theorem 8.21 If a and b are vertices in a tree T , then there is a unique
path that connects these vertices.

Proof: Since T is connected, there is at least one path from a to b. If there
were more than one, from two such paths we could construct a circuit using
some of the edges. This contradicts T having no circuits. �
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Theorem 8.22 Let Γ be an undirected graph. Then Γ is connected if and
only if it has a spanning tree.

Proof is omitted. Illustrate with diagram.

Example 8.23 There are three non-isomorphic trees that exist on five ver-
tices.

unit=.5cm (0,0)(10,8) (0,0).2 (0,2).2 (0,4).2 (0,6).2 (0,8).2 (0,0)(0,8) (2,0).2
(2,2).2 (2,4).2 (2,6).2 (4,2).2 (2,0)(2,6) (2,2)(4,2) (6,2).2 (8,0).2 (8,2).2

(8,4).2 (10,2).2 (6,2)(10,2) (8,0)(8,4)

Note that all three have the same number of edges: 4. This is a general
feature of trees.

Theorem 8.24 Let T = (V,E) be a tree. Then |E| = |V | − 1.

Proof: Let n = |V |, the number of vertices in T . We proceed by induction
on n. If n = 1, then T has a single vertex and must have no edges. Hence
|E| = n− 1 and the result holds in this case.

Suppose that the result holds for all trees with fewer than n vertices.
Pick an edge {u, v} in T . If we delete the edge {u, v}, then we obtain a new
graph Γ, which is now disconnected. (There can be no path from u to v in
the new graph since T is a tree, so {u, v} can be the only path from u to v.)
Since T is connected, it must be the case that deleting the edge {u, v} breaks
it into two connected subgraphs, T1 and T2. These must both be trees since
deleting an edge cannot suddenly introduce loops or circuits. Let n1 and n2
be the number of vertices in T1 and T2, respectively. By induction T1 has
n1 − 1 edges and T2 has n2 − 1 edges. Hence T has

(n1 − 1) + (n2 − 1) + 1 = n1 + n2 − 1 = n− 1

edges. This completes the induction. �

This completes our discussion of basic properties and types of graphs.
In the next section we consider particular properties these graphs may have.
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Section 9

Eulerian and Hamiltonian
Graphs

Graph theory began with Euler’s study of a particular problem: the Seven
Bridges of Königsberg. During the eighteenth century the city of Königsberg
(in East Prussia) was divided into four sections (including the island of
Kneiphof) by the Pregel river. Seven bridges connected these regions and
it was said that residents spent their Sunday walks trying to find a starting
point so that they could walk about the city, cross each bridge exactly once,
and return to their starting point.

To apply graph theory to this, let us represent each of the four sections
of the city by a node in a graph and represent each bridge by an edge:

(0,-.5)(2,2) (0,0).1c(0,1).1b(0,2).1a(2,1).1 d(0,0)(2,1) (0,1)(2,1) (0,2)(2,1)
(-.5,.5).707-4545 (-.5,1.5).707-4545 (.5,.5).707135225 (.5,1.5).707135225

(This is an undirected multigraph.)
Note that the degrees of the vertices are the following values:

ρ(a) = ρ(c) = ρ(d) = 3, ρ(b) = 5.

The question we seek to ask is the following:

Is there a circuit (a closed walk) that traverses every edge in the
graph once?

Euler established that the answer to this question depended upon the num-
ber of vertices of odd degree in the graph.

We make the following definition:
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Definition 9.1 A graph Γ = (V,E) is called Eulerian if there is a circuit
in Γ that passes through every vertex v ∈ V and that traverses every edge
of Γ exactly once.

A weakening is the following:

Definition 9.2 A graph Γ = (V,E) is called semi-Eulerian if there is a
walk in Γ that passes through every vertex v ∈ V and that traverses every
edge of Γ exactly once.

(In a semi-Eulerian graph, we do not require that we end up back where
we started!)

Theorem 9.3 Let Γ = (V,E) be a connected graph. Then Γ is Eulerian if
and only if every vertex has even degree.

Corollary 9.4 A connected graph Γ = (V,E) is semi-Eulerian if and only
if Γ has at most two vertices of odd degree.

The graph for the Seven Bridges of Königsberg has four vertices of odd
degree. Consequently it is neither Eulerian nor semi-Eulerian: the people
of Königsberg were wasting their time on Sunday afternoons trying to find
such a route!

Hamiltonian paths and cycles

In 1859, the Irish mathematician Sir William Rowan Hamilton developed a
game that he sold to a Dublin toy manufacturer. The game consisted of a
wood regular dodecahedron with the twenty corner points (vertex) labelled
with the names of prominent cities. The object of the game was to find a
circuit along the edges of the solid so that each city on the circuit exactly
once.

We represent the solid by a graph: the vertices of the graph correspond
to the vertices of the solid and the edges similarly correspond:

(-4,-1)(4,7) (2,0).1 (-2,0).1 (3.236,3.804).1 (-3.236,3.804).1 (0,6.155).1
(-2,0)(2,0) (2,0)(3.236,3.804) (3.236,3.804)(0,6.155) (0,6.155)(-3.236,3.804)

(-3.236,3.804)(-2,0) (-1.118,1.214).1 (1.118,1.214).1 (1.809,3.34).1
(-1.809,3.34).1 (0,4.655).1 (-2,0)(-1.118,1.214) (2,0)(1.118,1.214)

(3.236,3.804)(1.809,3.34) (-3.236,3.804)(-1.809,3.34) (0,6.155)(0,4.655)
(-1.118,1.214)(1.118,1.214) (1.118,1.214)(1.809,3.34) (1.809,3.34)(0,4.655)

(0,4.655)(-1.809,3.34) (-1.809,3.34)(-1.118,1.214) (0,1.214).1 (1.464,2.277).1
(.905,4).1 (-.905,4).1 (-1.464,2.277).1 (0,1.984).1 (.732,2.515).1
(.453,3.377).1 (-.453,3.377).1 (-.732,2.515).1 (0,1.214)(0,1.984)

(1.464,2.277)(.732,2.515) (.905,4)(.453,3.377) (-.905,4)(-.453,3.377)
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(-1.464,2.277)(-.732,2.515) (0,1.984)(.732,2.515) (.732,2.515)(.453,3.377)
(.453,3.377)(-.453,3.377) (-.453,3.377)(-.732,2.515) (-.732,2.515)(0,1.984)

[linewidth=2pt](0,6.155)(-3.236,3.804)
[linewidth=2pt](-3.236,3.804)(-1.809,3.34)
[linewidth=2pt](-1.809,3.34)(-1.464,2.277)
[linewidth=2pt](-1.464,2.277)(-.732,2.515)
[linewidth=2pt](-.732,2.515)(-.453,3.377)

[linewidth=2pt](-.453,3.377)(-.905,4) [linewidth=2pt](-.905,4)(0,4.655)
[linewidth=2pt](0,4.655)(.905,4) [linewidth=2pt](.905,4)(.453,3.377)

[linewidth=2pt](.453,3.377)(.732,2.515)
[linewidth=2pt](.732,2.515)(0,1.984) [linewidth=2pt](0,1.984)(0,1.214)

[linewidth=2pt](0,1.214)(-1.118,1.214) [linewidth=2pt](-1.118,1.214)(-2,0)
[linewidth=2pt](-2,0)(2,0) [linewidth=2pt](2,0)(1.118,1.214)

[linewidth=2pt](1.118,1.214)(1.809,3.34)
[linewidth=2pt](1.809,3.34)(3.236,3.804)

[linewidth=2pt](3.236,3.804)(0,6.155)

Definition 9.5 Let Γ = (V,E) be a graph. A Hamiltonian circuit is a
circuit which passes through every vertex exactly once (with only the first
and last vertex being a repeat).

A graph is called Hamiltonian if it possesses a Hamiltonian circuit.

Unsolved Problem: What is a necessary and sufficient condition for a
graph to be Hamiltonian?

This question appears to be extremely difficult to solve. The following
gives a sufficient condition:

Theorem 9.6 (Dirac 1952) Let Γ = (V,E) be a simple graph with n ver-
tices and suppose ρ(v) > n/2 for every vertex v. Then Γ is Hamiltonian.

(We can see easily that this is not a necessary condition. The dodecahe-
dron graph corresponding to Hamilton’s original game has n = 20, ρ(v) = 3
for every vertex v, yet the graph is Hamiltonian.)

Proof: Suppose Γ is not Hamiltonian. If we were to add more edges to Γ,
then eventually we would have to create a graph which is Hamiltonian.
Therefore we may add a number of edges to Γ and create a simple graph Γ′

which is not Hamiltonian, but for which the addition of a single further
edge gives a Hamiltonian graph. Note that ρ′(v) > ρ(v) > n/2 where
ρ′(v) denotes the degree of the vertex v in the new graph Γ′.

Let {v1, v2} be the edge which when added creates a Hamiltonian circuit.
This circuit necessarily has the form

v1 → v2 → v3 → · · · → vi−1 → vi → · · · → vn → v1.
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Now if for some i (with 3 6 i 6 n) there is an edge {v2, vi} and an
edge {v1, vi−1} in Γ′, then we can create a new Hamiltonian circuit

v2 → vi → vi+1 → · · · → vn︸ ︷︷ ︸→ v1 → vi−1 → vi−2 → · · · → v3 → v2︸ ︷︷ ︸ .
This circuit does not involve the edge {v1, v2} and so exists in the graph Γ′.
This contradicts the assumption that Γ′ is not Hamiltonian.

Hence for each of i = 3, . . . , n, it is not the case that there is both an
edge {v1, vi−1} and an edge {v2, vi}. Let A′ = (a′kl) be the adjacency matrix
of Γ′. This assertion is that

a′1,i−1 + a′2i 6 1 for 3 6 i 6 n.

Let us sum over all i:

n−1∑
j=2

a′1j +

n∑
i=3

a′2j 6 n− 2

so
n∑

j=1

a′1j +
n∑

i=1

a′2j 6 n− 1.

(Note a′11, a
′
12, a

′
21, a

′
22 = 0, as Γ′ is simple and does not have {v1, v2} as an

edge.) Hence
ρ′(v1) + ρ′(v2) 6 n− 1.

Yet
ρ′(v1) + ρ′(v2) > n/2 + n/2 = n,

and we have a contradiction. Hence Γ is Hamiltonian. �

Example 9.7 (The Knight’s Tour) The Knight’s Tour Problem is con-
cerned with the use of a chessboard and the piece known as the knight. Can
a knight vist each square of a chessboard by a sequence of knight’s moves
and finish on the same square that it began on?

(0,0)(8,8) (0,0)(1,0)9(0,0)(0,8) (0,0)(0,1)9(0,0)(8,0) (2.5,1.5)4pt
(3.5,3.5)4pt -¿(2.5,1.5)(3.4,3.3)

The solution is to find a link between this problem and the finding of
Hamiltonian circuits in a graph. To simplify the explanation, we consider
the situation of a 4 × 4 chessboard (rather than the usual 8 × 8 one). We
represent each square on this chessboard by a vertex of a graph and we join
two vertices by an edge if a knight could make a move from between the
corresponding squares. The following illustrates some of the edges (more
need to be added):
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(0,0)(3,3) (0,0).1 (1,0).1 (2,0).1 (3,0).1 (0,1).1 (1,1).1 (2,1).1 (3,1).1 (0,2).1
(1,2).1 (2,2).1 (3,2).1 (0,3).1 (1,3).1 (2,3).1 (3,3).1 (0,0)(2,1) (0,0)(1,2)

(2,1)(3,3) (1,2)(3,3) (3,0)(1,1) (3,0)(2,2) (0,3)(1,1) (0,3)(2,2)

This graph is not Hamiltonian. The corner vertices all have degree precisely
two and consequently the eight edges shown would have to be included in
any Hamiltonian circuit. This shows that no such Hamiltonian circuit can
exist since each of the centre four vertices must be visited at least twice.

It can be shown that there is no Knight’s Tour for a chessboard with an
odd number of squares (e.g., a 5×5 board). However for some other boards
there are solutions (e.g., for 6×6). The solution for the standard 8×8 board
was given by Euler in 1759.
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Section 10

Planar Graphs

Definition 10.1 We say that a graph Γ is planar if it can be drawn in the
plane with its edges only intersecting at vertices of Γ.

Sometimes we use the term ‘plane’ to refer to a graph that actually is
drawn in the plane (as opposed to one that has the potential to be drawn
as such).

Example 10.2 The following are planar graphs:

(0,0)(8,2.7) (0,0).1 (.6,.4).1 (1,1.2).1 (1,2).1 (1.4,.4).1 (2,0).1 (0,0)(2,0)
(0,0)(.6,.4) (0,0)(1,2) (.6,.4)(1.4,.4) (.6,.4)(1,1.2) (1,1.2)(1,2) (1,1.2)(1.4,.4)

(1,2)(2,0) (1.4,.4)(2,0) (3,0).1 (3,2).1 (5,0).1 (5,2).1 (3,0)(5,0) (3,0)(3,2)
(3,0)(5,2) (3,2)(5,2) (3,2)(5,0) (5,0)(5,2) (6,0).1 (6,2).1 (8,0).1 (8,2).1

(6,0)(8,0) (6,0)(6,2) (6,0)(8,2) (6,2)(8,2) (8,0)(8,2) (6,2)(7.5,3)(9,1.5)(8,0)

Theorem 10.3 The complete graph Kn is planar for n = 1, 2, 3, 4.

Proof: Draw them! �

Theorem 10.4 The complete graph K5 is non-planar.

Proof: We attempt to draw K5 in the plane. We first start with a pen-
tagon:

(-1.809,1)(1.809,5) (-1.118,1.214).1 (1.118,1.214).1 (1.809,3.34).1

(-1.809,3.34).1 (0,4.655).1edcab(-1.118,1.214)(1.118,1.214)
(1.118,1.214)(1.809,3.34) (1.809,3.34)(0,4.655) (0,4.655)(-1.809,3.34)

(-1.809,3.34)(-1.118,1.214)

A complete graph contains an edge between every pair of vertices, so there
is an edge between a and c. This may as well be inside the pentagon (as if
it is outside then we just adjust the following argument appropriately):
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(-1.809,1)(1.809,5.2) (-1.118,1.214).1 (1.118,1.214).1 (1.809,3.34).1

(-1.809,3.34).1 (0,4.655).1edcab(-1.118,1.214)(1.118,1.214)
(1.118,1.214)(1.809,3.34) (1.809,3.34)(0,4.655) (0,4.655)(-1.809,3.34)

(-1.809,3.34)(-1.118,1.214) (-1.809,3.34)(1.809,3.34)

Now we add the edge between b and e (this must be outside the pentagon
as it cannot cross {a, c}), the edge between a and d (inside so as to not
cross {b, e}), and then between c and e (outside so as to not cross {a, d}):

(-1.809,.5)(1.809,5.2) (-1.118,1.214).1 (1.118,1.214).1 (1.809,3.34).1

(-1.809,3.34).1 (0,4.655).1edcab(-1.118,1.214)(1.118,1.214)
(1.118,1.214)(1.809,3.34) (1.809,3.34)(0,4.655) (0,4.655)(-1.809,3.34)

(-1.809,3.34)(-1.118,1.214) (-1.809,3.34)(1.809,3.34)
(0,4.655)(-2,4)(-2,1.5)(-1.118,1.214) (-1.809,3.34)(1.118,1.214)

(1.809,3.34)(2,1)(.5,.5)(-1.118,1.214)

All these edges were forced into position and we have no choice. It remains
to add an edge between b and d. We cannot add it inside (since it would
cross {a, c}) nor can we add it outside (since it would cross {c, e}).

Consequently K5 is non-planar. �

Definition 10.5 A graph Γ = (V,E) is called bipartite if V = V1 ∪ V2 with
V1∩V2 = ∅ and every edge of Γ is of the form {a, b} with one of the vertices
a and b in V1 and the other in V2.

If every vertex in V1 is joined to every vertex in V2 we obtain a complete
bipartite graph. We write Km,n for the complete bipartite graph with |V1| =
m and |V2| = n. Here |E| = mn.

(0,0)(4,2) (0,0)(2,0)3(0,0).1 (0,2)(2,0)3(0,0).1 (0,0)(0,2) (0,0)(2,2)
(0,0)(4,2) (2,0)(0,2) (2,0)(2,2) (2,0)(4,2) (4,0)(0,2) (4,0)(2,2) (4,0)(4,2)

K3,3

(0,0)(6,2) (0,0)(2,0)4(0,0).1 (2,2)(2,0)2(0,0).1 (0,0)(2,2) (0,0)(4,2)
(2,0)(2,2) (2,0)(4,2) (4,0)(2,2) (4,0)(4,2) (6,0)(2,2) (6,0)(4,2)

K4,2

Theorem 10.6 The complete bipartite graph K3,3 is non-planar.

Proof: Let V1 = {a, b, c} and V2 = {x, y, z} and draw a hexagonal circuit:

a→ x→ b→ y → c→ z → a

(-1,-1)(1,1) (.5,-.866).1 (1,0).1 (.5,.866).1 (-.5,.866).1 (-1,0).1
(-.5,-.866).1ybxazc(.5,-.866)(1,0) (1,0)(.5,.866) (.5,.866)(-.5,.866) (-.5,.866)(-1,0)

(-1,0)(-.5,-.866) (-.5,-.866)(.5,-.866)
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The proof is completed by observing that two of the edges {a, y}, {b, z}
or {c, x} must both lie inside or both outside the hexagon and hence must
cross. �

The significance of our observation that K5 and K3,3 are non-planar is
in the next theorem (which we shall only state). We need a definition first.

Definition 10.7 Two graphs Γ1 = (V1, E1) and Γ2 = (V2, E2) are home-
omorphic if Γ2 can be obtained from Γ1 by the insertion or deletion of a
number of vertices of degree 2.

Example 10.8 The following three graphs are homeomorphic:

(0,0)(10,2) (0,0).1 (0,2).1 (1,1).1 (1.5,1.5).1 (2,0).1 (2,2).1 (0,0)(0,2)
(0,0)(2,2) (0,2)(2,0) (0,2)(2,2) (2,0)(2,2) (4,0).1 (4,2).1 (5,1).1 (6,0).1

(6,2).1 (4,0)(4,2) (4,0)(6,2) (4,2)(6,0) (4,2)(6,2) (6,0)(6,2) (8,0).1 (8,1).1
(8,2).1 (8.667,2).1 (9,1).1 (9.333,2).1 (9.5,1.5).1 (10,0).1 (10,.667).1

(10,1.333).1 (10,2).1 (8,0)(8,2) (8,0)(10,2) (8,2)(10,0) (8,2)(10,2)
(10,0)(10,2)

One can think of homeomorphic graphs as being as the same shape.
Adding or deleting a vertex of degree two does not change the shape of the
edges but simply replaces a single edge by a pair of edges taking the same
shape (or vice versa).

Theorem 10.9 (Kuratowski 1930) A graph is non-planar if and only if
it contains a subgraph that is homeomorphic to either K5 or K3,3.

The proof is omitted — one direction is very hard to prove. It is clear that
if a graph Γ contains either K5 or K3,3 then it cannot be planar (since then
K5 or K3,3 would be planar). Similarly the same happens for homeomorphic
subgraphs, since homeomorphism does not change the planarity of a graph.

If Γ is a planar graph, then it divides the plane into a number of re-
gions, each of which is bounded by edges (and these meet at the vertices,
by planarity). These regions are called the faces. This includes one region
of infinite area, called the infinite face. (Consider the planar graph K4 for
example.)

Theorem 10.10 (Euler) Let Γ = (V,E) be a connected planar graph (not
necessarily simple). Let v, e and f be the number of vertices, edges and faces
of Γ. Then

v − e+ f = 2.
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Proof: We proceed by induction on the number e of edges of Γ. If e = 0,
then v = 1 (since Γ is connected) and so f = 1 (the infinite face). Hence
the result is true when e = 0.

Now suppose that the theorem is true for all connected planar graphs
with fewer than e edges. Select some edge m in Γ and delete it. This
produces a graph Γ′ with v′ vertices, e′ edges and f ′ faces that satisfies
v′ − e′ + f ′ = 2 by induction. Of course, e′ = e− 1.

The edge m can be selected so that one of the following conditions hold:

(i) m is a loop. Adding this loop back introduces a new face, so f ′ =
f − 1, but does not change the number of vertices so v′ = v. Hence
v − e+ f = v′ − (e′ + 1) + (f ′ + 1) = v′ − e′ + f ′ = 2.

(ii) m joins two distinct vertices of Γ. Adding the edge back splits one of
the faces in Γ′ into two, so f = f ′ + 1. The number of vertices are
unchanged, so v′ = v. Hence v − e + f = v′ − (e′ + 1) + (f ′ + 1) =
v′ − e′ + f ′ = 2.

(iii) m is incident to only one vertex in Γ′. This means that to delete the
edge m from Γ we needed to remove a vertex of Γ. When we reinstate
these, we find that v = v′ + 1 but that f = f ′. Hence v − e + f =
(v′ + 1)− (e′ + 1) + f ′ = v′ − e′ + f ′ = 2.

These are the only possibilities and so the induction is complete. �

Corollary 10.11 Let Γ be a connected simple planar graph with v vertices,
e edges (e > 2) and f faces. Then

3f 6 2e

e 6 3v − 6.

Proof: We assume that Γ is drawn in the plane. We have assumed that
the graph has no multiple edges and no loops. This has the consequence
that the only way that a face could be bounded by less than three edges is
if this face is the infinite face and Γ is the following graph:

(0,0)(2,0) (0,0)(1,0)3(0,0).1 (0,0)(2,0)

In this case, we verify immediately that 3f = 1 6 2e = 4 and e = 2 6
3v − 6 = 3.

Thus, from now one, we may assume that each face is bounded by at
least three edges. Add up the number of edges around each face:∑

faces F

(no. of edges bounding F ) >
∑

faces F

3 = 3f.

Each edge lies either side of at most two faces, so we deduce

2e > 3f.
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Now by Euler’s Theorem, v − e+ f = 2. Hence e = v + f − 2, so

3e = 3v + 3f − 6

6 3v + 2e− 6,

so
e 6 3v − 6.

�

An example of an application of this result appears on the second graph
theory problem sheet. We can apply this result to prove two results we
already know:

Example 10.12 K5 and K3,3 are non-planar.

Proof: K5 has 5 vertices and 10 edges. But 3v − 6 = 9 < e which is
impossible for a planar graph.

K3,3 has 6 vertices and 9 edges. If this graph were planar, each face
would have to be bounded by at least four edges. The argument used above
then shows

4f 6 2e = 18.

However, Euler’s Theorem gives f = e− v + 2 = 5 and we have a contradi-
cation. Thus K3,3 is not planar. �
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Section 11

Permutations

Definition 11.1 LetX be a non-empty set. A bijective function f : X → X
will be called a permutation of X.

Consider the case when X is the finite set with n elements:

X = {1, 2, . . . , n}.

The collection of all permutations of this set X will be called the symmetric
group on n symbols and is denoted by Sn.

(We shall meet the definition of the term group in the next section.)

Observation: Sn contains n! permutations.
This holds since we have n choices for the image of 1, then n− 1 choices

for the image of 2, etc. We conclude that

|Sn| = n(n− 1)(n− 2) . . . 2 · 1 = n!.

If f is a permutation of the set X, we shall write xf for the image of the
element x ∈ X under f (rather than f(x)). The principal reason for doing
this is that it makes composition of permutations much easier: fg will mean
apply f first and then apply g rather than the other way around.

If f ∈ Sn, then we denote it as follows:(
1 2 3 . . . n

1f 2f 3f . . . nf

)
In this two-row notation, we write the image of an element k in the second
row below the occurrence of k in the first row. Thus(

1 2 3 4
2 4 1 3

)
denotes the permutation of {1, 2, 3, 4} which maps 1 to 2, 2 to 4, 3 to 1
and finally 4 to 3.
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Note that as f is a bijective function, all n of the elements in X =
{1, 2, . . . , n} must occur in the second row. It is for this reason that such
functions are termed “permutations”: one can think of them as simply re-
ordering the elements in X.

The composite of two permutations f and g is the function obtained by
applying f first and then applying g. Since we are writing maps on the
right, we denote this by fg. It is easy to calculate the permutation obtained
by composing two permutations written in the above two-row notation:(

1 2 3 4
2 4 1 3

)
◦
(

1 2 3 4
3 2 4 1

)
= ?

Here 1 7→ 2 by the first permutation and then 2 7→ 2 by the second. Thus the
composite does the first then the second, so 1 7→ 2. Equally the composite
has the following effects:

2 7→ 4 7→ 1, 3 7→ 1 7→ 3, 4 7→ 3 7→ 4

Hence (
1 2 3 4
2 4 1 3

)
◦
(

1 2 3 4
3 2 4 1

)
=

(
1 2 3 4
2 1 3 4

)
Similarly (

1 2 3 4
3 2 4 1

)
◦
(

1 2 3 4
2 4 1 3

)
=

(
1 2 3 4
1 4 3 2

)
(Since 1 7→ 3 7→ 1, 2 7→ 2 7→ 4, 3 7→ 4 7→ 3 and 4 7→ 1 7→ 2.) Note this
already illustrates one phenomenon: in general,

fg 6= gf

for two permutations f and g.

Cycle Notation

The above two-row notation is quite inefficient and also difficult to under-
stand the permutations in great detail. For example, the permutation(

1 2 3 4
1 4 3 2

)
fixes both 1 and 3, while swaps round 2 and 4. It would be nice to have
a more efficient way to describe this element (ideally one which misses out
1 and 3 since they are not moved by the permutation).
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Definition 11.2 Let x1, x2, . . . , xr be r distinct elements of {1, 2, . . . , n}
(so 1 6 r 6 n). The r-cycle (x1 x2 . . . xr) is the permutation in Sn which
maps

x1 7→ x2, x2 7→ x3, . . . , xr−1 7→ xr, xr 7→ x1

and fixes all other points in {1, 2, . . . , n}.

Such a cycle may be described by drawing the points xi in a circular
picture. Thus the cycle could also be written as

(x2 x3 . . . xr x1), or (x3 x4 . . . xr x1 x2), etc.

For example, the above permutation(
1 2 3 4
1 4 3 2

)
could be written more simply as

(2 4) or (4 2).

This tells us that this permutation fixes both 1 and 3.
What about the identity permutation? This is the permutation(

1 2 3 . . . n
1 2 3 . . . n

)
.

This is often written as the cycle (1). (Such a cycle fixes all elements except 1
and moves 1 to 1: so it really is the identity.) Of course, it could also be
written (x) for any x ∈ {1, 2, . . . , n}, but to avoid confusion its probably
best to stick to x = 1.

Definition 11.3 Two cycles (x1 x2 . . . xr) and (y1 y2 . . . ys) in Sn are dis-
joint if no element in {1, 2, . . . , n} is moved by both cycles.

If these cycles are non-identity (i.e., if r > 2 and s > 2) then this
condition can be expressed as

{x1, x2, . . . , xr} ∩ {y1, y2, . . . , ys} = ∅.

The crucial observation that will enable us to make use of cycles is the
following:

Theorem 11.4 Every permutation (of n points) can be written as a prod-
uct of disjoint cycles.

The proof is omitted. A proof is not too hard, but it is more helpful
to give an example to illustrate and this should be fairly convincing of the
truth of the theorem.
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Example 11.5(
1 2 3 4 5 6 7 8
2 4 3 5 1 6 8 7

)
= (1 2 4 5)(3)(6)(7 8)

= (1 2 4 5)(7 8)

To calculate this one starts with 1, follow the images round until we get
back to 1. Then we start again with the next symbol not accounted for.

It should be reasonably clear that we can follow this process with any
permutation and consequently the truth of the above theorem is assured (if
not proved in careful detail).

Example 11.6(
1 2 3 4 5 6 7 8
3 5 7 4 2 8 1 6

)
= (1 3 7)(2 5)(6 8)

We can use the same method used to calculate the composite of two
permutations when these permutations are expressed as products of cycles:

Example 11.7 (4 5 3) ◦ (1 2 3 4 5) = (1 2 3 5 4)
[Can be done by following images.]

Definition 11.8 We say two permutations f and g commute if fg = gf .

We have noticed that we cannot expect two permutations commute. Of
course, a permutation f always commutes with itself. The following is easy
to establish:

Lemma 11.9 Disjoint cycles commute.

(This may simply be described: the effect of a product of disjoint cycles
is the same no matter which was around it is calculated.)

This has the consequence that(
1 2 3 4 5 6 7 8
3 5 7 4 2 8 1 6

)
= (1 3 7)(2 5)(6 8)

= (2 5)(1 3 7)(6 8)

= (2 5)(3 7 1)(6 8)

etc. Note that (2 5) commutes with this permutation:

(2 5)f = (2 5)(1 3 7)(2 5)(6 8)

= (1 3 7)(2 5)(2 5)(6 8)

= (1 3 7)(2 5)(6 8)(2 5) = f(2 5)

since disjoint cycles commute. Similar calculations can be done for other
examples.

70



Definition 11.10 The order of a permutation f is the smallest positive
integer m such that fm is the identity.

The idea here is that the order of f is the number of permutations we
can produce by taking powers of f . Once we have reached the identity, any
further powers just produce ones we already have calculated.

How do we calculate the order of f? One method is just to calculate
powers (f , f2, f3, . . . ) and wait until we hit the identity. The problem
is that this can be laborious. Instead we can exploit the way we can write
permutations as products of disjoint cycles.

First consider a cycle f = (x1 x2 . . . xr). Note that powers of f first
map x1 to x2, then to x3, then to x4, and so on. Hence to produce the
identity, we need to use f r. (So the order of an r-cycle is r.)

Now consider any permutation f and write it as a product of disjoint
cycles:

f = f1f2 . . . fs.

Since disjoint cycles commute, we find

fm = fm1 f
m
2 . . . fms .

To obtain the identity we therefore need to take the m which makes the
power of each cycle the identity. We thus have:

Theorem 11.11 The order of a permutation is equal to the lowest common
multiple of the lengths of the cycles occurring in its decomposition into
disjoint cycles.

Example 11.12 Take

f =

(
1 2 3 4 5 6 7 8 9 10
3 4 7 9 5 10 8 1 2 6

)
= (1 3 7 8)(2 4 9)(6 10).

We need fourth powers to make the first cycle the identity, cubes to make
the second cycle the identity, and squares for the final cycle. Thus the order
of σ is 4× 3 = 12.

We give a special name to the following very short cycles.

Definition 11.13 A 2-cycle (that is, a cycle of length 2) is also called a
transposition.

Thus a transposition is a permutation (x y) which simply swaps round
the two elements x and y. Transpositions are useful for the following reason:

Theorem 11.14 Every permutation can be expressed as a product of trans-
positions.
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Proof: We can express every permutation as a product of disjoint cycles.
The next step is to express any cycle as a product of transpositions. For
example,

(1 2)(1 3)(1 4)(1 5) = (1 2 3 4 5)

does what we want for a 5-cycle. Analogous calculations establish the same
for other lengths. �

The final thing we can do with permutations is invert them:

Definition 11.15 If f is a permutation of the set X, then the inverse f−1

of f is the permutation that undoes the effect of applying f ; i.e., if f : x 7→ y,
then f−1 : y 7→ x.

Calculating Inverses, Method 1: If f is written in two-row notation,
then interchanging the rows produces its inverse:

e.g., if

f =

(
1 2 3 4 5 6 7 8
2 4 3 5 1 6 8 7

)
then

f−1 =

(
2 4 3 5 1 6 8 7
1 2 3 4 5 6 7 8

)
=

(
1 2 3 4 5 6 7 8
5 1 3 2 4 6 8 7

)
.

Calculating Inverses, Method 2: If g is a cycle, say g = (x1 x2 . . . xr),
so

g : x1 7→ x2, x2 7→ x3, . . . , xr−1 7→ xr, xr 7→ x1,

then

g−1 : xr 7→ xr−1, xr−1 7→ xr−2, . . . , x2 7→ x1, x1 7→ xr.

That is,
g−1 = (xr xr−1 . . . x2 x1),

i.e., we write the cycle for g backwards.
Hence for f = (1 2 4 5)(7 8), we have

f−1 = (5 4 2 1)(8 7)

= (1 5 4 2)(7 8).

(Note this agrees with the answer obtained by Method 1!)
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Section 12

Groups

Definition 12.1 A binary operation on a set X is a function X ×X → X.
We shall think of it as a method for combining two elements of X to give
another and write, for example, x ∗ y for the image of the pair (x, y) under
the function.

Definition 12.2 Let G be a set and let ∗ denote a binary operation on G.
(Sometimes we use multiplication or addition to denote the binary opera-
tion.) So given a, b ∈ G, we have an element a ∗ b in G.

We say (G, ∗) is a group if the following axioms are satisfied:

(i) ∗ is associative:

a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G;

(ii) there is an identity element e ∈ G such that

a ∗ e = e ∗ a = a for all a ∈ G;

(iii) for each a ∈ G there is an element a−1 ∈ G such that

a ∗ a−1 = a−1 ∗ a = e.

(This is called the inverse of a.)

We shall see later that the identity element in a group is unique and
that the inverse of an element a is uniquely determined by a. Note that
many authors denote the identity element by 1: I would do such in a more
advanced course, but shall avoid doing so in this more elementary one.

Some people will list “closure” as a necessary axiom for a group. This,
however, is built into our definition of a binary operation: the definition of ∗
being a binary operation on G is that a ∗ b ∈ G for all a, b ∈ G.

Note that we have not assumed that a ∗ b and b ∗ a are always the same
element of our group. In general they are different, but we give a special
name to groups where they are equal.
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Definition 12.3 Let (G, ∗) be a group. If a ∗ b = b ∗ a for all elements
a, b ∈ G, then we say that G is abelian (or commutative).

Most groups are non-abelian: the ones where every pair of elements
commute turn out to be rather special.

Definition 12.4 The order of a group (G, ∗) is the number of elements in
the set G. We denote this by |G|.

Examples of groups

Example 12.5 (Z,+), the set of all integers forms an abelian group under
addition. It is well known that + is an associative binary operation on Z.
The identity element is 0 and −a is the inverse for a:

a+ (−a) = (−a) + a = 0.

Similarly (Q,+) and (R,+) are groups.

Example 12.6 Let us write Q+ for {x ∈ Q | x > 0}, the set of positive
rational numbers. We claim that (Q+, ·) is a group.

Note that the product of two positive rational numbers is a positive
rational number, so multiplication is a binary operation on Q+. Multiplica-
tion is an associative binary operation on Q+. The identity element is 1. If
x = p/q ∈ Q+, then 1/x = q/p ∈ Q+ and this is the inverse we seek for x:

x · (1/x) = (1/x) · x = 1.

Similarly (R+, ·) is a group.
However, the set Z+ of positive integers does not form a group under

multiplication. We have 1 as the identity element, but no element (other
than 1) has an inverse.

We also have groups (R \ {0}, ·) and (Q \ {0}, ·).
The set R− of negative real numbers does not form a group under multi-

plication: multiplication is not a binary operation on R− (it is not “closed”).

Example 12.7 Consider the set S of n-tuples (a1, a2, . . . , an) where each ai
is a real number. We can define a binary operation on S by addition in each
component:

(a1, a2, . . . , an) ∗ (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn).

This binary operation is associative because addition is an associative bi-
nary operation on R. The identity element is (0, 0, . . . , 0). The inverse
of (a1, a2, . . . , an) = (−a1,−a2, . . . ,−an).
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Example 12.8 Recall that Sn, the symmetric group on n points, consists
of all permutations of X = {1, 2, . . . , n}. We know how to compose two
permutations f and g to produce another permutation f ◦ g. We claim that
(Sn, ◦) forms a group.

Associativity: Let f, g, h ∈ Sn. If x ∈ X, then xf(gh) means apply
f to x and then apply gh. The latter means apply g and then h. Thus
xf(gh) = ((xf)g)h. Similarly x(fg)h means first apply fg and then apply h.
However to apply fg means apply f and then g. Thus x(fg)h = ((xf)g)h.
Hence f(gh) = (fg)h.

The identity permutation e moves nothing. Thus f ◦ e = e ◦ f = f for
all permutations f .

Finally if f is a permutation, we have seen how to construct the in-
verse f−1. If f : x 7→ y, then f−1 : y 7→ x. Thus f ◦ f−1 = f−1 ◦ f = e, so
f−1 is also the inverse in the sense of Definition 12.2. Hence we do indeed
have a group.

Multiplication Tables

One way one can present the information encoded in the binary operation
on a group is in a multiplication table (or Cayley table). Suppose G is a
(fairly small) finite set and we have some binary operation ∗ defined on it.
We label the rows and the columns of the table with the elements of G and
place the element a∗b in the entry with row labelled a and column labelled b.
For example:

Group of order 2:
e a

e e a
a a e

Group of order 3:
e a b

e e a b
a a b e
b b e a

Such tables are very good for checking for “closure”, finding the identity
and inverses, but very bad at checking associativity and not terribly useful
for obtaining detailed information as the order of the group grows larger.

Example 12.9 The following is the multiplication table for a group of or-
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der 6: G = {1, a, b, c, d, e}.

1 a b c d e

1 1 a b c d e
a a b 1 d e c
b b 1 a e c d
c c e d 1 b a
d d c e a 1 b
e e d c b a 1

We can see that 1 is the identity element (as the entries in the row and
column labelled 1 are appropriate). We can also check for inverses: there is
precisely one entry in each row and column equal to 1. Associativity holds
but is extremely difficult to check for! The group is not abelian:

cd = b, dc = a

so cd 6= dc.

More examples

First recall that we defined

a ≡ b (mod m)

to mean m | (a − b). We observed that this was an equivalence relation on
the set of integers with m equivalence classes:

[0], [1], . . . , [m− 1].

Let use Z/m to denote the set of these m equivalence classes (some authors
use Zm). We have also observed that addition can be used to define an
addition on the equivalence classes. Let us drop the brackets, so write (for
example)

Z/4 = {0, 1, 2, 3}.

We then have 2 + 3 = 1, 3 + 1 = 0, etc. This gives the following table:

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Example 12.10 (Z/m,+) is a group.
Addition is associative on Z/m, since it is an associative operation on

all integers and this is inherited by the equivalence classes.
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0 is the identity element, and the inverse of a is (m−a) (as a+(m−a) ≡ 0
(mod m)).

This examples shows that there is at least one group with any given
(finite) order.

What about modular multiplication?
We cannot hope to get a group if we include 0, since 0 · a = 0 for all a.

(This is the same as what happened with multiplication on Q, or R, etc.)

Theorem 12.11 If p is a prime number, (Z/p) \ {0} is a group under mul-
tiplication modulo p.

(If m is not prime, then (Z/m) \ {0} is not closed under multiplication:
for example, 2 · 3 = 0 in Z/6.)

Proof: The operation is closed: if a, b ∈ (Z/p) \ {0}, then p - a and p - b
(as integers), so p - ab. Hence ab ∈ (Z/p) \ {0}.

Normal multiplication on integers is associative, consequently the mod-
ular multiplication is associative. Clearly 1 is the identity element for the
multiplication.

Finally let a ∈ (Z/p) \ {0}. Then p - a, so p and a are coprime. Hence,
by the Euclidean Algorithm, there exist u, v ∈ Z such that ua + vp = 1.
Hence

ua ≡ 1 (mod p).

This means that u is our inverse for a in (Z/p) \ {0}. �

As an example, the multiplication table of (Z/5) \ {0} is:

· 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Example 12.12 Consider the set of 2 × 2 matrices with real entries. We
might ask whether we can turn this (or some related structure) into a group
under matrix multiplication. Matrix multiplication is indeed associative.
The only obvious candidate for an identity element is the identity matrix

I =

(
1 0
0 1

)
It is easy to check that IA = AI = A for all matrices A. We seek to be
able to invert matrices. Accordingly we cannot work with all 2×2 matrices,
since, for example, (

0 0
0 0

)(
a b
c d

)
=

(
0 0
0 0

)
.
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Instead, we work with the set of all invertible matrices, that is, those with
non-zero determinant:

G =

{(
a b
c d

) ∣∣∣∣ ad− bc 6= 0

}
This set does form a group under matrix multiplication: the inverse of

A =

(
a b
c d

)
is

A−1 =
1

ad− bc

(
d −b
−c a

)
=

( d
ad−bc

−b
ad−bc

−c
ad−bc

a
ad−bc

)
Example 12.13 Given a (geometric) shape (for the moment restricted to
lying in 2-dimensional space), the collection of invertible transformations
that move the shape back to itself form a group. This is called the symmetry
group of the original shape.

For example, for the square [DRAW!], there are eight symmetries: the
identity transformation, three rotations through angles of 90◦, 180◦ and 270◦,
respectively, and four reflections in axes either through opposite vertices or
through the mid-points of opposite edges.

In general, the symmetry group of the regular n-gon is called the dihedral
group D2n of order 2n (though some authors use Dn). The square is the
case n = 4 and we have observed that its symmetry group does indeed
contain 8 transformations.

If we label the vertices of the square as 1, 2, 3, 4, then each symmetry
corresponds to a permutation of these numbers. For example, the anticlock-
wise rotation through 90◦ corresponds to the cycle (1 2 3 4).
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Section 13

Some group theory

We finish the course by considering some examples of the development of
the theory of groups.

Lemma 13.1 Let (G, ∗) be a group.

(i) The identity element e of G is unique.

(ii) Each element in G has a unique inverse.

Proof: (i) If e and f are identities, then e ∗ f = f since e is an identity,
while e ∗ f = e as f is an identity. Thus e = f .

(ii) Suppose a ∈ G and that x and y are inverses for a. Then

x ∗ a = a ∗ x = e and y ∗ a = a ∗ y = e.

Then using associativity:

y = e ∗ y = (x ∗ a) ∗ y = x ∗ (a ∗ y) = x ∗ e = x.

�

The upshot of (ii) is that we may safely write a−1 for the (unique) inverse
of a without worrying that we may be referring to more than one element
of our group.

Definition 13.2 If (G, ∗) is a group and a ∈ G, we define powers of a as
follows:

an = a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
n times

and
a−n = (an)−1

for all n ∈ N. Also a0 = e, the (unique) identity element.
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This, together with the fact that the group operation is associative, has
the consequence that standard power laws hold:

am ∗ an = am+n (am)n = amn.

Definition 13.3 A group (G, ∗) is called cyclic if there exists some ele-
ment a ∈ G such that every element in G has the form an. This element a
is called the generator.

Cyclic groups are very special. For example:

Lemma 13.4 Cyclic groups are abelian.

Proof: Let a be a generator for our cyclic group (G, ∗). If x and y are
elements in G, then x = am and y = an for some m,n ∈ Z. Then

x ∗ y = am ∗ an = am+n = an ∗ am = y ∗ x.

Hence every pair of elements commute, so our group is abelian. �

We already defined the concept of order for a permutation (an element
in the symmetric group Sn). We make the same definition for groups.

Definition 13.5 Let (G, ∗) be a group and a be an element in the group.
The order of a is the least positive integer m such that am = e (the identity
element).

If there is no such m, then a is said to have infinite order.

Lemma 13.6 If (G, ∗) is a cyclic group with generator a, then the order
of a equals |G|.

So far we have considered mainly the structure of groups just referring
to its elements. To achieve more we need to know about groups that contain
groups within them.

Definition 13.7 Let (G, ∗) be a group. A non-empty subset H of G is
called a subgroup if x ∗ y ∈ H and x−1 ∈ H for all x, y ∈ H.

So a subset is a subgroup if it is closed under the group operation and
under taking inverses.

The idea here is that if H is a subgroup, then from the binary operation
G × G → G (given by (x, y) 7→ x ∗ y) we can construct a binary operation
on H:

H ×H → H

(x, y) 7→ x ∗ y.
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(The first condition to be a subgroup ensures this always lies in H if we
start with elements in H.) Since

x ∗ (y ∗ z) = (x ∗ y) ∗ z

holds for all x, y, z ∈ G, it certainly holds when we only consider elements
which belong to H.

Now our subgroup H is non-empty, so it contains some element x. By
assumption, x−1 ∈ H. Therefore

e = x ∗ x−1 ∈ H.

Hence H contains the identity element from G. This behaves like an iden-
tity with respect to the elements of H, so H has an identity for its binary
operation.

Finally if x ∈ H, then x−1 (the inverse as an element of G) also belongs
to H, and this behaves like an inverse for x with respect to the binary
operation on H.

We therefore have:

Lemma 13.8 Let (G, ∗) be a group. A subset H of G is a subgroup of (G, ∗)
if and only if H forms a group under a binary operation induced from ∗.

Subgroups are useful since they enable us to break our group in particular
ways. This will be discussed further in later courses (e.g., MT2002 and later).

We finish with an extended example.

Example 13.9 Let G = R× (R \ {0}) and define a binary operation on G
by

(a, b) ∗ (c, d) = (ad+ c, bd).

Then (G, ∗) is a group. Then ∗ is associative (check!).
We calculate:

(a, b) ∗ (0, 1) = (a1 + 0, b1) = (a, b)

and
(0, 1) ∗ (a, b) = (0b+ a, 1b) = (a, b)

so (0, 1) is the identity. Also

(a, b) ∗ (−a/b, 1/b) = (a(1/b)− a/b, b(1/b)) = (0, 1)

and
(−a/b, 1/b) ∗ (a, b) = (−(a/b)b+ a, (1/b)b) = (0, 1)

so (−a/b, 1/b) is the inverse of (a, b).
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Let

H = { (a, 1) | a ∈ R }
K = { (a, a) | a ∈ R \ {0} }.

If (a, 1), (b, 1) ∈ H, then

(a, 1) ∗ (b, 1) = (a1 + b, 1) = (a+ b, 1) ∈ H

and
(a, 1)−1 = (−a/1, 1/1) = (−a, 1) ∈ H.

Hence H is a subgroup of G.
On the other hand, (1, 1), (2, 2) ∈ K but

(1, 1) ∗ (2, 2) = (1 · 2 + 2, 1 · 2) = (4, 2) 6∈ K.

Hence K is not a subgroup of G.
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